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SUMMARY

Adapting organisms face a tension between specializing their phenotypes for
certain ecological tasks and developing generalist strategies that permit persis-
tence in multiple environmental conditions. Understanding when and how gener-
alists or specialists evolve is an important question in evolutionary dynamics.
Here, we study the evolution of bacterial range expansions by selecting Escher-
ichia coli for faster migration through porous media containing one of four
different sugars supporting growth and chemotaxis. We find that selection in
any one sugar drives the evolution of faster migration in all sugars. Measure-
ments of growth and motility of all evolved lineages in all nutrient conditions
reveal that the ubiquitous evolution of fast migration arises via phenotypic plas-
ticity. Phenotypic plasticity permits evolved strains to exploit distinct strategies
to achieve fast migration in each environment, irrespective of the environment in
which they were evolved. Therefore, selection in a homogeneous environment
drives phenotypic plasticity that improves performance in other environments.

INTRODUCTION

Organisms in nature often encounter varied environments throughout their lifetimes, each with its own de-

mands on the phenotype. Therefore, the ability of a single genotype to thrive under different environ-

mental conditions can be essential for a lineage’s chance of long-term persistence. Organisms that can

thrive in varied environments are called generalists. It is thought that generalists evolve in fluctuating en-

vironments, while fixed environments select for specialists (Kassen, 2002). In its native environment, a

specialist is expected to have enhanced fitness relative to a generalist but reduced fitness in other environ-

ments (Elena and Lenski, 2003).

However, the results of experimental evolution studies show remarkably diverse outcomes. While trade-

offs are sometimes observed (Cooper and Lenski, 2000), they are far from universal: studies with a constant

selection environment (which are expected to produce specialists) often produce a mixture of specialists

and generalists across replicate lineages (Velicer and Lenski, 1999). Additionally, trade-offs observed in

experimental evolution are sometimes asymmetric: studies employing multiple selection conditions may

produce specialists in one condition and generalists in another (Lee et al., 2009; Travisano, 1997). Other

studies find that a majority of evolved lines are generalists, even with selection performed in a constant

environment (Ostrowski et al., 2005; Fong et al., 2005).

A key question that emerges from these studies is understanding the limits and mechanisms of the evolu-

tion of phenotypic generality. Experiments suggest that generalists will only show enhanced fitness in en-

vironments that are sufficiently similar to their selection condition (Travisano et al., 1995; Travisano and Len-

ski, 1996). While this notion is intuitive, there are distinct avenues of phenotypic adaptation that could give

rise to generalist phenotypes. An experimentally supported interrogation of the conditions under which

generalists evolve, the environmental limits of their generality, as well as its underlying genotypic and

phenotypic mechanisms, would shed light on how populations deploy phenotypic variation during adap-

tation (Pigliucci, 2001).

To address this, we selected Escherichia coli for faster migration through porous media with one of four

different sugars as a carbon source and chemoattractant. We observed the evolution of generalists: selec-

tion for fast migration in any one sugar resulted in fast migration in all sugars. Because migration depends

on both growth andmotility, wemeasured these phenotypes for strains from each evolutionary history in all
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four nutrient conditions to investigate the evolution of migration rate generality. We found that the envi-

ronment determined the phenotype more than the evolutionary history: strains from all selection condi-

tions exhibited a distinct growth and motility phenotype for each assay condition irrespective of their

evolutionary history. That is, all strains observed in a particular environment showed similar adaptation

of growth and motility regardless of their selection condition. Because the evolved strains in this study

exhibit different phenotypes depending on their environment and because those phenotypes are associ-

ated with faster migration, we conclude that generalists evolved in our experiment via phenotypic plasticity

(Scheiner, 1993).

RESULTS

Selection Enhances Migration of Bacterial Populations through Soft Agar

E. coli inoculated into low-viscosity agar depletes nutrients locally, as cells swim and divide in the porous,

three-dimensional environment. This depletion establishes a nutrient gradient that drives chemotaxis out-

ward and subsequent growth of the population (Adler, 1966; Wolfe and Berg, 1989). The result is a macro-

scopic colony that expands radially from the site of inoculation at a speed determined by growth, motility,

and chemotaxis of its constituent cells (Croze et al., 2011). We performed time-lapse imaging on these col-

onies and observed an initial growth phase followed by radial expansion at a constant rate (Figure S1).

We performed experimental evolution by selecting E. coli for faster migration through soft agar. From a

single ancestral strain (MG1655-motile, Coli Genetic Stock Center #8237), we performed selection for faster

migration in M63 minimal medium with 0.2% w/v agar and one of four different sugars as carbon sources at

1 mM concentration: mannose, melibiose, N-acetylglucosamine (NAG), and galactose. After allowing a

population to expand for 24 hr, we selected a small population of cells from the outermost edge of the col-

ony and used these cells to inoculate a new low-viscosity agar plate (Figure 1A). This process of expansion

and selection was repeated for ten rounds. In each condition, the sugar served as the sole energy source

and chemoattractant for the expanding population. We chose these four sugars because we believed that

the diverse set of genetic architectures involved in their chemotaxis, import, and metabolism could lead to

diverse opportunities for genomic evolution and resultant phenotypic adaptation in each condition. All

four sugars traverse the outer membrane through OmpF, but mannose and NAG use phosphotransferase

systems to cross the inner membrane while melibiose and galactose rely on cation symporters MelB and

GalP (Travisano and Lenski, 1996; Yazyu et al., 1984; Henderson et al., 1977). Once inside the cell, catabo-

lism of NAG and galactose is regulated by repression fromNagC andGalR/GalS (Plumbridge, 1991;Weick-

ert and Adhya, 1993). Alternatively, melibiose catabolism is regulated by activation from MelR (Bourgerie

et al., 1997) and mannose catabolism does not have a specific inducer, requiring only the global regulator

cyclic AMP receptor protein to signal glucose starvation (Fraser and Yamazaki, 1980).

Across all four conditions, we observed a dramatic enhancement of migration rates due to selection. Migra-

tion rates of all lineages in melibiose and NAGmore than doubled after just one round of selection (Figures

1C and 1D), while similar improvement in mannose and galactose was achieved after two rounds of selec-

tion (Figures 1B and 1E). The reason for the small drop in migration rates between rounds 1 and 2 in

mannose is not known but might be due to the different growth history of the cells used at the beginning

or rounds 1 and 2 (liquid culture and agar plates, respectively). In all four conditions, migration rates

continued to improve from round 2 to round 10, albeit modestly compared to the initial increase. In round

10, migration rates had increased almost threefold in mannose and NAG, 2.5-fold in melibiose, and nearly

6-fold in galactose.

Selection for Fast Migration in One Sugar Results in Fast Migration in all Sugars

We asked whether migration rate evolution was specific to each selection condition or whether strains

evolved in one sugar were adapted for fast migration in other sugars as well. Therefore, we measured

the migration rates of evolved strains in all nutrient conditions. Specifically, the migration rates were

measured for four independent replicate lineages from each selection condition (a total of 16 strains) in

each of the four different assay conditions (mannose, melibiose, NAG, and galactose). Surprisingly, nearly

all strains exhibited enhanced migration across all conditions relative to the founding strain in that condi-

tion (Figure 2). For example, a strain evolved for fast migration in NAG (squares, Figure 2) also exhibited

faster migration than the ancestral strain in all three of the other sugars. Migration rates of non-native

strains (that is, populations assayed in a condition different from their selection condition) were nearly al-

ways much greater than the ancestor’s migration rate, often comparable to or exceeding the natively
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evolved populations’ migration rates. The non-native populations exhibit fast migration, despite having no

evolutionary history in that nutrient condition. The objective of this study therefore became to understand

how selection in one nutrient environment generically gives rise to fast migration in all nutrient

environments.

To probe the limits of the observed phenotypic generality, we first measured the migration rates of the

ancestor as well as two evolved strains from each selection condition in seven additional nutrient environ-

ments beyond the initial four: arabinose, dextrose, fructose, lactose, maltose, rhamnose, and sorbitol.

Again, we found that nearly all the strains showed enhanced migration rates relative to the ancestral

strain across all these conditions (Table S1). The evolved strains typically migrated 1.5- to 3-fold faster

than the ancestor. We concluded that the nutrient generality of migration rate selection extends to

Figure 1. Repeated Selection Enhances E. Coli Migration through Soft Agar in Four Nutrient Conditions

(A) Schematic of migration selection procedure. Motile E. coli is inoculated into the bulk of a soft agar plate containing

growth medium. Nutrient consumption and chemotaxis drive the growing population to expand radially across the plate

at a constant migration rate. After a fixed interval, cells are sampled from the edge of the expanding colony and used to

inoculate a new plate.

(B–E) Migration rates as a function of round of selection for experiments conducted in 0.2% w/v agar plates containing

M63 minimal medium with one of four different carbon sources at 1 mM concentration: (B) mannose, (C) melibiose, (D)N-

acetylglucosamine, and (E) galactose. Four replicate experiments were carried out to 10 rounds in each condition.

Migration rates are measured by time-lapse imaging of expanding colonies followed by linear fit of colony radius versus

time; error bars are 95% confidence intervals on fitted rates. No rates are reported for round 5 in mannose due to failure of

the imaging device. See Transparent Methods for details of selection procedure and migration rate measurement.

See also Figure S1.
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many different carbon sources within the regime of M63 medium with 0.2% w/v agar and 1 mM sugar. In

contrast, migration rates of all 16 evolved strains presented in Figure 2 did not exhibit fast migration in

lysogeny broth (LB) rich medium and instead exhibited a drop in migration rate relative to the ancestor

(Figure S2). For comparison, we also measured three independently evolved strains isolated after 10

rounds of selection in LB and found that they migrate around 50% faster than the ancestor (Figure S3).

So, while repeated selection still enhances migration in LB, the generality of the strains evolved in min-

imal medium does not extend to this rich medium where chemotaxis and growth are driven by amino

acids (Adler, 1966).

What Makes a Generalist?

We next set out to understand how phenotypes evolved under selection for fast migration in one sugar give

rise to fast migration in other sugars. Population-level migration through soft agar depends on both growth

and motility of individual cells. Therefore, selection for faster migration can be driven by enhancements to

growth rate, chemotactic response, and undirected motility (Croze et al., 2011; Fraebel et al., 2017). For

example, increases in running speed or tumble frequency are known to drive faster migration through

soft agar (Ni et al., 2017). We therefore asked what phenotypic changes permit a lineage selected on

one sugar to migrate more rapidly than the ancestral population in another sugar (Figure 2).

To understand why strains from distinct evolutionary histories (selection conditions) show enhanced migra-

tion across different environments (assay conditions), we considered the growth and motility of each

evolved strain in each assay condition. For the present discussion, we considered growth and motility as

abstract traits, but our hypotheses do not depend on the number or identity of the traits considered. In

this framework, we proposed that there are three main possibilities for how the generality of fast migration

could evolve (Figure 3).

Figure 2. Nutrient Generality of Migration Rate Evolution

The 16 strains isolated after 10 rounds of selection (four from each nutrient condition, Figures 1B–1E) were assayed for

enhanced migration rate in each of the four nutrient conditions used for the selection experiments: (A) mannose, (B)

melibiose, (C) NAG and (D) galactose. Migration rates of evolved strains are presented as mean G standard error of two

replicate plates for each strain in each condition, except as noted below. Marker shapes denote selection condition;

marker colors denote assay condition (legend). Migration rates of the founding strain (F) in each condition are presented

as mean G standard error of 3–4 replicate plates in each condition. For the following exceptions, error bars are standard

error on migration rate from a single plate: The rightmost NAG-evolved strain and leftmost gal-evolved strain had only

one usable plate in in NAG (C). For the rightmost two galactose-evolved strains in galactose (D), rates are reproduced

from round 10 of the selection experiments (Figure 1E). See also Figures S2 and S3 and Table S1.
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Type I: Universal Adaptation

Neither the selection condition nor the assay condition has an impact on the evolved phenotype. Instead,

there is a single phenotype conferring fast migration through 0.2% w/v agar and 1mM sugar, irrespective of

any differences in import, metabolism, and chemotactic affinity between different sugars. Evolved strains

could achieve this phenotype across all selection conditions. Generality would then be achieved as long as

evolved strains exhibit the adapted phenotype across different assay conditions. For example, the evolved

strains could have achieved a growth rate adaptation that does not depend on the specific sugar, allowing

them to grow rapidly (and thereby exhibit fast migration) in all 1 mM sugar assay conditions, or they could

exhibit a change in run-tumble statistics which confer a migration rate advantage in soft agar. However,

‘‘type I’’ generality need not be this simple. The ideal phenotype could be a particular combination of

growth and motility enhancements, corresponding to a distinct direction away from founder in the two-

dimensional space of phenotypes. The key feature of ‘‘type I’’ generality is that there is no separation of

evolved phenotypes by either selection condition or assay condition. Instead there is a single, universal

phenotype that is achieved by all evolved strains in all conditions (Figure 3).

Type II: Phenotypic Plasticity

In each sugar, there exists a distinct growth/motility phenotype conferring fast migration. The adaptive

value of growth or motility can easily depend on the assay condition. For example, in a condition that sup-

ports slow growth of the ancestral strain, increases in growth may confer a greater advantage compared to

motility. These differences could also arise at the molecular level due to differences in import, metabolism,

and chemotactic affinity for each sugar. In this scenario, generality would emerge if evolved strains exhibit

the different adapted phenotypes for each assay condition, irrespective of their selection condition. This

would mean that selection acts to put evolved populations in a plastic, adaptive state. Once in this state,

cells could adapt their phenotype to the particular balance of growth and motility needed to enhance

migration in different environments. We refer this mechanism for evolving generalists as ‘‘plasticity’’

because it requires that the same genotype (evolved strain) and exhibits distinct phenotypes (growth/

motility) in different nutrient conditions. In this situation, a strain’s phenotype is determined more by its

assay condition than selection condition. Graphically, this would mean that the evolved phenotypes sepa-

rate by assay condition (Figure 3). For example, if evolved strains across different evolutionary histories

showed enhanced growth in mannose but enhanced motility in NAG, we would conclude that the nutrient

generality of migration rate evolution was achieved through phenotypic plasticity.

Type III: Degeneracy

There is a degenerate set of distinct phenotypes which all confer faster migration on the evolved strains in

all assay conditions. Suppose that there is a distinct method of adaptation associated with each selection

condition and evolved populations exhibit these different adaptations in all assay conditions. Generality

would be possible in this case as long as different growth and motility phenotypes could produce similar

migration rates in a particular environment. In this sense, the evolved phenotypes would be degenerate at

Figure 3. Hypothesized Modes of Evolution of Migration Rate Generality

We propose three distinct possibilities for the underlying phenotypic basis of the nutrient generality of migration rate

adaptation presented in Figure 2. Type I (universality): All evolved strains show the same adaptation from founder across

all assay conditions. There is no separation of evolved phenotypes in the two-dimensional phenotypic space of motility

and growth. Type II (plasticity): Evolved strains exhibit a flexible adapted state. Evolved strains show a characteristic

adaptation for each assay condition, regardless of their evolutionary history. Phenotypes separate by assay condition

(marker color). Type III (degeneracy): Evolved strains display a characteristic phenotype for each evolutionary history,

regardless of assay condition. Phenotypes separate by selection condition (marker shape).
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the level of migration rate. Graphically, this would correspond to the case where evolved phenotypes sepa-

rate by selection condition (Figure 3). For example, if mannose-evolved strains enhance growth in all envi-

ronments, while strains evolved in NAG enhance motility across all environments, we would classify the

observed migration rate generality as ‘‘type III’’.

Quantitative Relationship between Phenotypes and Migration Rates

Selection in our experiment is performed on migration rate. Therefore, to test which of these three hypoth-

eses accounts for the evolution of generalists we observe in Figure 2 we must first relate phenotypes

(growth and motility) quantitatively to the migration rate of the population. To accomplish this, we use

an established reaction-diffusion formalism (Cremer et al., 2019) to describe the spatiotemporal dynamics

of the chemoattractant and nutrient source and the bacterial population. The model takes the following

form:

vr

vt
= DbV

2r� VðvrÞ+ kgrc

Kg + c
; (Equation 1)

vc

vt
= DcV

2c � kgrc

Y
�
Kg + c

� ; (Equation 2)

with v = clog

�
1+ c=A

1+ c=B

�
; (Equation 3)

where r is a field describing the bacterial density in space and time and c describes the nutrient/chemo-

attractant field. Db and Dc are diffusion constants for bacteria and nutrients, respectively, and kg is the

maximum growth rate with affinity Kg and biomass yield Y. A and B are constants that determine the range

of attractant concentrations over which cells respond chemotactically. c controls the strength of the

chemotactic response and can be decomposed further c = fDb, where Db is the diffusion constant and f

is a factor that depends on the bias of cells swimming up a gradient of attractant (Croze et al., 2011).

In the limit of a homogeneous field of nutrients (Vc = 0), the second term in Equation 1 tends to zero and we

recover the familiar Fisher-Kolmogorov (FK) model. In this limit, the migration rate of the population rate is

given by sFKfDbkg. At long times, when the population has consumed available nutrients at the center of

the plate, scaling arguments show that the chemotactic front moves with an enhanced migration rate

seFKfckg = fDbkg (Cremer et al., 2019), which is larger than sFK since f is typically greater than 1. In either

case, faster growth drives faster migration by more rapidly creating a larger population to drive colony

expansion.

Simulations of the model in Equations (1), (2), and (3) show that expanding colonies transition from

migrating at a rate sFK at early times to seFK at late times (Figure 4). Migration at a rate sFK occurs when

the initial population is diffusing but has not yet consumed enough nutrients to create a sufficiently large

gradient for chemotaxis to be important. Once nutrients have been consumed locally, which takes a time

approximately txo~Yc0/kg, with c0 the initial nutrient supply, the population transitions to migrating at a rate

Figure 4. Theory-Experiment Comparison of Migrating Front

Displacement in Time

Simulated and measured front position as a function of time for the

founding strain inN-acetylglucosamine. The labeled rates, sFK for the

early times, and enhanced migration rates, seFK for the later times,

are labeled for simulation (sim) and experiment (exp), respectively, in

units of cm/h. For details of the simulation and parameter values see

Transparent Methods. See also Figure S4.
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seFK (Figure S4). We observe this crossover in our experiments and simulations of the model presented

above (Figure 4).

Therefore, a population could evolve faster migration by increasing Db, kg, or f or any combination of these

phenotypic parameters. In some conditions (e.g., galactose) where the founder initially grows slowly, the

crossover time (txo) may approach the duration of one round of selection (24 hr). In this case, an adaptation

that increases the growth rate and brings txo< 24 hr will result in substantially faster migration simply

because the faster growth allows for an expanding population to access the migration rate seFK > sFK earlier

in time. In this case, large increases in themigration rate, of order f, could be observed even for only modest

increases in the growth rate (kg) and no evolutionary modification of motility (Db and c).

Quantifying the Impact of Evolved Phenotypes on Migration Rate

We measured phenotypic parameters for the founder and evolved strains in order to determine which of

the three hypotheses in Figure 3 best explained the evolution of generalists in our experiment. We

measured the growth and diffusion of the ancestor, as well as the 16 evolved strains, presented in Figure 2

in each of the four environments. These experiments were conducted in liquid minimal medium identical to

the plates used for migration assays but without agar. Motility was measured by performing high-

throughput single-cell tracking on populations of cells with phase contrast microscopy (Perlova et al.,

2019), and diffusion constants (Db) were inferred from the slope of the mean squared displacement across

individual trajectories (Figure 5A). We note that measured diffusion constants in liquid are within approx-

imately 10% of the diffusion constant in 0.2% w/v agar where our selection experiment took place (Croze

et al., 2011). Growth was measured by monitoring the optical density of well-mixed liquid cultures, and

maximum growth rates (kg) were fitted during the exponential phase of the growth curve (Figure 5B).

We assume a fixed and small Kg in all conditions (see Transparent Methods).

Using measured kg and Db parameters for all 16 strains in each of 4 conditions, we predicted the front

migration rate early in the colony expansion process by computing sFK and comparing this value to the

measured early time expansion rates for 63 of 68 strain/condition combinations and found good

Figure 5. Quantified Phenotypes Predict Front Migration Rates of Founder and Evolved Strains.

(A) Scheme for measuring bacterial diffusion constants. For each strain in each condition, thousands of individuals were recorded swimming (7856 G 5623,

mean G standard deviation trajectories per experiment). Videos were automatically processed into trajectories, and squared displacement was calculated

for each cell. Examples of single-cell squared displacement traces given in light gray. Population-level mean squared displacement (MSD, black line) was

calculated by averaging over single-cell traces at each frame (see Figure S5).Dbwas inferred from a linear fit to theMSD vs time (red line), assuming cells were

diffusing in two dimensions.

(B) Maximum growth rates were measured by continuously measuring the optical density of well-mixed liquid cultures. kg was fitted from the slope of

log(OD600) versus time and averaged over replicate wells. See Transparent Methods for details of both experiments.

(C) Measured sFK migration rates for all strains in all conditions plotted against the theoretical expectation of sFK =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dbkg

p
. The black line corresponds to

perfect agreement between measurement and prediction. Error bars in measured rate are standard errors on slopes fit to front position in time. Errors

on predicted rates are computed via error propagation from the uncertainty in Db and kg from the regressions in A and B. Pearson’s correlation 0.51, p value

2 3 10�5.

(D) Simulated and measured seFK for all stains in all conditions. Simulations are of the model in Equations 1–3 as described in Transparent Methods. Errors on

predicted rates are smaller than the size of the markers. Pearson’s correlation 0.83, p value 8 3 10�19.

See also Figure S4.
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agreement (Figure 5C). For 5 condition/strain combinations, sFK could not reliably be determined from im-

aging data (see Transparent Methods). Therefore, our measurements of Db and kg accurately account for

changes in migration rates by the evolved strains early in the colony expansion process.

Accounting for the late-time migration rates in founding and evolved strains, (seFK) requires measuring c

and therefore f. Measuring f in high throughput, at the single-cell level, is challenging because it requires

applying controlled attractant gradients while measuring single-cell motility. We therefore inferred this

parameter from our data. To accomplish this, we note that ffseFK
2/(Dbkg), where seFK is the measured

migration rate late in the colony expansion process (Figure 4). To measure f for the founding strain, we

measured colony expansions for 48 hr to ensure the colony had enough time to consume the initial supply

of nutrients. We measured the migration rate via regression of front position in time (Figure 4) and

computed seFK
2/(Db

fokg
fo). For the evolved strains, we measured seFK as the migration rate during the

last 5 hr of expansion (during an 24 hr expansion) and inferred f using independent measurements of Db

and kg on evolved strains.

With these inferred values of f for all strains, we paramterized the model in Equations 1, 2, and 3 for all

strains in all media conditions (see Transparent Methods). We simulated front migration for all strains

and measured seFK
sim for all strains. Figure 5D compares this simulated migration rate with our experi-

mental observations and again shows good agreement.

In summary, high-throughput single-cell tracking allowed us to quantify the bacterial diffusion constant Db

in all 68 distinct strain/condition combinations shown in Figure 2. We combined these results with measure-

ments of growth rate kg and an established reaction-diffusion model to infer the impact of selection on the

chemotaxis coefficient c = fDb. We then were able to directly compare measured front migration rates with

model predictions and observed good agreement (Figures 5C and 5D).

Measured Phenotypes Suggest Generality Evolved by Plasticity

Having quantified how the evolved phenotypes impact migration rate, we could then ask which hypothesis

for generality (Figure 3) is correct. Migration rate can be increased in the evolved strains by changes in f,Db,

Figure 6. Phenotypic Adaptation Suggests Plasticity

(A) Motility and growth adaptation in liquid media of all 16 evolved strains presented in Figure 2 in four different assay

conditions. The founder has a diffusion constant of 52 G 1.3, 63 G 1.2, 58 G 1.1, and 56 G 1.7 mm2s�1 in mannose,

melibiose, NAG, and galactose, respectively, fitted slope (MSD vs time) G standard error after combining data from two

independent experiments (Figure S6). The founder has a maximum growth rate of 0.18 G 0.05, 0.29 G 0.01, 0.30 G 0.05,

and 0.16 G 0.08 hr�1 in mannose, melibiose, NAG, and galactose, respectively; mean G standard deviation of ten

replicate wells spread over two independent plates. We present adaptation of diffusion constant as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dev

b =Dfo
b

q
and

adaptation of maximum growth rate as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kevg =kfog

q
since these quantities contribute linearly to fractional enhancement of

migration rate. Error bars are standard error calculated using error propagation.

(B) Shows changes in the chemotactic coefficient plotted versus changes in growth rate.

fev and ffo denote the founder and evolved coefficients which are computed from the observed late-time migration rates

and measured diffusion constants and growth rates as f = s2eFK=ðDbkgÞ. The founder has an ffo of 17 G 1.6, 6.5 G 0.4,

15.3 G 1.3, and 7.5 G 1.2 for mannose, melibiose, NAG, and galactose, respectively. Error bars are from error

propagation. See Figure S6 for a plot of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dev

b =Dfo
b

q
vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ev=f fo

p
.

See also Figures S5–S8.
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or kg. The contribution of any adaptation in these parameters to the evolved strains increase in migration

rate relative to the founder is given by: fev/ffo, Db
ev/Db

fo, and kg
ev/kg

fo. Therefore, to distinguish between

the three types of generality presented in Figure 3, we examine the distributions of these quantities. Fig-

ures 6A and 6B show these quantities for all strains in all conditions.

A quick inspection of the evolved phenotypes suggested phenotypic plasticity. The data seemed to

roughly separate by assay condition (Figures 6A and 6B). For example, strains measured in mannose typi-

cally exhibited a larger enhancement to diffusion but a more modest enhancement to growth when

compared to strains measured in galactose. In addition, the increases in f appeared to concentrate in

strains assayed in NAG, whereas strains assayed in galactose appeared to have reduced chemotactic ca-

pabilities irrespective of their selection condition.

We utilized a statistical approach to evaluate the significance of any separation of evolved phenotypes by

selection condition and/or assay condition. Specifically, we performed analysis of variance (ANOVA) on the

following linear mixed-effects model:

yijk = m+ai + bj +gk + ðabÞij + εijk (Equation 4)

This model decomposes a response variable yijk (kg
ev/kg

fo, Db
ev/Db

fo, or fev/ffo) in terms of deviations from

the global mean m attributable to different groupings of the data. ai is a fixed effect due to selection con-

dition, with i indexing the four selection conditions. bj is a fixed effect due to assay condition, with j indexing

the four assay conditions. gk is a random effect for each of the 16 evolved strains, with k indexing the

evolved strain. (ab)ij is an interaction term included to allow for unique effects due to particular combina-

tions of selection and assay conditions. For example, if some strains grew particularly well in the condition

they were selected for compared to the other strains, this would manifest itself as a significant interaction

term. Lastly, εijk is a noise term in the form of normally distributed random disturbances.

ANOVA analysis allowed us to determine which groupings, if any, displayed significant differences in the

response variable. Performing ANOVA on Db
ev/Db

fo, we found that assay condition is the only grouping

with a significant (p < 0.05) F-statistic (Table 1). That is, we rejected the null hypothesis that all the bj are

zero. We concluded that there is a significant difference between the assay conditions in the adaptation

of undirected motility. To investigate which assay conditions show significant departures from the global

mean and in which direction, we performed post-hoc testing via a non-parametric bootstrapping

approach. This revealed that strains measured in mannose were significantly above the global mean in

Db
ev/Db

fo, while strains measured in NAG were significantly below the mean, and strains in melibiose

and galactose showed no significant change in Db
ev/Db

fo relative to the global mean (Figure S7).

Bacterial diffusion constants are approximately related to the run speed and duration in the following way:

Dbz vr
2tr. Therefore, changes in diffusion constants can be achieved through changes in run duration and/

or speed. We asked whether changes in Db
ev/Db

fo were achieved with a consistent microscopic strategy

within each assay condition. Therefore, we investigated correlations between changes in run statistics

and changes in diffusion constant across all evolved strains within each assay condition (Figure S8). We

found thatDb
ev/Db

fowas significantly correlated with a particular microscopic strategy for strains measured

in each assay condition, regardless of their evolutionary history. For example, in mannose, changes in Db

Source of Variance F p value

Selection condition (ai) 1.01 0.42

Assay condition (bj) 12.80 7.61 3 10�6

Strain (gk) 1.65 0.12

Selection condition x assay

condition (abij)

0.60 0.79

Table 1. Assay Condition Drives Differences in Diffusion Constant Adaptation

Summary statistics for ANOVA on the model presented in Equation 4 using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dev

b =Dfo
b

q
as the response variable. The F-sta-

tistic describes the ratio of between-group variability to within-group variability. Here, we only found a significant (p < 0.05) F-

statistic for assay condition.
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were correlated with changes in tr but not vr. Conversely, in NAG, changes in diffusion constant were corre-

lated with changes in both vr and tr.

Similarly, performing ANOVAwith
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kevg =kfog

q
as the response variable shows that, by far, themost significant

effect is due to assay condition (largest F-statistic, Table 2). Post-hoc testing revealed that strains measured

in galactose have above-average growth rate adaptation, while strains measured in mannose and meli-

biose were below average, and strains measured in NAG showed no significant change relative to the

global mean (Table S2). We also found smaller but still significant (p < 0.05) effects due to selection con-

dition and the interaction term (Table S3). Post-hoc testing on the ai revealed only one significant coeffi-

cient: melibiose-evolved strains exhibited a below-average growth rate enhancement. For the interaction

term, post-hoc showed only one significant term: an increased growth rate adaptation for strains evolved in

galactose when measured in galactose (Table S4). We concluded that the assay condition is the strongest

determinant of growth rates in evolved strains.

Lastly, ANOVA with fev/ffo as the response variable again showed that the most significant effect was due to

assay condition (largest F-statistic, Table 3). Post-hoc testing revealed here that strains measured in NAG

exhibited above-average chemotactic adaptation, while strains measured in galactose were below

average, and strains measured in mannose and melibiose showed no significant change relative to the

global mean (Table S5). We also found a smaller but still significant (p < 0.05) effect due to selection con-

dition. Post-hoc testing on the ai revealed that strains selected in NAG were above average in their chemo-

tactic adaptation, while strains selected in mannose were below average, and strains selected in melibiose

and galactose showed no significant deviation from the global mean (Table S6).

These ANOVA analyses provided clear evidence that the evolved phenotypes presented in Figures 6A and

6B separate by assay condition. We concluded that, within each of the four environments, evolved strains

exhibited similar adaptation in growth and motility, regardless of their evolutionary history. The result is

consistent with ‘‘type II’’ generality (i.e., plasticity). Evolved strains across all selection conditions appeared

to have evolved phenotypic plasticity that allowed them to enhance population-level migration by adapt-

ing cellular phenotypes to meet the unique demands of each nutrient condition.

Mutations Present in Evolved Strains Cannot Predict Phenotypes in Any Condition

We next asked whether specific mutations present in strains evolved for faster migration could explain the

migration, growth, and motility phenotypes we observed. We performed whole genome sequencing on all

16 evolved strains and identified de novomutations relative to the common ancestor present at a frequency

of at least 20% (Deatherage and Barrick, 2014) (Tables S7 and S8). We identified 33 unique mutations occur-

ring in diverse genes and pathways including biosynthesis of essential molecules, stress response, and

metabolite import. We observed no single mutation common to all evolved strains, nor were any mutations

common to all 4 evolved strains from any particular selection condition. However, 24 of the 33 mutations

were present in more than one strain. By grouping together mutations occurring in the same gene, as

well as those in adjacent intergenic regions, we identified 21 unique genes or flanking regions where mu-

tations occurred, which we term mutational targets. Twelve of those targets were affected in multiple

strains, and of those, 8 were affected across strains with different selection conditions. Unlike previous

studies (Fraebel et al., 2017), we did not observe mutations with an obvious interpretation in terms of their

Source of Variance F p value

Selection condition (ai) 7.00 0.01

Assay condition (bj) 31.86 3.10 3 10�10

Strain (gk) 1.15 0.36

Selection condition x assay condition (abij) 4.68 3.78 3 10�4

Table 2. Assay Condition is the Main Driver of Differences in Growth Adaptation

Summary statistics for ANOVA on themodel presented in Equation 4 using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kevg =kfog

q
as the response variable. The F-statistic

describes the ratio of between-group variability to within-group variability. Here, we found significant F-statistics for selection

condition, assay condition, and the interaction term between them. The largest F-statistic was associated with assay

condition, indicating this predictor is the dominant source of variability in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kevg =kfog

q
. See also Tables S2–S4.
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impact on evolved phenotypes. Therefore, we took a statistical approach to interpreting the sequencing

data.

Having grouped mutations by their target, we created a mutation candidacy matrix (X) which describes the

presence (1) or absence (0) of each observed mutation in each strain. We then asked whether the presence

or absence of these mutations could predict the migration phenotypic parameters of each strain in each

condition. To do this, we performed linear regression using mutation candidacy as the predictor variables

and the adaptation in either growth rate (kg), diffusion constant (Db), or the chemotactic coefficient (f) as the

dependent variable, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ev=f fo

p
= h0 +X h!+ ε

!, where h0 is an intercept, h! is a vector of regression co-

efficients expressing the impact of each mutation on the response variable, and ε
! is a noise term with zero

mean and variance s2. We performed L1-regularized regression (least absolute shrinkage and selection

operator [LASSO]) to avoid overfitting (Yi and Xu, 2008; Li and Sillanpää, 2012), using leave-one-out

cross-validation to determine the best value of the regularization hyperparameter. For several assay con-

ditions, LASSO regression selected a model with only an intercept (e.g., giving
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ev=f fo

p
= h0 + ε

!), indi-

cating that nomutation predicted the migration parameter across the set of strains. In cases where a model

with non-zero h! was selected (i.e., some mutations were identified as having predictive power), the

improvement in the mean squared error (estimated using cross-validation) relative to a model with only

an intercept was small, and the statistical significance of a non-zero h! was unclear.

These observations led us to undertake a numerical investigation using surrogate data to assess the per-

formance of our LASSO regressions (see Transparent Methods for details). The purpose of this investiga-

tion was to determine whether regressions that selected a non-zero h!had robust out-of-sample predictive

power. If not, then we would consider it unlikely that any mutation in these regressions truly predicted the

migration phenotypic parameters. Briefly, we constructed surrogate data sets where the coefficients h!
were specified, and the signal-to-noise ratio was effectively modulated by specifying the number of non-

zero coefficients in h!and the random noise strength s (Figures S9B and S9C). Each data set comprised

a training set and an out-of-sample test set, where the predictors in both training and test sets matched

the candidacy matrix (X) in the number of observations, number of variables, and first-order statistics (pres-

ence frequency of each mutation). On each of 3 3 105 instances of surrogate data sets, we performed

LASSO regressions as described above and evaluated performance by computing the coefficient of deter-

mination R2 using the out-of-sample data.

We developed a test statisticM to relate these surrogate data regressions to the real regressions on migration

parameters (see Transparent Methods for details) since the true coefficient vectors h! and noise strength s for

the regressions on real data are unknown. This statistic measured the improvement in model fits (mean squared

error estimated using cross-validation) for the model selected by LASSO relative to a model with only an inter-

cept (h0). In the surrogate data, we observed thatM correlated positively with the out-of-sample predictive po-

wer of a model inferred by LASSO, giving us a clear relationship between the test statistic and regression per-

formance (Figures 7, S9D, and S9E). We then computed our test statistic for the real data regressions for

adaptation in growth rate, diffusion constants, or chemotactic coefficients from the mutation candidacy matrix

and observed small values of the test statisticM (Figure 7), indicating low predictive power is likely (out-of-sam-

ple R2 z 0). We concluded that, for our data, mutations are highly unlikely to predict the measured phenotypic

adaptation. In sum, the presence of ‘‘individual’’ mutations has no predictive power of evolved phenotypes.

Source of Variance F p value

Selection condition (ai) 7.66 4.02 3 10�3

Assay condition (bj) 20.04 8.27 3 10�8

Strain (gk) 1.47 0.18

Selection condition x assay condition (abij) 2.16 0.05

Table 3. Assay Condition is the Main Driver of Differences in Apparent Chemotactic Adaptation

Summary statistics for ANOVA on the model presented in Equation 4 using fev/ffo as the response variable. The F-statistic

describes the ratio of between-group variability to within-group variability. Here, we found significant F-statistics for selection

condition and assay condition. The largest F-statistic was associated with assay condition, indicating this predictor is the

dominant source of variability in fev/ffo. See also Tables S5 and S6.
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DISCUSSION

The central finding of this study is the emergence of generalists when bacterial populations are selected for

faster migration through a porous minimal medium environment. We found that distinct phenotypic stra-

tegies gave rise to fast migration, and, remarkably, these strategies were determined more by the imme-

diate nutrient condition than by the evolutionary history of the strains being measured. We concluded that

repeated selection in any condition drove fast migration in all conditions via distinct, plastic phenotypic

responses to each nutrient condition. As a result, the fast migration in all conditions emerged via plasticity,

which is a byproduct of selection for fast migration in any one condition. Therefore, in this case, plastic phe-

notypes evolved even in homogeneous selection conditions.

It is not yet clear why selection in a single environment results in plastic phenotypic responses to other

environments that increase migration rate. Perhaps the simplest explanation is that similar physiological

changes occur during evolution in all four nutrient conditions. However, the molecular mechanisms that

give rise to the observed generality via phenotypic plasticity are not yet clear. Our statistical analysis of

the genetic variation observed in evolved strains shows that there is no simple genetic basis for this

plastic adaptive response. Given what is known about sugar uptake and metabolism in E. coli, some

of our observed mutations could be targeting the uptake or metabolism of multiple sugars. For

example, EnvZ regulates expression of OmpF, the outer membrane porin responsible for import of

all four sugars (Mizuno and Mizushima, 1987; Travisano and Lenski, 1996). NagA is essential for meta-

bolism of NAG but also has a role in regulating expression of the nag regulon, including nagC (Plum-

bridge, 1991). There is evidence that NagC is capable of repressing the mannose phosphotransferase

system (PTS) system (Plumbridge, 1991) and the galactose transporter (El Qaidi et al., 2009). Therefore,

the mutations we observed in nagA for two galactose-evolved strains could have an impact in mannose,

NAG, and galactose environments.

The mechanistic basis for how metabolism is coupled to motility remains unclear, and elucidating this fully

will be necessary to understand why evolved strains in some conditions exhibit large changes in both

motility and growth (e.g., galactose). The fact that the evolved strains did not exhibit fast migration in a

rich medium, where amino acids are responsible for growth and chemotaxis, is consistent with the idea

that the plastic generalist adaptation observed in this study was specific to sugars. Therefore, the limits

on generalist evolution due to plasticity in this system would appear to be defined by the chemical identity

of the nutrient/chemoattractant. Given that we observedmutations in regulatory elements (e.g., rssB, wzzE,

envZ), it is possible that the plasticity we observed in the evolved strains might be best understood at the

regulatory level. In this case, the plastic response would be selected in a homogeneous environment, due

to regulatory variation that results in changes in gene expression impacting motility and metabolism in

other environments. Therefore, the shared molecular-level features of the evolved strains which were

responsible for the phenotypic plasticity outcomes in different nutrient conditions may be explained by

gene expression measurements (Huang et al., 2005).

Figure 7. Numerical Investigation of LASSO Regression Demonstrates Mutations Have Limited Predictive Power

for Migration Phenotypes

(A–C) Relationship between the test statistic M and out-of-sample R2 obtained from surrogate data regressions (see

Transparent Methods), withM values from regressions on real migration phenotypic parameters overlaid.M and R2 values

from all surrogate data simulations are combined, binned by M, and the quartiles of R2 within the bins are shown as a

function of M. The same quartile curves are shown in A–C. Vertical lines indicate the M values resulting from LASSO

regressions on real data for the quantities (A)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dev

b =Dfo
b

q
, (B)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kevg =kfog

q
, and (C)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ev=f fo

p
, , where the colors indicate the

assay condition (black: mannose, red: melibiose, green: N-acetylglucosamine, blue: galactose).

See also Figure S9, Tables S7 and S8.
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More broadly, the smooth phenotypic variation we observed across strains and environments (Figure 6) is

consistent with a complex genetic basis where the plastic response of a given genotype depends on ge-

netic variants at a large number of loci. One possible mechanism for genetic complexity in evolved plastic

responses would be phenotypic impacts from a large number of weak regulatory linkages (Gerhart and

Kirschner, 2007), which is supported by genetic screens on motility (Girgis et al., 2007). The apparent

smooth phenotypic variation is in contrast to phenotypic switches, where plasticity drives discrete pheno-

typic variation (Balaban, 2004). It would be interesting to design future experiments to determine when and

why selection favors continuous or discrete plastic responses. Perhaps one way to approach this problem is

to compare the present results to selection in fluctuating environments. Fluctuating selection is believed to

favor the evolution of cooperative (non-linear) responses in biological systems, for example, in proteins

(Stiffler et al., 2015), and one might speculate that the same could be true for phenotypic plasticity.

Since the seminal work of Baldwin and later Waddington (Baldwin, 1896; Waddington, 1953), a main

focus of work on phenotypic plasticity has been to understand the relationship between plastic re-

sponses to environmental change and subsequent genetic adaptation (Ghalambor et al., 2015; Schaum

and Collins, 2014; Ho and Zhang, 2018). Our results suggest another possible role of phenotypic plas-

ticity in evolution: namely, that selection in one environment can potentiate new physiological responses

to other environments resulting in the evolution of generalists even in homogeneous environmental con-

ditions. Future work should focus on understanding why selection in one environment can elicit new

phenotypic responses to other environments and the scope of phenotypic generality that can evolve

by this mechanism.

Limitations of the Study

The central limitation of the present study is that it relies on a statistical argument to support the claim that

generalists evolve via phenotypic plasticity. As a result, the physiological basis of the observed plastic re-

sponses is not yet known. Future work should examine the impact of selection for fast migration on gene

expression profiles across all evolved lineages to discern conserved patterns of expression which could

then inform more detailed mechanistic interrogation of the evolution of plasticity.

Resource Availability
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Data and Code Availability

Details of the detected mutations are shown in Table S8. Parameter values for the simulations are given in
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101678.

ACKNOWLEDGMENTS

D.F. and S.K. acknowledge support from the National Science Foundation Physics Frontiers Center Pro-

gram (PHY 0822613 and PHY 1430124). K.G. acknowledges support from the James S. McDonnell Founda-

tion Postdoctoral Fellowship Award (#220020499). M.M. acknowledges the Simons Foundation (597491).

M.M. is a Simons Foundation Investigator. We would like to thank Jun Song for advice in selecting the

form of the ANOVA model, Tatyana Perlova for providing technical support and software for the single-

cell tracking assays, and Elizabeth Ujhelyi for assistance with sequencing.

ll
OPEN ACCESS

iScience 23, 101678, November 20, 2020 13

iScience
Article

mailto:seppe.kuehn@gmail.com
https://doi.org/10.1016/j.isci.2020.101678


AUTHOR CONTRIBUTIONS

Conceptualization, D.T.F. and S.K.; Methodology, D.T.F, K.G., M.M., and S.K.; Formal Analysis, D.T.F., K.G.,

and S.K.; Experiments, D.T.F.; Investigation, D.T.F., K.G., and S.K., LASSO regression, K.G.; Reaction-diffu-

sion simulations, D.T.F. and S.K.; Writing, D.T.F, K.G., and S.K.; Supervision, M.M. and S.K.; Funding acqui-

sition, M.M. and S.K.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 1, 2020

Revised: September 22, 2020

Accepted: October 9, 2020

Published: November 20, 2020

REFERENCES
Adler, J. (1966). Chemotaxis in bacteria. Science
153, 708–716.

Balaban, N.Q. (2004). Bacterial persistence as a
phenotypic switch. Science 305, 1622–1625.

Baldwin, J.M. (1896). A new factor in evolution.
Am. Nat. 30, 441–451.

Bourgerie, S.J., Michán, C.M., Thomas, M.S.,
Busby, S.J., and Hyde, E.I. (1997). DNA binding
and DNA bending by the MelR transcription
activator protein from Escherichia coli. Nucleic
Acids Res. 25, 1685–1693.

Cooper, V., and Lenski, R.E. (2000). The
population genetics of ecological specialization
in evolving Escherichia coli populations. Nature
407, 734–736.

Cremer, J., Honda, T., Tang, Y., Wong-Ng, J.,
Vergassola, M., and Hwa, T. (2019). Chemotaxis
as a navigation strategy to boost range
expansion. Nature 575, 658–663.

Croze, O.A., Ferguson, G.P., Cates, M.E., and
Poon, W.C. (2011). Migration of chemotactic
bacteria in soft agar: role of gel concentration.
Biophys. J. 101, 525–534.

Deatherage, D.E., and Barrick, J.E. (2014).
Identification of mutations in laboratory-
evolved microbes from next-generation
sequencing data using breseq. Methods Mol.
Biol. 1151, 165–188.

El Qaidi, S., Allemand, F., Oberto, J., and
Plumbridge, J. (2009). Repression ofgalP, the
galactose transporter inEscherichia coli,
requires the specific regulator ofN-
acetylglucosamine metabolism. Mol. Microbiol.
71, 146–157.

Elena, S.F., and Lenski, R.E. (2003). Microbial
genetics: evolution experiments with
microorganisms: the dynamics and genetic
bases of adaptation. Nat. Rev. Genet. 4,
457–469.

Fong, S.S., Joyce, A.R., and Palsson, B.Ø. (2005).
Parallel adaptive evolution cultures of Escherichia
coli lead to convergent growth phenotypes with
different gene expression states. Genome Res.
15, 1365–1372.

Fraebel, D.T., Mickalide, H., Schnitkey, D.,Merritt,
J., Kuhlman, T.E., and Kuehn, S. (2017).
Environment determines evolutionary trajectory
in a constrained phenotypic space. eLife 6,
e24669.

Fraser, A.D., and Yamazaki, H. (1980). Mannose
utilization in Escherichia coli requires cyclic AMP
but not an exogenous inducer. Can. J. Microbiol.
26, 1508–1511.

Gerhart, J., and Kirschner, M. (2007). The theory of
facilitated variation. Proc. Natl. Acad. Sci. U S A
104, 8582–8589.

Ghalambor, C.K., Hoke, K.L., Ruell, E.W., Fischer,
E.K., Reznick, D.N., and Hughes, K.A. (2015). Non-
adaptive plasticity potentiates rapid adaptive
evolution of gene expression in nature. Nature
525, 372–375.

Girgis, H.S., Liu, Y., Ryu, W.S., and Tavazoie, S.
(2007). A Comprehensive Genetic
Characterization of Bacterial Motility. PLoS
Genet. 3, e154.

Henderson, P.J., Giddens, R.A., and Jones-
Mortimer, M.C. (1977). Transport of galactose,
glucose and their molecular analogues by
Escherichia coli K12. Biochem. J. 162, 309–320.

Ho, W.-C., and Zhang, J. (2018). Evolutionary
adaptations to new environments generally
reverse plastic phenotypic changes. Nat.
Commun. 9, 1–11.

Huang, S., Eichler, G., Bar-Yam, Y., and Ingber,
D.E. (2005). Cell fates as high-dimensional
attractor states of a complex gene regulatory
network. Phys. Rev. Lett. 94, 12.

Kassen, R. (2002). The experimental evolution of
specialists, generalists, and the maintenance of
diversity. J. Evol. Biol. 15, 173–190.

Lee, M.-C., Chou, H.-H., and Marx, C.J. (2009).
Asymmetric, bimodal trade-offs during
adaptation of Methylobacterium to distinct
growth substrates. Evolution 63, 2816–2830.
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Supplemental Figures and Tables

Figure S1: E. coli colonies throughout selection experiment (related to Figure 1). Example images
of expanded colonies after 24 hours of migration at rounds 1, 4, 7 and 10 of the selection experiments
described in the main text. 1 cm scale bar applies to all images. Darker regions correspond to higher cell
density. Grayscale images were background subtracted, inverted, and had their dynamic range adjusted
for better contrast. The asymmetry observed in galactose round 7 is due to inhomogeneity in the soft agar
plate.



Figure S2: Nutrient generality does not extend to rich medium (related to Figure 2). The 16 strains
isolated after 10 rounds of selection (four from each nutrient condition, main text Figure 1) were assayed
for enhanced migration rate in LB rich medium. Migration rates of these strains are presented as mean ±
standard error of two replicate plates. For comparison, we also measured migration rates of the founding
strain (F) as well as three strains isolated after 10 rounds of selection in LB (Figure S3). Migration rates of
these strains are presented as mean ± standard error of four replicate plates. Migration rate assays were
conducted as described in main text methods, with the following exceptions: We used 10 cm petri dishes
containing LB with 0.2% w/v agar. Seed cultures were grown overnight in 5mL LB and time-lapse imaging
was performed every two minutes for eight hours. Only the first five hours were analyzed, since the LB-
evolved strains reach the boundary of a 10 cm plate around this time. During image analysis, front location
was determined by locating peaks in the radial density profiles.



Figure S3: Repeated selection enhances E. coli migration through soft agar in rich medium (related
to Figures 1 and 2). Migration rates as a function of round of selection for three replicate experiments
performed in lysogeny broth (LB) rich medium. Selection and migration rate measurement were performed
as described in main text methods, with the following exceptions: We used 15 cm petri dishes (containing
LB with 0.2% w/v agar) and selection was performed every 8 hours due to the fast migration rates in this
condition. Seed cultures were grown overnight in 5mL LB and time-lapse imaging was performed every
minute. After imaging, four 50 µL samples were removed from the outermost edge of the expanding colony.
During image analysis, front location was determined by locating peaks in the radial density profiles. These
experiments were carried out to 15 rounds, however, the strains isolated after only 10 rounds were used
for the comparison with 10-round minimal medium evolved strains described in the main text and presented
below.



Figure S4: Scaling of migration rates with phenotypic parameters (related to Figure 4). Numerical
simulations of the reaction-diffusion model from the main text support scaling arguments. All simulations
were performed using phenotypic parameters for the founder strain in NAG as an example (see Methods).
(a) Simulations for varying growth rates (kg) showing colony radius versus time. Black lines are linear fits to
early (sFK) and late (seFK) times. The intersection of these two fits is used to measure the cross-over time
(txo) from Fisher migration rates (

√
Dbkg) to enhanced Fisher wave migration rates (

√
fDbkg). (b) Shows

txo as a function of kg, a fit to the data (not shown) gives txo ∝ k−1.1±0.05g as expected. (c) Same as in (a)
except here the chemotactic coefficient f is varied by the factor shown in the legend relative to the starting
value for founder in NAG (ffo =15.3). Note the early migration rates are nearly constant (sFK). (d) Shows
the late time migration rate determined via linear regression as a function of f . A fit to the data (not shown)
gives seFK ∝ f0.51 as expected from theory (Cremer et al., 2019, Main Text).



Figure S5: Most trajectories do not extend beyond time interval used for fitting MSD (related to Fig-
ures 4 and 5). Complementary cumulative distribution function of trajectory duration observed in all single-
cell tracking experiments. To measure diffusion constant we fit mean-squared displacement over the interval
from 1 to 6 seconds into the MSD trace (Figure 4a, main text).



Figure S6: Adaptation of f and Db (related to Figure 6). Plot identical to the two panels of Figure 6 in
the main text except that it shows Db versus f . For each strain in each condition, we compute the apparent
contribution of chemotaxis to migration rate, f = s2eFK/(Dbkg). As with diffusion constant and growth rate
(main text Figure 4), we calculate the contribution to migration rate enhancement attributable to evolution in
this quantity,

√
fev/ffo. Error bars are standard error calculated using error propagation.



Figure S7: Two assay conditions have significant effects on diffusion adaptation (related to Table
1). Results of bootstrapping approach used to determine which assay conditions show significant (p <

0.05) departures from the global mean in
√
Dev

b /Dfo
b , and in which direction. ANOVA coefficients from the

properly-labeled data set are presented as βreal (vertical black lines). p-values are computed by determining
the fraction of corresponding coefficients from label-shuffled ANOVAs that are higher or lower than βreal,
depending on its sign. p < 0.0001 indicates none of the 10 000 ANOVAs on label-shuffled data had a more
negative coefficient than βreal

NAG See main text methods for details.



Figure S8: Plasticity in Db extends to run-tumble statistics (related to Table 1). For each single-cell
tracking experiment presented in main text Figure 4c, we detected runs and tumbles using the Hidden
Markov Model classifier in Pytaxis (Perlova et al., 2019). For each detected run, we compute its duration
and average speed. We average over all runs in an experiment to obtain mean run speed vr and duration
Tr of each strain in each condition. The founder has a run speed of 16.1 ± 0.5, 17.4 ± 0.3, 16.5 ± 0.7 and
16.8±0.4 µms−1 and a run duration of 0.29±0.002, 0.32±0.02, 0.31±0.03 and 0.31±0.007 seconds in man-
nose, melibiose, NAG and galactose respectively, mean ± standard deviation of two replicate experiments.
Since Db ≈ v2rTr to examine the contribution of vr and Tr to the migration rate enhancement we correlated√
Dev

b /Dfo
b with vevr /vfor and

√
T ev
r /T fo

r . Error bars are from error propagation. For each panel, we obtain
a Pearson correlation coefficient and associated p-value which is shown in the title.



Figure S9: Numerical investigation of LASSO regression demonstrates a correlation between a test
statistic and regression performance (related to Figure 7). (a) Schematic demonstrating theM statistic.
M measures the improvement of the model that minimizes cross-validation MSE relative to the trivial model
with only an intercept term (red line). This statistic is scaled by the estimated standard error of the MSE at
its minimum (blue line) to incorporate uncertainty in the minimum MSE estimate. (b-c) Results of surrogate
data simulations at different values of P (the number of true nonzero regression coefficients) and σ (the
standard deviation of the noise term). Median values of M across 104 simulations per (P, σ) combination
show that high M is achieved in a high signal-to-noise regime, i.e., when σ is sufficiently small and P > 1.
Median out-of-sample R2 values are also largest in this high signal-to-noise regime. (d)M −R2 relationship
from surrogate data. M and R2 values from all 3× 105 surrogate data simulations are combined, binned by
M , and the quartiles ofR2 within the bins are shown as a function ofM . The same quartile curves are shown
in all three panels. (e) shows the same plot as (d) except using only 3× 104 surrogate data simulations.).



Strain Arabinose Dextrose Fructose Lactose Maltose Rhamnose Sorbitol
mannose 10A 2.8± 0.18 2.1± 0.14 1.7± 0.02 1.6± 0.11 2.0± 0.10 1.7± 0.30 2.0± 0.03
mannose 10B 2.3± 0.15 2.2± 0.03 1.8± 0.02 1.6± 0.06 2.1± 0.003 1.2± 0.12 1.9± 0.08
melibiose 10A 2.1± 0.18 2.1± 0.21 1.9± 0.20 1.5± 0.05 1.7± 0.01 1.5± 0.31 1.9± 0.05
melibiose 10B 2.4± 0.39 1.9± 0.01 2.2± 0.005 1.5± 0.04 1.7± 0.01 2.3± 0.29 1.9± 0.13
NAG 10A 3.5± 0.33 3.0± 0.09 2.7± 0.18 1.7± 0.14 2.1± 0.06 2.3± 0.08 3.1± 0.002
NAG 10B 3.7± 0.51 3.0± 0.27 3.0± 0.32 1.9± 0.01 2.0± 0.03 2.6± 0.04 3.0± 0.34

galactose 10A 2.6± 0.44 2.5± 0.001 2.6± 0.12 1.6± 0.02 1.8± 0.03 2.4± 0.41 2.4± 0.05
galactose 10B 1.9± 0.22 1.9± 0.04 2.0± 0.12 1.2± 0.04 1.5± 0.05 2.0± 0.04 1.8± 0.01

Table S1: Nutrient generality extends to a variety of other sugars (related to Figure 2). We assayed the
migration rates of the ancestor as well as two evolved strains isolated after 10 rounds from each selection
condition in a variety of sugars. Rates are presented as fold change compared to the founder’s migration rate
in the same condition, mean ± standard deviation of two replicate plates for each strain in each condition.
The founder has a migration rate of 0.026± 0.001, 0.062± 0.005, 0.034± 0.004, 0.069± 0.002, 0.069± 0.005,
0.027±0.002, 0.047±0.004 cmh−1 in arabinose, dextrose, fructose, lactose, maltose, rhamnose and sorbitol,
respectively, mean ± standard deviation of two replicate plates in each condition.

Assay Coefficient (β)real p-value
AssayCond=man -0.13 0.0038
AssayCond=mel -0.15 0.0011
AssayCond=nag 0.0009 0.49
AssayCond=gal 0.27 p < 0.0001

Table S2: Three assay conditions have significant effects on growth rate adaptation (related to Table
2). Results of bootstrapping approach used to determine which assay conditions show significant (p < 0.05)
departures from the global mean in

√
kevg /kfog , and in which direction. p-values are computed by determining

the fraction of corresponding coefficients from label-shuffled ANOVAs that are higher or lower than βreal,
depending on its sign. p < 0.0001 indicates none of the 10 000 ANOVAs on label-shuffled data had a more
negative coefficient than βreal

gal . See main text methods for details.

Selection Coefficient (α)real p-value
SelectionCond=man 0.05 0.16
SelectionCond=mel -0.13 0.0044
SelectionCond=nag -0.02 0.36
SelectionCond=gal 0.09 0.05

Table S3: Melibiose-evolved strains show below-average growth rate enhancement (related to Table
2). Results of bootstrapping approach used to determine which selection conditions show significant (p <

0.05) departures from the global mean in
√
kevg /kfog , and in which direction. p-values are computed by

determining the fraction of corresponding coefficients from label-shuffled ANOVAs that are higher or lower
than αreal, depending on its sign. See main text methods for details.



Interaction Coefficient (αβ)real p-value
SelectionCond=man x AssayCond=man 0.13 0.09
SelectionCond=man x AssayCond=mel -0.02 0.42
SelectionCond=man x AssayCond=nag -0.01 0.48
SelectionCond=man x AssayCond=gal -0.10 0.15
SelectionCond=mel x AssayCond=man -0.01 0.47
SelectionCond=mel x AssayCond=mel 0.08 0.19
SelectionCond=mel x AssayCond=nag 0.02 0.40
SelectionCond=mel x AssayCond=gal -0.09 0.17
SelectionCond=nag x AssayCond=man -0.05 0.32
SelectionCond=nag x AssayCond=mel 0.03 0.35
SelectionCond=nag x AssayCond=nag -0.13 0.09
SelectionCond=nag x AssayCond=gal -0.11 0.11
SelectionCond=gal x AssayCond=man -0.07 0.25
SelectionCond=gal x AssayCond=mel -0.09 0.17
SelectionCond=gal x AssayCond=nag -0.14 0.06
SelectionCond=gal x AssayCond=gal 0.30 0.0013

Table S4: Galactose-evolved strains have a ‘home field advantage’ in growth rate adaptation (related
to Table 2). Results of bootstrapping approach used to determine which selection x assay ((αβ)ij) interac-
tion terms show significant (p < 0.05) departures from the global mean in

√
kevg /kfog , and in which direction.

ANOVA coefficients from the properly-labeled data set are presented as (αβ)real. p-values are computed by
determining the fraction of corresponding coefficients from label-shuffled ANOVAs that are higher or lower
than (αβ)real, depending on its sign. See main text methods for details.

Assay Coefficient (β)real p-value
AssayCond=man 0.02 0.33
AssayCond=mel 0.06 0.16
AssayCond=nag 0.16 0.0012
AssayCond=gal -0.24 p < 0.0001

Table S5: Two assay conditions have significant effects on apparent chemotactic adaptation (related
to Table 3). Results of bootstrapping approach used to determine which assay conditions show significant
(p < 0.05) departures from the global mean in

√
fev/ffo, and in which direction. p-values are computed by

determining the fraction of corresponding coefficients from label-shuffled ANOVAs that are higher or lower
than βreal, depending on its sign. p < 0.0001 indicates none of the 10 000 ANOVAs on label-shuffled data
had a more negative coefficient than βreal

gal . See main text methods for details.



Selection Coefficient (α)real p-value
SelectionCond=man -0.12 0.01
SelectionCond=mel -0.02 0.33
SelectionCond=nag 0.18 0.0005
SelectionCond=gal -0.03 0.28

Table S6: Two selection conditions have significant effects on apparent chemotactic adaptation (re-
lated to Table 3). Results of bootstrapping approach used to determine which selection conditions show
significant (p < 0.05) departures from the global mean in

√
fev/ffo, and in which direction. p-values are

computed by determining the fraction of corresponding coefficients from label-shuffled ANOVAs that are
higher or lower than αreal, depending on its sign. See main text methods for details.

Targets Mutations observed Present in these strains
glyA H165H man10A, man10C, man10D, nag10A, nag10C, nag10D, gal10B
yegH R335R man10B, mel10B, gal10A
rpoB12, rpoC3 P552L1, I569L2, +9bp3 man10D1, nag10A2, nag10C3

rssB A280T mel10A, mel10D, gal10B, gal10C, gal10D
mepS1245 IS5(–)+4bp1, E171*2 mel10A1, mel10B2, nag10B3

lpxT→ /→mepS3 IS1(+)+8bp34, IS1(+)+9bp5 nag10C4, nag10D5

glxK P210L mel10B, mel10C, mel10D
yeaR ∆1::IS186(–)+6bp::∆1 mel10B, gal10B
frdA G393V mel10B, gal10B
envZ ∆36bp1, ∆1bp2 nag10A1, nag10D2

rph13 ∆1bp1, A→G2 nag10B1, gal10A2, gal10D3

pyrE← /←rph2 +A3

nagA ∆1bp13, A→C2 gal10A12, gal10B34

∆10bp4
metK→ /→galP C→A1, G→T2 gal10C1, gal10D2

yghG E30* mel10C
mokB← /→trg G→T mel10D
wzzE IS1(–)+9bp nag10B
yffR→ /→yffS C→A nag10D
osmC D90N gal10B
yncE→ /←ansP C→A gal10C
yggI G159G gal10C
ligB A142V gal10D
nrfG→ /→gltP G→T gal10D

Table S7: The set of mutations shared between strains with different evolutionary histories. Re-
lated to Figure 7. Novel mutations present at frequencies of 20% or greater in the 16 evolved strains
presented in main text Figure 2. Whole-genome sequencing and analysis was performed as described in
main text methods with an average coverage of 59.8 ± 11.2 (mean ± standard deviation across strains).
We group mutations by target since some genes exhibit different mutations across strains and since some
strains have mutations in intergenic regions adjacent to genes affected in other strains. For these cases,
superscripts indicate which strains had which mutations, and whether they occurred in the coding region
or the intergenic space (that is, superscripts are specific to each row of the table where they appear).
This target-level grouping was used for the candidacy matrix used in the LASSO regressions. Strains are
designated by their selection condition (mannose, melibiose, N-acetylglucosamine, galactose), rounds of
selection (10 for these strains) and replicate (A,B,C,D, since four independent lineages were sequenced
from each selection condition). Notation convention for mutations is described in the breseq documentation
(http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation).



evidence position mutation frequency annotation gene # reads
man10A (35.8x cvg)
RA 2,685,013 G→A 36.30% H165H (CAC→CAT) glyA← 44
man10B (55.4x cvg)
RA 2,138,906 G→A 23.80% R335R (CGG→CGA) yegH→ 38
man10C (50.9x cvg)
RA 2,685,013 G→A 42.20% H165H (CAC→CAT) glyA← 57
man10D (52.1x cvg)
RA 2,685,013 G→A 100% H165H (CAC→CAT) glyA← 50
RA 4,182,899 C→T 100% P552L (CCG→CTG) rpoB→ 61
mel10A (52.2x cvg)
RA 1,291,079 G→A 23.60% A280T (GCG→ACG) rssB→ 29
JC JC 2,270,300 IS5 (–) +4 bp 26.20% coding (322�325/567 nt) mepS→ 7//9
mel10B (52.1x cvg)
RA 542,516 C→T 37.20% P210L (CCG→CTG) glxK→ 35
JC JC 1,879,829 ∆1 :: IS186 (–) +6 bp :: ∆1 40.00% coding (115�120/360 nt) yeaR← 6//26
RA 2,138,906 G→A 29.30% R335R (CGG→CGA) yegH→ 41
RA 2,270,489 G→T 40.00% E171* (GAA→TAA) mepS→ 35
RA 4,381,141 C→A 43.00% G393V (GGT→GTT) frdA← 58
mel10C (57.9x cvg)
RA 542,516 C→T 46.90% P210L (CCG→CTG) glxK→ 34
RA 3,113,390 C→A 25.40% E30* (GAA→TAA) yghG← 63
mel10D (71.1x cvg)
RA 542,516 C→T 28.40% P210L (CCG→CTG) glxK→ 39
RA 1,291,079 G→A 100% A280T (GCG→ACG) rssB→ 48
RA 1,492,441 G→T 100% intergenic (�312/�29) mokB← /→ trg 41
NAG10A (64.3x cvg)
RA 2,685,013 G→A 100% H165H (CAC→CAT) glyA← 65
JC 3,535,134 ∆36 bp 79.40% coding (700�735/1353 nt) envZ← 44
RA 4,182,949 A→C 100% I569L (ATC→CTC) rpoB→ 98
NAG10B (54.7x cvg)
JC JC 2,269,892 IS1 (+) +8 bp 38.20% intergenic (+325/�80) lpxT→ /→ mepS 20//6
RA 3,815,949 ∆1 bp 100% pseudogene (601/669 nt) rph← 52
JC JC 3,969,335 IS1 (–) +9 bp 75.50% coding (305�313/1047 nt) wzzE→ 33//47
NAG10C (75.8x cvg)
JC JC 2,270,177 IS1 (+) +8 bp 44.80% coding (199�206/567 nt) mepS→ 29//23
RA 2,685,013 G→A 100% H165H (CAC→CAT) glyA← 77
JC 4,186,107 +9 bp 23.4% coding (758/4224 nt) rpoC→ 15
NAG10D (64.2x cvg)
JC JC 2,270,208 IS1 (+) +9 bp 47.10% coding (230�238/567 nt) mepS→ 27//21
RA 2,564,500 C→A 23.10% intergenic (+128/�23) yffR→ /→ yffS 78
RA 2,685,013 G→A 100% H165H (CAC→CAT) glyA← 68
RA 3,535,204 ∆1 bp 20.40% coding (665/1353 nt) envZ← 54
gal10A (54.6x cvg)
RA 702,332 ∆1 bp 100% coding (420/1149 nt) nagA← 20
RA 702,339 A→C 100% V138G (GTA→GGA) nagA← 25
RA 2,138,906 G→A 100% R335R (CGG→CGA) yegH→ 43
RA 3,815,813 A→G 77.10% intergenic (�45/+21) pyrE← /← rph 35
gal10B (73.2x cvg)
RA 702,330 ∆1 bp 48.30% coding (422/1149 nt) nagA← 29
JC 702,404 ∆10 bp 16.90% coding (339�348/1149 nt) nagA← 9
RA 1,291,079 G→A 25.10% A280T (GCG→ACG) rssB→ 44
RA 1,556,892 G→A 46.30% D90N (GAT→AAT) osmC→ 54
JC JC 1,879,829 ∆1 :: IS186 (–) +6 bp :: ∆1 39.40% coding (115�120/360 nt) yeaR← 20//21
RA 2,685,013 G→A 51.90% H165H (CAC→CAT) glyA← 81
RA 4,381,141 C→A 25.50% G393V (GGT→GTT) frdA← 88
gal10C (78.4x cvg)
RA 1,291,079 G→A 27.10% A280T (GCG→ACG) rssB→ 45
RA 1,524,403 C→A 44.70% intergenic (+35/+78) yncE→ /← ansP 65
RA 3,088,201 C→A 53.10% intergenic (+341/�83) metK→ /→ galP 32
RA 3,090,231 T→C 39.80% G159G (GGT→GGC) yggI→ 110
gal10D (63.4x cvg)
RA 1,291,079 G→A 68.40% A280T (GCG→ACG) rssB→ 41
RA 3,088,203 G→T 100% intergenic (+343/�81) metK→ /→ galP 34
RA 3,815,899 +A 59.20% pseudogene (651/669 nt) rph← 76
RA 3,820,746 G→A 51.50% A142V (GCA→GTA) ligB← 66
RA 4,294,169 G→T 22.40% intergenic (+30/�312) nrfG→ /→ gltP 49



Table S8: All mutations present in evolved strains. Related to Figure 7. Novel mutations present at
frequencies of 20% or greater in the 16 evolved strains presented in main text Figure 2. Whole-genome
sequencing and analysis was performed as described in main text methods with an average coverage of
59.8± 11.2 (mean ± standard deviation across strains). Strains are designated by their selection condition
(mannose, melibiose, N-acetylglucosamine, galactose), rounds of selection (10 for these strains) and repli-
cate (A,B,C,D, since four independent lineages were sequenced from each selection condition). Notation
convention for mutations is described in the breseq documentation (http://barricklab.org/twiki/pub/
Lab/ToolsBacterialGenomeResequencing/documentation).



Transparent Methods

Migration rate assay and selection experiment
Plates were prepared by autoclaving agar into laboratory-grade water, cooling to 55 ◦C, then adding sterile
stock solutions of M63 media components and the desired carbon source on a heated stir plate. The media
had a final agar concentration of 0.2% w/v and a final sugar concentration of 1mM. 22mL of media was
added to a 10 cm petri dish and allowed to gel before being wrapped with parafilm and stored at 4 ◦C until
use. Plates were thermalized for 24 h before use in the 30 ◦C environmental chamber where all migration
experiments were conducted (Darwin Chambers).

All migration assays were initiated by growing 5mL cultures of E. coli (strain MG1655-motile, Coli Genetic
Stock Center #8237) overnight to saturation from frozen stock in 5mL of liquid M63 with 30mM of sugar
matching the plate to be used. 10 µL of saturated culture was injected into the center of a soft agar plate.
Time-lapse imaging was performed for 24 h at 5min intervals on the expanding colonies using webcams
(Logitech HD Pro Webcam C920) in a dark box with pulsed illumination provided by warm white LED strips
(LEDMO SMD2835) around the periphery of each plate. Automated image analysis was used to extract
migration rates as described below.

For selection experiments, eight 20 µL samples were removed from the outermost edge of the expanding
colony after imaging. The sample was briefly vortexed and 10µL was immediately injected into a fresh plate
from the same batch to initiate the next round of selection. The remainder of the sample was preserved at
−80 ◦C on 25% glycerol. This process of imaging, sampling and inoculation was repeated until ten rounds
of selection had been completed, at which point a final sample was taken and preserved.

Image analysis
Webcam-acquired images were processed by customwrittenMATLAB code. First, images were background
subtracted by an image created from six early time points before growth had occurred. The colony’s center
was determined by applying Canny edge detection and a circular Hough transform to an image near the end
of the experiment. Next, radial intensity profiles were constructed for each image along a line outwards from
the colony’s center. Local cell density is monotonic with pixel intensity. Location of the colony’s edge was
determined by applying a threshold to the intensity profiles, and seFK for evolved strains was determined by
linear regression of the edge’s position versus time during the final 5 hours of expansion. Calibration was
performed by imaging a test target to determine the number of pixels per centimeter. To measure sFK on
evolved strains colony expansion data was inspected manually and a linear regression was performed on
the front position in time as early as possible in the colony expansion process. In five cases, the cross over
from sFK to seFK was not obvious and therefore sFK was not determined (strain:conditions - gal 10D:gal, gal
10C:gal, nag 10D:man,gal, nag10C:man). Due to errors in determining sFK in evolved strains, estimating
f via f = (seFK/sFK)2, was prone to large uncertainties and therefore this approach was not used.

To reliably determine sFK and seFK for the founding strain a 48 h colony expansion was recorded and
the early and late migration rates were determined as descibed above. An example is shown in Figure 4.

Numerical simulations
Simulations of the model in Equations (1)-(3) were carried out using custom written MATLAB scripts with an
approach identical to that described in a previous publication (Fraebel et al., 2017). Briefly, we assumed
azimuthal symmetry and derivatives were approximated by central differences on a 1-D lattice. The rate of
migration was determined by locating the bacterial front in space using a threshold on density. Linear re-
gressions were then used to determine the migration rates. The scaling arguments in the main text regarding
the migration rates sFK and seFK are supported in the SI (Figure S5).

The model contains the following parameters for each strain: kg, Kg, Y , f , Db, (χ = fDb), A and B. Kg

is small for E. coli consuming sugars and was fixed at 0.3µM for all sugars and assumed not to evolve (value
taken from a previous work, Fraebel et al., 2017). Optical density measurements in well-mixed conditions
were used to measure kg. Y was measured for the founder in all four conditions by serial dilution and
plate enumeration of a stationary-phase culture grown in liquid media. We assume that Y is unchanged by



selection. Db was measured via single cell tracking and f was inferred from the late time migration rates as
described in the text. A and B were initially inferred by straddling the peak chemotactic response reported
for each sugar in (Adler et al., 1973) by an order of magnitude in each direction. A was subsequently tuned
to achieve migration rates from simulation which matched the founding strain (Figure 4) and then fixed for
all other strains in the same nutrient condition.

Growth rate measurement
Seed cultures were grown from frozen stocks in 5mL of M63 with 1mM sugar for 36 hours to saturation.
Cultures were then diluted 1 : 1000 into a 48-well plate containing 1mL of fresh media in each well. Op-
tical density was measured in a plate reader (Tecan Infinite 200 or BMG Labtech CLARIOstar) by 600 nm
absorbance every 10 minutes with 200RPM shaking between measurements. Maximum growth rates (kg)
were acquired by linear fit of the linear portion log(OD) versus time (exponential growth phase) just before
the roll-off to stationary phase. Fitting intervals were determined manually and were typically two to five
hours in duration.

Single-cell tracking
Glass slides and cover slips were cleaned by sonication in acetone followed by 1M KOH, passivated with
2mgmL−1 bovine serum albumin and rinsed with laboratory-grade water before use. Cultures were grown
from frozen stocks in 5mL of M63 with 1mM sugar to early-mid exponential phase, OD600 ≈ 0.14. 5 µL
of culture was added to the passivated region of a slide, covered with the passivated side of a cover slip,
and the chamber was sealed with Devcon 5 Minute Epoxy. Videos of swimming cells were acquired for 30
or 60 seconds at 12 frames per second with a Point Grey model FL3-U3-32S2M-CS camera and a phase
contrast microscope (Omano OM900-T inverted) at 10x magnification. Illumination was provided by a high-
brightness white LED (LED Supply 07040-PW740-L) to avoid the 60Hz flickering that observed with the
stock halogen lamp. Experiments were performed in a 30 ◦C environmental chamber (Darwin Chambers).
For each evolved strain in each condition, 5 videos were acquired from different sites on the glass slide. For
the founder, this process was repeated for two independent replicate slides in each condition.

Videos were processed into trajectories and run-tumble classified using PyTaxis (https://github.com/
tatyana-perlova/pytaxis) (Perlova et al., 2019). Briefly, this software segments videos to obtain cellular
coordinates, links coordinates from each frame into trajectories and filters out trajectories of cells stuck to the
glass slide as well as trajectories fewer than 20 frames. Subsequently, filtered trajectories were analyzed
using custom MATLAB code. First, we calculated each cell’s squared displacement at each frame. Next,
we averaged over cells to obtain a mean squared displacement versus time trace for each strain in each
condition. A five-second interval near the beginning of the trace was observed to be linear across datasets,
indicating diffusive motion of the cells. The slope of this region was used to compute the diffusion constant
(Db) after dividing a prefactor of 4, since swimming cells were confined to two dimensions in this experiment.
After this interval, the traces become sub-linear due to the presence of cells with lower diffusivity making up
these very long trajectories (Figure 6a). Computing the distribution of trajectory lengths confirmed that such
cells constitute a minority of the total trajectories (Figure S5).

Analysis of variance and post-hoc testing
We performed 3-way ANOVA on the model presented in Equation (4) using the MATLAB function anovan.
We used either

√
kevg /kfog ,

√
Dev

b /Dfo
b or

√
fev/ffo as the response variable, and selection condition, assay

condition and strain as predictor variables. Selection condition, assay condition and the interaction term
between those two predictors were all treated as fixed effects. Strain was treated as a random effect nested
into selection condition. This serves as a strain-specific noise term which accounts for the lineage to lineage
stochastic variation in phenotypes within one selection condition.

ANOVA results were used to determine which predictors have significant differences in the response
variable between their levels. For predictors that showed a significant F-statistic, we further investigated



which coefficients showed significant departures from the global mean using a non-parametric bootstrap-
ping approach. To do this, we first randomly permuted the response variable to create a randomly-labeled
dataset. We then performed the ANOVA on the randomly-labeled data and computed the coefficients for
the predictor being studied. We repeated the process of random permutation and ANOVA 104 times to
construct a distribution of ANOVA coefficients from randomly-labeled datasets. Finally, we computed a p-
value by considering the fraction of coefficients from shuffled data larger/smaller than the coefficients from
ANOVA on the properly-labeled data. The intent of this approach is to highlight the probability that the partic-
ular arrangement of selection conditions, assay conditions and strains we observed in the phenotypic space
defined by

√
kevg /kfog ,

√
Dev

b /Dfo
b and

√
fev/ffo (Figure 6) could arise due to random chance. If an ANOVA

coefficient from our data is unlikely given a distribution of coefficients from ANOVAs on randomly-labeled
data, we conclude that the associated group has a meaningful departure from the global mean in whichever
response variable is being investigated.

Whole genome sequencing and analysis
Cultures of each evolved strain were grown from frozen stocks in 5mL LB overnight to saturation. Genomic
DNA was purified using the Qiagen DNeasy UltraClean Microbial Kit. Input DNA was quantified by Qubit
and sequencing libraries were prepared using the NexteraXT kit from Illumina. Purified, amplified libraries
were quantified by Qubit and Bionanalyzer and normalized with the bead-based method of the NexteraXT
kit. Sequencing was performed on an Illumina MiSeq system following pooling, dilution and denaturation
of the bead-normalized libraries according to MiSeq system specifications. Reads were demultiplexed and
adapter trimmed with the onboard Illumina software. Sequence data for the ancestral strain was used from
our previous work, where we sequenced the founder with an average depth of 553X by aggregating reads
from four separate sequencing reactions (Fraebel et al., 2017).

Analysis was performed using the breseq computational pipeline in polymorphism mode. Breseq uses
an empirical error model and a Bayesian variant caller to predict mutations. The software uses a threshold
on the empirical error estimate (E-value) to call variants (Barrick and Lenski, 2009). The value for this
threshold used here was 0.01, and we report all mutations present in evolved populations at a frequency of
0.2 or above (Barrick and Lenski, 2009). All other parameters were set to their default values. Reads were
aligned to the MG1655 genome (INSDC U00096.3). We note that breseq is not well suited to predicting
large structural variation. We excluded any mutations present in the founder from further analysis in order
to consider novel genetic variation present in the evolved strains.

Numerical investigation of LASSO regression
We sought to understand whether or not the presence of mutations in specific targets could be associ-
ated with phenotype changes in the evolved strains relative to the ancestor. We investigated the ability of
L1-regularized regression (LASSO) (Hastie, Tibshirani, and Friedman, 2008; Hastie, Tibshirani, and Wain-
wright, 2016) to predict the values of phenotypic parameters from mutational target candidacy using a nu-
merical analysis of surrogate data. As discussed in the main text, preliminary work showed that some
regressions yielded models with only an intercept term. We therefore designed a computational approach
to assess when LASSO regression could reliably detect true nonzero regression coefficients.

We generated surrogate data from amodel of the form Y⃗ = η0+Xη⃗+ε⃗. We varied two control parameters
to generate these data, P and σ: P is the number of randomly-selected elements in the regression coefficient
vector η⃗ that are drawn from a standard normal distribution with mean zero and variance of unity, with all
other elements set to zero; σ controls the magnitude of the noise term ε⃗, whose elements are drawn from a
normal distribution with mean zero and variance σ2. In order to simulate the structure of the true mutation
candidacy matrix, a predictor matrix X is generated by randomly shuffling along columns of the candidacy
matrix, which preserves the number of observations (N = 16), the number of mutational targets (21), and
the frequency of each mutation. Without loss of generality, we set the intercept η0 = 0. From η⃗,X, and ε⃗, we
obtain the surrogate response vector Y⃗ . To generate additional data to be reserved for out-of-sample testing,
we repeat the shuffling procedure to generate a new predictor matrix XOOS with N = 16 observations, and



sampled a new noise vector ε⃗OOS to obtain response values Y⃗OOS = XOOS η⃗ + ε⃗OOS , while keeping the η⃗
fixed.

For each surrogate data set, we used LASSO regression (MATLAB R2017b) to fit a linear model of the
form Y⃗ = η0 +Xη⃗ + ε⃗. LASSO minimizes the following objective function:

min
η0,η⃗
{||Y − η0 −Xη⃗||2 + λ||η⃗||1} . (1)

The LASSO procedure generated a set of models over a range of values for the regularization hyperpa-
rameter λ. Leave-one-out cross-validation was used to estimate the model mean squared error (MSE)
as a function of λ. Model selection was performed by choosing the value of λ = λ̂ that minimized the
cross-validated MSE. At λ = λ̂, LASSO regression produces estimates for the model parameters: η̂0, ˆ⃗η.
Additionally, we inferred a model with only an intercept (i.e., Y⃗ = η0, which is the model resulting from the
limit λ→∞). We then constructed a statistic,M which measures the improvement of the model MSE for λ̂
relative to the λ→∞ limit:

M =
(MSEλ→∞ −MSEλ̂)

SEλ̂

,

where MSEλ→∞ is the MSE value of the model with only an intercept, MSEλ̂ is the MSE of the model
inferred at λ̂, and SEλ̂ is the estimated standard error ofMSEλ̂ determined by cross-validation (Figure S9a).
Model evaluation was performed by computing the coefficient of determination R2 of the selected model
applied to the out-of-sample predictor XOOS and response Y⃗OOS :

R2 = 1−
∑

i(y
i
OOS − ŷiOOS)

2∑
i(y

i
OOS − ȲOOS)2

,

where i is an index over the 16 data points in the out-of-sample data set, ŷiOOS = η̂0 + xi
OOS

⃗̂η and ȲOOS =
1
N

∑
i y

i
OOS and N = 16 is the number of data points. Numerical evaluation of predictive power using out of

sample surrogate data allowed us to test the ability of the fit to generalize beyond the training data.
We performed the steps above for a grid of P and σ values (P ∈ {1, 2, 4, 8, 16} and σ ∈

{0.1, 0.2, 0.4, 0.8, 1.6, 3.2}), generating 104 instances of surrogate data for each (P, σ) combination. We chose
these values of σ to sample both high and low noise regimes for the surrogate data. The average magni-
tude of the P non-zero entries in η⃗ is

√
2/π = 0.79, so σ values range from much smaller (0.1) to much

larger (3.2) than the regression coefficients. These two limits on σ characterize low and high noise regimes
respectively.

The results of these simulations are shown in Figure S9b-c. For each (P, σ) combination the heat map
shows median values of M across the 104 instances of surrogate data. The values of M are highest in a
low noise regime, corresponding to P > 1 and σ sufficiently small. Median out-of-sample R2 values are
also highest (> 0.5) in this low noise regime, suggesting that high values ofM indicate situations where the
LASSO procedure yields good inferences of the regression coefficients. To make the relationship between
M and out-of-sample R2 explicit, we combined the values of M and R2 obtained in all surrogate data sets
from all models (n = 3× 105 in total) and binned values by M in intervals of 0.5. Within bins, we computed
the quartiles (25th, 50th, 75th percentiles) of R2, which we plotted in Figure S9d. We observed that the
relationship betweenM and out-of-sampleR2 is indeedmonotonically increasing, with an interquartile range
that decreases as M increases. Thus, as M increases, it is increasingly likely that LASSO has correctly
inferred the linear model. We verified that the relationship between M and out-of-sample R2 is essentially
unchanged when one-tenth of the data are used (Figure S9e).

In our data we do not know P (the true number of genes predicting the phenotype) or σ since both are
inferred by regression. However, we can computeM during cross-validation. We therefore use the statistic
M , computed not on surrogate data, but on the true data (phenotypes and mutations) and use the measured
values of M to assess the predictive power of our model.

We next performed the LASSO procedure on the experimental data with the true mutational target can-
didacy matrixX for three different response variables, the quantities

√
Dev

b /Dfo
b ,

√
kevg /kfog , and

√
fev/ffo.

Separate regressions were performed for all evolved strains in each of four nutrient conditions. Using these



regressions performed on the true data we then computed our statistic M , and these values are shown as
colored vertical lines in Figure 7. As in the surrogate data simulations, for each real data regression there are
16 observations, 21mutational targets, and leave-one-out cross validation is used for determining λ̂. In each
case, the value of M obtained is near zero, and the numerical simulations indicate that an out-of-sample
R2 ≈ 0 is likely. We conclude that there is little predictive power in the presence or absence of specific
mutations in terms of the evolved phenotypes.
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