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EDITORIAL

Traumatic brain injury (TBI) and spinal cord injury (SCI) 
causes significant cell death (Raghupathi et al., 1995; DeKosky 
et al., 1998; Hall et al., 2005; Farkas and Povlishock, 2007) and 
tissue lesion in the neocortex (Lighthall et al., 1989; Lyeth et 
al., 1990), leaving many patients with substantial motor dis-
ability and cognitive impairment (Hamm et al., 1992; Scheff 
et al., 1997). Unfortunately, at present, there are no clinically 
demonstrated FDA approved drug therapies for treatment of 
TBI and SCI patients that reduce the neurological injuries. 
Thus, TBI and SCI are serious health problems. The devel-
opment of therapeutic approaches to prevent neuronal death 
and enhance neuroregeneration for promoting post-traumat-
ic functional recovery would be of enormous clinical, social, 
and economic benefits. The reviews in this specific issue focus 
largely on the current progress on diagnosis, neuroprotection, 
and potential neurorepair with stem cells. 

Introduction
TBI, a form of acquired brain injury, occurs when a sudden 
trauma causes damage to the brain. TBI can result when the 
head suddenly and violently hits an object, or when an ob-
ject pierces the skull and enters brain tissue. It is estimated 
that approximately 2.4 million patients were hospitalized 
with TBI in the United states alone in 2009 (Coronado et 
al., 2012). TBI is a major cause of death and disability in the 
United States, contributing to about 30% of all injury deaths 
and the growing 1.8% of the population that live with long-
term physical disabilities (Zaloshnja et al., 2008). Effects of 
TBI can also lead to cognitive impairment, including memo-
ry problems and decreased concentration skills, and psycho-
logical symptoms, including irritability, depression, and anx-
iety. SCI is also one of the major causes of irreversible nerve 
injury, resulting in both motor and sensory dysfunctions. An 
estimated 12,000 new cases of spinal cord injury occur every 
year in the United States.

Over the past 15–20 years, we have gained a great deal of 
knowledge about the healthy brain and its response to trau-
ma (Buki and Povlishock, 2006; Hall et al., 2008; Greer et al., 
2013; Johnson et al., 2013). Based on the results from animal 
models, controlling brain swelling and intracranial pressure 
(ICP) have been widely used and have significantly reduced 
death following TBI (Lundberg et al., 1965). Although 
during 2001–2010 rates of TBI-related emergency depart-
ment (ED) visits increased by 70%, death rates decreased by 
7% (Coronado et al., 2012). 

However, there are still so many questions unanswered, 
and still so many challenges to diagnose, treat, and repair 
the damaged brain. To address these challenges, it is very 
important to advance the knowledge on mechanisms of 
injury and recovery, and to develop better diagnostic tools 
and more effective treatments. Thus in this special issue, 
four laboratories come together to summarize the current 
progress on neuroimaging, neuroprotection, and potential 
neurorepair with stem cells following TBI. 

Neuroimaging
Different imaging strategies are widely used in the clinic to 
assess TBI (McAllister et al., 2001; Belanger et al., 2007; Le 
and Gean, 2009; Kirov et al., 2013). In general, the struc-
tural imaging techniques play a role in acute diagnosis and 
management, while the functional imaging techniques show 
promise for clarification of pathophysiology, symptom gen-
esis, and mechanisms of recovery (McAllister et al., 2001). 
Dr. Kuo and Dr. Iraji summarize the most recent evidence 
of brain plasticity after TBI in human patients from the per-
spective of advanced magnetic resonance imaging. 

Evidence also demonstrates that, even if patients have 
damaged certain functional structures or networks, e.g., mo-
tor control and somatosensory networks, many of them still 
could pick up these functionalities during their recovery, in-
dicating the existence of an internal neuroplasticity. Dr. Kuo 
and his colleagues review the most recent imaging evidence 
of brain plasticity in TBI patients, from synaptic, micro-
structural levels, to functional network levels of the brain, 
particularly focusing on advanced MRI.

Neuroprotection 
TBI not only results in immediate brain tissue disruption 
(primary injury), but also causes secondary damage among 
the surviving cells via complex mechanisms triggered by the 
primary event occurring in the hours, days, and weeks after 
initial physical impact. Secondary injury includes ischemia/
reperfusion injury, inflammation, oxidative stress, and glu-
tamate excitotoxicity, all of which contribute to the eventual 
tissue degeneration and functional loss. 

A prevalent hypothesis is that TBI increases extracellular 
levels of the excitatory neurotransmitters such as glutamate 
(Choi, 1985, 1987, 1988; Braughler and Hall, 1989; Miller 
et al., 1990; Choi, 1992; Juurlink and Paterson, 1998; Hall 
and Springer, 2004; Yi and Hazell, 2006). Glutamate, in turn, 
causes excessive stimulation of N-methyl-D-aspartic acid 
receptors (NMDA), thus mediating calcium over influx and 
triggering rapid excitotoxic necrosis that results in traumatic 
damage to the central nervous system (CNS). For patients 
who have experienced TBI, no specific pharmacological 
therapy is available that would improve their outcomes. 
Therefore, recent research on TBI has been focused on devel-
oping a therapeutic approach to inhibit glutamate-mediated 
excitotoxicity with pharmacological glutamate antagonists 
or calcium blocking agents. However, glutamate is the major 
excitatory transmitter in the mammalian CNS. Its stimula-
tion of NMDA receptors plays an essential role in excitatory 
synaptic transmission. Completely blocking NMDA recep-
tors will cause significant side effects. For this reason, clinical 
trials have had limited success. 

Another hallmark of secondary injury is oxidative stress 
(Hall et al., 1999; Bains and Hall, 2012), which plays an im-
portant role in mediating functional loss after both TBI and 
SCI. Although there is strong evidence that oxidative stress 
plays a critical role in the pathogenesis after SCI, clinical tri-
als of free radical scavenging have not produced any effective 
treatments to promote functional recovery after traumatic 
SCI. Dr. Shi and his colleagues found that Acrolein is the 
most reactive electrophile produced by lipid peroxidation, 
suggesting that Acrolein is a novel therapeutic target to re-
duce oxidative stress (Shi et al., 2011a, 2011b; Park et al., 
2014). Dr Shi and his colleagues summarize the recent devel-
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opments in the understanding of the mechanisms of Acrolein 
in motor and sensory dysfunction in animal models of SCI.

Neurorepair 
Recent research has identified neural stem/progenitor cells 
(NSCs) in the adult mammalian hippocampus that can sup-
port neurogenesis throughout life, as demonstrated in rodents 
and primates, including humans (Kuhn et al., 1996; Eriksson 
et al., 1998b; Eriksson et al., 1998a; Kornack and Rakic, 1999; 
Cameron and McKay, 2001; Leuner et al., 2007). Currently the 
consensus among researchers in the field is that throughout 
adulthood, NSCs in the subgranular zone (SGZ) of the hippo-
campal dentate gyrus (HDG) continuously generate new neu-
rons (Kempermann and Gage, 2000; Ming and Song, 2005) 
and develop into mature granular neurons (Ming and Song, 
2005; Shapiro and Ribak, 2005; Zhao et al., 2006). The pool of 
NSCs is a potential resource for repairing the damaged hippo-
campus following TBI. 

Current studies further show that TBI promotes NSC 
proliferation in the adult hippocampus (Dash et al., 2001; 
Kernie et al., 2001; Braun et al., 2002; Chirumamilla et al., 
2002; Rice et al., 2003; Yoshimura et al., 2003; Ramaswamy et 
al., 2005; Sun et al., 2005; Rola et al., 2006; Sun et al., 2007). 
This finding suggests that innate repair and/or plasticity 
mechanisms exist in the adult brain. There are distinct class-
es of NSCs in the adult HDG, including quiescent neural 
progenitors (QNPs), which carry stem cell properties, and 
their progeny, amplifying neural progenitors (ANPs) (Seri 
and Garcia-Verdugo, 2001; Seaberg and van der Kooy, 2002; 
Filippov et al., 2003; Mignone et al., 2004; Bull and Bartlett, 
2005; Encinas et al., 2006; Encinas and Enikolopov, 2008; 
Encinas et al., 2008). Dr. Chen and his colleagues found that 
moderate TBI promotes proliferation of QNPs in the adult 
hippocampus (Gao et al., 2009). 

Although TBI promotes NSC proliferation, the effect of 
TBI on neurogenesis is still controversial. There are conflict-
ing reports about neurogenesis in the HDG. According to 
some studies neurogenesis decreases after TBI (Braun et al., 
2002; Rola et al., 2006), whereas others have reported that it 
remains unchanged (Chirumamilla et al., 2002; Rice et al., 
2003), or that it increases (Sun et al., 2005; Sun et al., 2007). 
Here, Dr. Sun summarizes the potential of endogenous neu-
rogenesis for brain repair and regeneration in the hippocam-
pus following traumatic brain injury. 

TBI causes significant cell death (Raghupathi et al., 1995; 
DeKosky et al., 1998; Hall et al., 2005; Farkas and Povlishock, 
2007) and tissue lesion in the neocortex (Lighthall et al., 
1989; Lyeth et al., 1990). However, it is generally agreed that 
no endogenous NSCs exist or neurogenesis proceeds in the 
adult neocortex of the mammalian brain, i.e., the neocortex 
is a non-neurogenic region (Rakic, 2006). Thus, Dr. Chen 
and his colleagues briefly review the current progress of stem 
cells, which may potentially be used to generate new neurons 
in the cortex for brain repair following TBI.

Summary and future research
Little can be done to reverse the initial brain damage and 
spinal cord injury caused by trauma. Thus, it is important 
to study the pathological basis of neurological disorders, 
understand neurodegeneration and plasticity of the CNS, 
and develop novel neuroprotection and repair strategies to 
improve anatomical reorganization and functional recovery 

following TBI and SCI.
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