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Abstract: Liquid silicone rubber (LSR) parts have some distinct characteristics such as superior heat
stability, low-temperature flexibility, aging resistance, and chemical resistance. From an industrial
standpoint, the uniform vulcanization temperature of LSR is an important research point. However,
the uniformity of the vulcanization temperature of LSR has been limited since the layout of the
cartridge heater incorporated in the conventional steel mold does not follow the profile of the mold
cavity. Metal additive manufacturing can be used to make LSR injection molds with conformal
heating channels and conformal cooling channels simultaneously. However, this method is not
suitable for a mold required to develop a new LSR product. In this study, a cost-effective approach
was proposed to manufacture an LSR injection mold for the pilot run of a new optical lens. A rapid
tool with low vulcanization energy consumption channels was proposed, which was incorporated
with both a conformal heating channel (CHC) and conformal cooling channel (CCC) simultaneously.
The function of the CHC was to vulcanize the LSR in the cavity uniformly, resulting in a shorter
cycle time. The function of the CCC was to keep the LSR in a liquid state for reducing runner waste.
It was found that the equation of y = −0.006x3 + 1.2114x2 − 83.221x + 1998.2 with the correlation
coefficient of 0.9883 seemed to be an optimum trend equation for predicting the solidification time
of a convex lens (y) using the vulcanizing hot water temperature (x). Additionally, the equation of
y = −0.002x3 + 0.1329x2 − 1.0857x + 25.4 with the correlation coefficient of 0.9997 seemed to be an
optimum prediction equation for the solidification time of a convex lens (y) using the LSR weight
(x) since it had the highest correlation coefficient. The solidification time of a convex lens could be
reduced by about 28% when a vulcanizing hot water temperature of 70 ◦C was used in the LSR
injection mold with CHC.

Keywords: liquid silicone rubber; conformal heating channel; conformal cooling channel; vulcanization;
energy consumption

1. Introduction

Liquid silicone rubber (LSR) injection molding is a promising method for the mass
production of parts with sophisticated geometries because of its ease of processability [1].
The injection molding of LSR is ideal for rubber parts in specific demands, such as in the
medical, automotive, aerospace, electrical, and consumer industries since it provides better
end-product performance [2]. It was found that the thermal stability of addition-cured
liquid silicone rubber was improved significantly. A conformal cooling channel (CCC)
was employed in the plastic injection molding to enhance productivity and molded part
quality [3–5].
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Generally, the more uniform the mold temperature, the shorter the cross-linking time
of LSR. According to practical experience in the fabrication of LSR parts using injection
molding [6,7], one major drawback is that the uniformity of the vulcanization temperature
of LSR can be improved when a cartridge heater [8] is incorporated in the conventional
mold steel. Thus, improving the uniformity of the vulcanization temperature of LSR
is an important research issue. A conformal heating channel (CHC) and a CCC can be
realized simultaneously by metal additive manufacturing (AM). However, there are many
distinct processing defects, including warpage [9], residual stress [10], and cracking [11]. In
addition, hitherto little has been reported on the use of a CHC and CCC simultaneously
in LSR injection molds. To overcome this challenge, a rapid tool with dual channels was
proposed and implemented, which was incorporated with conformal heating and cooling
channels simultaneously in this study. A CHC is a heating passageway, which follows the
shape of the mold cavity, providing higher uniformity of the vulcanization temperature
of LSR after injection molding. A CCC is used to maintain the LSR in a liquid state in the
filling system. Conventionally, both CHC and CCC have been typically designed by a trial-
and-error method in which multiple attempts are made to reach a solution. However, this is
a time-consuming method. In this study, numerical simulation was used as an effective way
for designing both the CHC and CCC. The feasibility of the LSR injection mold with dual
channels was fabricated with aluminum (Al)-filled epoxy resin. To validate the simulation
results and evaluate the effectiveness of the LSR injection mold, LSR injection molding
was carried out. Thermal imaging technology can help to characterize the changes in the
vulcanization process. Thus, an infrared thermal imager was also employed to record the
temperature history during LSR injection molding.

2. Experimental Details

In this study, a convex lens of a vehicle headlight was selected as the master pattern.
The master pattern, CHC, CCC, and LSR injection molds were designed using a three-
dimensional (3D) modeling software (Parametric Technology Corporation, Boston, MA,
USA). Figure 1 shows the flow diagram of the experimental methodology. Figure 2 shows
the 3D CAD model and dimensions of the convex lens. The diameter of the convex lens
of the vehicle headlight was about 50 mm and thickness of the center was about 18.7 mm.
Figure 3 shows the 3D CAD model and dimensions of the cavity with the CHC and core
with the CCC. CHCs achieve a better vulcanization performance than conventional heating
channels. In addition, CCCs achieve better cooling performance than conventional straight-
drilled channels. The core insert had a length of 90 mm, a width of 90 mm, and a height of
30 mm. The cavity insert had a length of 90 mm, a width of 90 mm, a height of 45 mm. The
diameter of the CHC was 6 mm. The pitch distance between the central lines of the CHC
was 10 mm. The distance between the wall of the CHC to the mold surface was 8 mm. The
diameter of the CCC was 6 mm. The distance between the wall of the CCC to the mold
surface was 8 mm. A set of LSR injection molds with dual CCCs was fabricated using
Al-filled epoxy resins (TE-375, Jasdi Inc., New Taipei City, Taiwan).

Figure 4 shows the manufacturing processes of the LSR injection mold. Firstly, an
interim mold, which was complementary in shape to the LSR injection mold, was fabricated
by silicone rubber (KE-1310ST, Shin Etsu Inc., Chiyoda City, Japan) and a hardener. The
hardener and silicone rubber were mixed in a weight ratio of 1:10. To reduce human
error, a computer program using Visual Basic was developed to determine the amounts of
both the base compound and hardener accurately. The mixture was blended with epoxy
resins (EP-2N1, Ruixin Inc., Taipei, Taiwan) and 41 vol.% aluminum (Al) powder [12]
for manufacturing the LSR injection mold. The average particle size of Al powder was
about 45 µm. The mixture was stirred for about 15–20 min until the mixture was well
blended. The mixture was then de-gassed by a vacuum pump (F-600, Feiling Inc., New
Taipei City, Taiwan). Both the core and cavity inserts were then post-cured in a thermal oven
at 60 ◦C to obtain the mechanical properties. The fabrication of CHCs using conventional
machining techniques is difficult. Thanks to the features of three-dimensional printing
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technology [13], both the CHC and CCC were printed using polyvinyl butyral [14] filament
because these materials can be removed thoroughly and easily by using industrial alcohol
solution [15]. The printing parameters for manufacturing both the CHC and CCC were a
printing speed [16] of 30 mm/s, printing temperature [17] of 200 ◦C, layer thickness [18]
of 0.1 mm, and bed temperature [19] of 60 ◦C. Figure 5 shows the description of the
molding simulation conditions. The viscosity is the index of the resistance of an LSR to
flow, which depends on temperature, shear rate, and pressure. In general, LSR undergoes
a significant volumetric change with respect to pressure and temperature. To calculate
the shrinkage or warpage of a convex lens after vulcanization, the characterization of the
pressure–volume–temperature (PVT) relationship was required.
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Figure 1. Flow diagram of the experimental methodology.

The Moldex3D simulation software (R14 SP3OR, CoreTech System Inc., Zhubei City,
Taiwan) is an effective tool for the design verification of both CHCs and CCCs. Table 1
gives the process conditions used in the simulation. The filling time of a convex lens
was approximately 1 s. Table 2 shows the material properties of the injection mold. LSR
(ELASTOSIL LR 3003 50, Wacker Inc., Munich, Germany) was used as the molding materials
and the material properties are listed in the Table 3. Figure 6 shows a rapid tool with a
CHC and CCC for LSR injection molding. The cross-section of both the CHC and CCC
was circular. A vacuolization and cooling system for LSR injection molding was developed
in this study. This system comprised a CHC, CCC, three k-type thermocouples (C071009-
079, Cheng Tay Inc., Taipei, Taiwan) with a measurement sensitivity of ±1 ◦C, a mold
temperature controller (JCM-33A, Shinko Inc., Taipei, Taiwan), a water reservoir with a
thermoelectric cooler (TEC12706AJ, Caijia Inc., Taipei, Taiwan), and a data acquisition
system (MRD-8002L, IDEA System Inc., Taipei, Taiwan). To investigate the effect of the
hot-water temperature on the vulcanizing results, five different vulcanizing hot-water
temperatures, i.e., 50 ◦C, 55 ◦C, 60 ◦C, 65 ◦C, and 70 ◦C, were used in this study. The
cold-water temperature was 27 ◦C with a volume flow rate of 120 cc/s. The temperature of
the molded part after molding was recorded by an infrared camera (BI-TM-F01P, Panrico
Trading Inc., Taipei, Taiwan).
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Table 1. Process conditions used in the simulation.

Item Data

Injection temperature (◦C) 27

Hot-water temperature (◦C) 50, 55, 60, 65, 70

Coolant temperature (◦C) 27

Flow rate (cc/s) 120

Injection pressure (MPa) 0.52

Filling time (s) 1
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Figure 5. Description of molding simulation conditions: (a) configuration of the injection mold,
(b) finite-element mesh, (c) viscosity chart, and (d) PVT diagram of the molding material.

Table 2. Material properties of injection mold.

Item Data

Density (g/cm3) 1.95

Heat capacity (cal/g ◦C) 1.97

Thermal conductivity (W/m-K) 10.82

Elastic modulus (GPa) 2.54

Poisson ratio 0.17

Table 3. Properties of the molding materials.

Item Data

Density (g/cm3) 1.04

Hardness (Shore A) 60

Material temperature (◦C) 10–30
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Figure 6. A rapid tool with CHC and CCC for LSR injection molding.

3. Results and Discussion

In this study, a boundary layer mesh was employed for the simulation because it is
suitable for simulation models with sophisticated geometries. A three-dimensional solid
mesh includes four different kinds of meshes, i.e., prism, tetrahedron (tetra), pyramid, and
hexahedron. Figure 7 shows the mesh of the injection molded par. It should be noted
that the simulation models were composed of meshes with tetrahedrons and prisms. The
number of nodes for tetrahedra and prisms were 4 and 8 [20]. The number of elements
for tetrahedra and prisms were 19,768 and 10,740, respectively. The simulation models
involved a molded part, a mold base, two channels, and a runner. The total number of
elements and nodes were 30,508, 145,474, 1,293,268, and 12,989, respectively.

The curing process is based on chemical reaction kinetics. The vulcanization time of an
LSR has a significant impact on molding product of a convex lens because the vulcanization
is a crucial step in LSR injection molding [21–23]. Generally, both CHCs and CCCs are a
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complex heat transfer problem with transient conditions. To prevent the over-curing of the
LSR during LSR injection molding [6,7], five curing temperatures were used in this study.
First of all, a vulcanizing hot-water temperature of 60 ◦C was employed to investigate the
curing time [24,25] of the molding product. Figure 9 shows the temperature of a convex lens
as a function of the vulcanization time. The temperature history during the vulcanization of
the LSR was monitored by an infrared thermal imager in the LSR injection molding. Note
that there was only one temperature measuring point, which was located in the center of
the bottom of the optical lens. The curing rate of an LSR lens is related to heat released by
the curing reaction. The curing rate of the LSR lens was predicted by molding simulation.
The performance of the LSR lens was affected by the mechanism of curing kinetics since
curing is an exothermic process of crosslinking. Since the temperature sensor was placed
on the top of the molded part, the temperature of the molded part first decreased and then
increased with the increase in the vulcanization time. According to the temperature of the
infrared thermal imager, the peak temperature of the top of the silicone optical lens was
about 45 ◦C. According to both the temperature of the molded part and vulcanization time,
the solidification time of a convex lens was about 66 min.
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Figure 7. Mesh of the injection molded part.

Figure 8 shows the CHC before and after removing the support materials using three
different build directions. The printing time of the CHC for vertical, horizontal, and
inverted directions were 380, 300, and 396 min, respectively. It should be noted that serious
warpage of CHC was observed after removing the support materials while the build
direction was vertical. Especially, there were many support materials when the CHC was
built with inverted direction that resulted in more time taken to remove support material.
It is interesting to conclude that the optimal build direction was horizontal.

In practice, little is known about the relationship between the vulcanizing hot-water
temperature and the solidification time of a convex lens. To investigate the relationship
between the vulcanizing hot-water temperature and the solidification time of a convex lens,
five different vulcanizing hot-water temperatures of 50 ◦C, 55 ◦C, 60 ◦C, 65 ◦C, and 70 ◦C
were performed in this study. Figure 10 shows the solidification time of a convex lens for
different vulcanizing hot-water temperatures. The solidification times of the convex lenses
were approximately 115, 90, 66, 62, and 50, respectively. To propose an optimum trend
equation for predicting the solidification time of a convex lens based on the vulcanizing
hot-water temperature, six different types of curve-fitting methods were used in this study,
as shown in the following Equations (1) to (6). Note that the R2 stands for the coefficient
of determination of the trend equation. In general, the R2 value ranges from 0 to 1 and is
commonly stated as a percentage from 0% to 100%. The higher the R2 value, the better the
degree of accuracy of the equation. The values of x and y denote the vulcanizing hot-water
temperature and solidification time of a convex lens, respectively. Apparently, it was found
that the equation of y = −0.006x3 + 1.2114x2 − 83.221x + 1998.2 was considered to be the
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optimum trend equation for predicting the solidification time of a convex lens (y) using
vulcanizing hot-water temperature (x) since it had the highest R2 value.
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Figure 8. CHC before and after removing support materials using three different build directions:
(a) vertical, (b) horizontal, and (c) inverted.
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Figure 10. Solidification time of a convex lens for different vulcanizing hot-water temperatures.

Linear function:
y = −3.16x + 266.2, R2 = 0.929 (1)

Quadratic function:

y = 0.1314x2 − 18.931x + 732.77, R2 = 0.9852 (2)
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Exponential function:

y = 846.32e−0.0408x, R2 = 0.9656 (3)

Logarithmic function:

y = −189.95 ln(x) + 852.99, R2 = 0.9498 (4)

Cubic function:

y = y = −0.006x3 + 1.2114x2 − 83.221x + 1998.2, R2 = 0.9883 (5)

Power function:
y = 2 × 106x−2.4364, R2 = 0.9778 (6)

The weight of the complete LSR convex lens was 25 g. To investigate the relationship
between the LSR volume and the solidification time of a convex lens, five different LSR
volumes of 20%, 40%, 60%, 80%, and 100% were carried out in this study. Five different
weights of the LSR, i.e., 5 g, 10 g, 15 g, 20 g, and 25 g were obtained by converting five
different volumes of the LSR. Figure 11 shows the solidification time of a convex lens for dif-
ferent LSR weights. To propose an optimum trend equation for predicting the solidification
time of a convex lens based on the LSR weight, six different kinds of functions were used
in this study, as shown in the following Equations (7) to (12). The values of x and y denote
the LSR weight and the solidification time of a convex lens, respectively. It is worth noting
that it was found that the equation of y = −0.002x3 + 0.1329x2 − 1.0857x + 25.4 seemed to
be the optimum prediction equation for the solidification time of a convex lens (y) using
the LSR weight (x) since it had a highest correlation coefficient.
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Linear function:
y = 1.38x + 13.7, R2 = 0.9653 (7)

Quadratic function:

y = 0.0429x2 + 0.0943x + 21.2, R2 = 0.9979 (8)

Exponential function:

y = 18.073e0.0402x, R2 = 0.9891 (9)

Logarithmic function:

y = 15.969 ln(x) − 6.5913, R2 = 0.8353 (10)

Cubic function:

y = −0.002x3 + 0.1329x2 − 1.0857x + 25.4, R2 = 0.9997 (11)

Power function:
y = 9.7392x0.4756, R2 = 0.8959 (12)

To investigate the effectiveness of the CHC in the solidification time of a convex lens,
a vulcanizing hot-water temperature of 70 ◦C was used in the experiment. Figure 12
shows the solidification time of a convex lens for the LSR injection mold with a CHC and a
conventional heating channel. As can be seen, the surface temperature of a convex lens
using the CHC was about 3 ◦C higher than that of the conventional heating channel. This
result showed that the heat transfer performance of the CHC was better than that of the
traditional heating channel. It should be noted that two phenomena were found. One was
that the solidification times of a convex lens for the LSR injection mold with a CHC and a
conventional heating channel were 50 min and 69 min, respectively. The other was that
a saving of the solidification time of a convex lens of about 28% could be obtained when
using an LSR injection mold with a CHC. Figure 13 shows the vulcanization mechanism of
a convex lens fabricated by an LSR injection mold with a conventional heating channel and
a CHC. Note that the arrows indicate the curing direction of the LSR. It should be noted
that the curing sequence of a convex lens was from the exterior of the convex lens to the
interior of the convex lens when a CHC was used in the LSR injection mold. This means
that the vulcanization uniformity of a convex lens was better, and the solidification time
of a convex lens was shorter when a CHC was used in the LSR injection mold. However,
the curing sequence of a convex lens was from the bottom of the convex lens to the top of
the convex lens when a conventional heating channel was used in the LSR injection mold.
Thus, the LSR injection mold with a CHC had a tremendous impact on the productivity of
mass production compared to the LSR injection mold with a conventional heating channel.
Figure 14 shows the numerical simulation results of a convex lens fabricated by an LSR
injection mold with a CHC and a conventional heating channel. The results showed that
the numerical simulation results were in good agreement with the experimental results.

In this study, a sustainable LSR injection mold with both conformal heating and con-
formal cooling channels was demonstrated. This injection mold was a green mold [26]
and met sustainable development goals [27]. Therefore, the findings of this study are very
practical and provide the greatest application potential in the design stage of an LSR injec-
tion mold. Unfortunately, both the mechanical and physical properties of the LSR injection
mold fabricated with Al-filled epoxy resins were not better than those fabricated from a
conventional steel mold. Thus, enhancing both the mechanical and physical properties of
an LSR injection mold by adding some different kinds of reinforcing fillers, such as carbon
fibers [28], zirconia particles [29], silicon nitride particles [30], or molybdenum disulfide
particles [31] in Al-filled epoxy resin is also an important research topic. The optimization
of the mechanical and physical properties using the Taguchi method for an LSR injection
mold could also be investigated [32]. Additionally, the optimization of the curing phase of
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an LSR injection molding using the Moldex 3D simulation software is also an important
research issue [33–35]. These issues are currently being investigated and the results will be
presented in a later study.
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Figure 12. Solidification time of a convex lens for LSR injection mold with CHC and conventional
heating channel.
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4. Conclusions

An LSR possesses some distinct properties, such as chemical stability, high tempera-
ture resistance, flame resistance, corrosion resistance, and electrical insulation. However,
hitherto little has been reported on the use of a CHC and CCC simultaneously in an LSR
injection mold. In this study, an energy-saving LSR injection mold with conformal heating
and conformal cooling hybrid channels was implemented. The effects of both the vulcaniz-
ing hot-water temperature and the LSR volume on the solidification time of a convex lens
were investigated experimentally. The main conclusions from the experimental work in
this study are as follows:

1. The remarkable findings in this study were very practical and provide potential
applications in the LSR injection molding industry because an injection mold with
both a CHC and CCC for LSR injection molding was possible.

2. The equation of y = −0.006x3 + 1.2114x2 − 83.221x + 1998.2 with a correlation coeffi-
cient of 0.9883 was the optimum trend equation for predicting the solidification time
of a convex lens (y) using the vulcanizing hot-water temperature (x).

3. The equation of y = −0.002x3 + 0.1329x2 − 1.0857x + 25.4 with a correlation coefficient
of 0.9997 was the optimum prediction equation for the solidification time of a convex
lens (y) using the LSR weight (x).

4. A saving in the solidification time of a convex lens of about 28% could be obtained
when a vulcanizing hot-water temperature of 70 ◦C was employed in the LSR injection
mold with a CHC.
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