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Abstract

A few years ago, it was proposed to use the simultaneous quantification of unspliced and

spliced messenger RNA (mRNA) to add a temporal dimension to high-throughput snapshots

of single cell RNA sequencing data. This concept can yield additional insight into the tran-

scriptional dynamics of the biological systems under study. However, current methods for

inferring cell state velocities from such data (known as RNA velocities) are afflicted by sev-

eral theoretical and computational problems, hindering realistic and reliable velocity estima-

tion. We discuss these issues and propose new solutions for addressing some of the

current challenges in consistency of data processing, velocity inference and visualisation.

We translate our computational conclusion in two velocity analysis tools: one detailed

method κ-velo and one heuristic method eco-velo, each of which uses a different set of

assumptions about the data.

Author summary

Single cell transcriptomics has been used to study dynamical biological processes such as

cell differentiation or disease progression. An ideal study of these systems would track

individual cells in time but this is not directly feasible since cells are destroyed as part of

the sequencing protocol. Because of asynchronous progression of cells, single cell snap-

shot datasets often capture cells at different stages of progression. The challenge is to infer

both the overall direction of progression (pseudotime) as well as single cell specific varia-

tions in the progression. Computational methods development for inference of the overall

direction are well advanced but attempts to address the single cell level variations of the

dynamics are newer. Simultaneous measurement of abundances of new (unspliced) and

older (spliced) mRNA in the same single cell adds a temporal dimension to the data which

can be used to infer the time derivative of single cells progression through the dynamical
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process. State-of-the-art methods for inference of cell state velocities from RNA-seq data

(also known as RNA velocity) have multiple unaddressed issues. In this manuscript, we

discuss these issues and propose new solutions. In previous works, agreement of RNA

velocity estimations with pseudotime has been used as validation. We show that this in

itself is not proof that the method works reliably and the overall direction of progression

has to be distinguished from individual cells’ behaviour. We propose two new methods

(one detailed and one cost efficient heuristic) for estimation and visualisation of RNA

velocities and show that our methods faithfully capture the single-cell variances and over-

all trend on simulation. We further apply the methods to different datasets and show how

the method can help us gain biological insight from real data.

This is a PLOS Computational Biology Methods paper.

Introduction

Single cell transcriptomics has facilitated the study of asynchronous cellular processes such as

cell differentiation in the high-dimensional gene expression space. Development of computa-

tional methods for extracting temporal information from snapshots of the system has attracted

much attention in recent years. The output of these methods is typically a pseudo-temporal

ordering of cells, representing their progression along the (deterministic) path of directed dif-

ferentiation. However, this ordering does not reflect the intrinsic stochastic characteristics of

the process and leaves several biologically interesting questions unanswered. Can cells go back

along de-differentiation paths? If yes, how far and how likely is that? How strong is the sto-

chastic component of the dynamics compared to the deterministic directed part? Answering

these questions would allow quantification of cell fate plasticity in different transcriptional

regions.

RNA velocity, proposed by [1] (and the corresponding package called velocyto), was a

breakthrough towards obtaining a more complete description of the dynamics of cell differen-

tiation. Simultaneous measurement of abundances of nascent unspliced and mature spliced

mRNA in single cells adds a temporal dimension to the collected data which can be used to

infer the temporal motion of cells in transcriptomic space. A later method, scVelo [2], further

advanced the concept by solving the transcriptional dynamics of splicing kinetics and velocity

inference. Other extensions included additional temporal layers of gene regulation such as

protein levels [3] or chromatin accessibility [4] to the unspliced and spliced mRNA levels to

extract further information on cell state dynamics. Recently, there have also been advance-

ments in using cell state velocities to study the degree of cell plasticity [5]. For all these meth-

ods, it is important to first ensure robust and reliable estimation of single cell velocities.

Ideally, the estimated velocities should capture both the overall course in the population as

well as the single-cell specific (stochastic) part of the dynamics. However, reliable inference of

cell state velocities is still impeded by multiple computational issues. Some weaknesses in cur-

rent velocity visualisation approaches, as well as challenges in inclusion of genes with multiple

dynamics, have been pointed out in [1, 2, 6, 7]. Another issue on scale invariance of gene-wise

velocity components was described in more detail in [8]. Current methods either do not

address this scale invariance issue or address it incompletely using unrealistic assumptions.
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Moreover, there are several inconsistencies in the current methods’ processing pipeline and

the stochastic part of the dynamics is lost through multiple layers of data imputation and

smoothing. In parallel to this study, [9] and [10] point out some of the limitations and prob-

lems of current velocity visualisation methods. [9] also suggests that, due to the highly stochas-

tic nature of gene expression process, currently used (deterministic) approaches are

insufficient and propose development of probabilistic alternatives. More recently, a variational

inference method for RNA velocity estimation has also become available [11].

In this manuscript, we argue that when dealing with highly stochastic processes, determin-

istic approaches are only useful when talking about average velocities over specific time inter-

vals, instead of talking about spontaneous velocities which are immeasurable in real life. We

propose two different approaches for estimation and visualisation of RNA velocities. In κ-velo,

we first design a processing workflow specifically adapted to downstream velocity calculations,

thereby addressing problems in previously used workflows. We then solve for the gene-wise

reaction rate parameters and propose an approach to relate velocity components across genes,

hence resolving the scale invariance issue. We also present a new visualisation method that

more faithfully represents the stochastic part of the velocities. In addition, we propose eco-

velo, a heuristic method that bypasses several cumbersome, computationally costly and sto-

chasticity killing steps used by other available methods.

A table of contents is provided in S1 Table of contents.

Methods

Dynamical inference

Building high-dimensional cell state velocities as vector sums of their gene-wise components

(as is the current practice) requires careful handling of two major issues: ambiguity of the time

scales and the relative scaling between different velocity components. In this section, we dis-

cuss current problems in state-of-the-art velocity estimation approaches and introduce our

novel κ-velo and eco-velo approaches.

The time scale over which average cell state velocities are reported. In the physical

world, we can only measure average velocities in a given time interval Δt. As Δt! 0 measured

velocities get closer to instantaneous velocities, which are impossible to measure directly.

When adding multiple velocity components one would ideally need to measure all gene-wise

displacement components ~Dxg in the same interval Δt. Mathematically:

~V ¼
PG

g¼1
~Dxg

Dt
ð1Þ

where ~V is the G-dimensional velocity vector and Δt is the same for all genes. However, in the

RNA velocity framework (even without scale invariance problem discussed in the next subsec-

tion) we use:

~V ¼
XG

g¼1

~vg ; ~vg ¼
~Dxg

Dtg
ð2Þ

the result of which is different from Eq 1 for non-smooth expression dynamics. Using a differ-

ent Δtg for each gene g, raises an immediate question: which time interval does the average cell

state velocity ~V calculated from Eq (2) correspond to? Obscurity in the physical meaning of

velocities calculated as such is more pronounced when including genes with noisy expression

dynamics, e.g. bursting genes where velocities will change depending on the time scale (S1
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Fig). For such genes, it would be interesting to experimentally measure velocities at multiple

time scales. This could help us better understand the extent of cell fate plasticity. One would

expect to see more variance in the direction of individual cells velocities reported in small time

scales, whereas velocities over sufficiently large time scales would better align with the pseudo-

temporal direction of differentiation.

Scale invariance of gene-wise velocity components. According to the RNA velocity for-

malism:

dug

dt
¼ ag � bgug

dsg

dt
¼ bgug � ggsg ¼ vg

ð3Þ

where ug and sg represents the number of unspliced and spliced counts for gene g. αg, βg, γg rep-

resent transcription rate, splicing rate and mature mRNA degradation rate respectively. vg rep-

resent the instantaneous velocity component of gene g.

Eq 3 provides a deterministic (smooth) explanation of gene transcription and splicing

events, in which the kinetic rate parameters are assumed to be constant (equal to their mean

value over a relatively large time interval). In absence of temporal measurements (i.e., when

working with snapshot u-s counts data) the actual time scales for which the assumption of con-

stant kinetic rates for each gene would be valid are not known. In essence, one has to work

with a time-independent relation between u and s counts, which we know as the u-s phase por-

trait of the data. This implies that scaling dt (or equivalently t) by κ does not change the u-s

phase portrait of a gene. This scaling factor at the left hand side denominators of Eq 3 can be

absorbed to the right hand side (RHS) of the equation, suggesting that if (αg, βg, γg) is a solu-

tion, (καg, κβg, κγg) is also a solution for any κ. This complicates deduction of the relative scal-

ing of different genes, as was also shown in previous studies [8]. To get a valid high-

dimensional velocity vector ~V , one needs to know the real scaling factor κg for each gene:

~V ¼
XG

g¼1

~vg ¼
XG

g¼1

kg

dsg

dt
êg ð4Þ

where êg represents the unit vector for gene g.

To overcome the scale invariance, velocyto assumes κβ = 1 (i.e. same splicing rate) for all

genes. scVelo assumes that the time of the observed kinetics (i.e. turning on, reaching station-

ary state and turning off) on the u-s phase portrait is equal for all genes (using a default con-

stant of 20 hours). They then fit a latent time between 0 and this constant to the cells on the

phase portrait of each gene, and scale the other kinetic parameters accordingly.

Having a global (i.e., gene independent for each cell) latent time would put the time scales

of different genes’ u-s phase portraits in perspective and resolve the scale invariance issue.

However, we note that optimisation of cells’ global latent time is not part of the expectation

maximisation procedure in scVelo. Rather, after fitting the gene-specific parameters (including

the latent times of the cells), scVelo uses a multi-step ad-hoc voting method among the fitted

latent times from multiple high-likelihood genes to calculate a global latent time for the cells.

This approach does not realistically address the relative scale of different genes and the full

cycle time for all genes remain equal by assumption.

Instead, we suggest that a proxy for typical travel times between cell states could be used as

global latent time. For example, one could use pseudotime or the cell density scaled version of

it called universal time [12] as proxy for actual transition time between cell states. Here, the
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accuracy of pseudotime recovery for multiple branches of typical differentiation processes

would be crucial for estimation of the velocity parameters.

In κ-velo, we circumvent prior recovery of global latent times and use an equivalent per-

gene approach. Here, we use the number of cells between two cell states as a proxy for the typi-

cal travel time between them on the gene specific u-s phase portraits. This approach assumes

that the probability of capturing cells in a given expression state is proportional to the time

cells spend in that state. In eco-velo we take a different approach, which does not decompose

the gene-wise velocity components in the first place but, similarly to velocyto, relies on

strongly simplifying assumptions on the kinetic rate parameters.

First approach: κ-velo. Our first approach recovers the full dynamics of splicing kinetics

and addresses the scale invariance problem by using a proxy of travel time between cell states.

In this subsection, we drop the gene-wise indices g as we address the scaling factor κ for one

gene at a time.

Consider one gene with true parameters of reaction rate θtrue = (κα, κβ, κγ). In a first step,

we recover an arbitrary solution of the reaction rate parameters with β = 1, i.e θ = (α, 1, γ), and

in a second step we recover the κ which scales this solution to its actual magnitude relative to

the other genes. Below we elaborate on each of the two steps.

The analytical solutions to Eq 3 are given by: [2]

uðtÞ ¼ u0 expðbðt � t0ÞÞ þ að1 � expð� bðt � t0ÞÞÞ

sðtÞ ¼ s0 expð� gðt � t0ÞÞ þ
a

g
ð1 � expð� gðt � t0ÞÞÞ

þ
a � bu0

g � b
ð expð� gðt � t0ÞÞ � expð� bðt � t0ÞÞÞ

ð5Þ

where t 2 (t1, . . ., tn) is the gene specific latent time assigned to each cell and u0 = u(t0), s0 = s
(t0) are the initial conditions. Transcriptional regulation is inscribed in α, which is set to 0 at

downregulation. Cells can then either be in up- or downregulation, as encoded in the parame-

ter ki, with k = 1 at upregulation and k = 0 at downregulation. We set (u0, s0) = (0, 0) in the

upregulation phase (k = 1) and (u0, s0) = (u(tswitch), s(tswitch)) in the downregulation phase

(k = 0).

We note that if t was given as a global (gene independent) latent time assigned to each cell,

the scale invariance problem would already be resolved. However, in practice we do not have t.
From the solution u(t), we get expð� bðt � t0ÞÞ ¼

buðtÞ� a
bu0 � a

. Therefore,

expð� gðt � t0ÞÞ ¼ ðexpð� bðt � t0ÞÞÞ
g=b
¼

buðtÞ� a
bu0 � a

� �g=b
. Substituting this Eq in s(t), we get the

time-independent relation between unspliced and spliced counts. For β = 1 specifically, we get:

sðuÞ ¼ s0 �
a

g
þ
a � u0

g � 1

� �
u � a
u0 � a

� �g

þ
u � a
g � 1

þ
a

g
ð6Þ

This is the form of a function s(u) which we can directly fit to the data points in a u-s phase

portrait.

In practice, there is one more amendment needed for parameter fitting. As current proce-

dures for assignment of the sequence reads to either unspliced or spliced mRNA are biased

towards spliced assignments and heavily underestimate the unspliced counts, a function of the

form Eq 6 cannot approximate the data unless we upscale the measured u counts by a (gene-
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specific) factor mg (see Note A in S1 Appendix). Thus instead of Eq 3 we now have:

mg

dug

dt
¼ ag � mgbgug

dsg

dt
¼ mgbgug � ggsg ¼ vg

ð7Þ

We note that, through necessity from current data qualities, scVelo also scales u, but scales u to

have the same variance as s [2]. In fact scaling in this way is equivalent to setting κγ/κβ� 1

(see Note A in S1 Appendix). We also note that upscaling u by mg is different from separate

normalisation as here the counts of that gene are multiplied by the same constant for all cells,

whereas a separate normalisation will affect cells differently for the same gene. With mg, Eq 6

becomes:

sðuÞ ¼ s0 �
a

g
þ
a � mu0

g � 1

� �
mu � a
mu0 � a

� �g

þ
mu � a
g � 1

þ
a

g
ð8Þ

which we use for fitting to the u-s data and inference of the parameters (α, γ, uswitch, m) (see

Note B in S1 Appendix for the details of our expectation maximisation (EM) procedure).

Once the EM is done, we recover the time scale κ for each gene. Let Δtij be a measure of

time that can be used to relate time between two states i, j across genes, with i before j in time.

Consider one gene with true parameters of reaction rate θ = (κα, κβ, κγ) and recovered param-

eters θ = (α, β, γ) and ui, uj the measured unspliced counts for cells i, j. Note that for that gene,

i, j need to be in the same state of transcriptional induction or repression because the speed of

genes is only measurable during transcriptional change, i.e. outside of steady-state. If the cells

spend time in steady state, the change in transcriptional state will not be proportional to the

distance in time, which is why we only consider cells in the same state.

Considering the time scale κ in the solution for u(t) in Eq 5, yields for two measurements

from cell i and j:

muj ¼ mui expð� bkDtijÞ þ
a

b
ð1 � expð� bkDtijÞÞ ð9Þ

Solving for κΔtij we get:

kDtij ¼
1

b
log

mui � a=b

muj � a=b
ð10Þ

with β = 1, and m and α inferred from EM. As a proxy for the true Δtijs (which we do not have)

we use the number of cells that occur between the cells i and j calling it d(i, j). The rational

being that, in snapshot data, the probability of capturing cells in a specific region of the expres-

sion space is proportional to the time cells typically spend in that region. This assumption

serves as a valid approximation for most single-cell datasets, but is undermined in presence of

non-uniform cell proliferation and death rates as well as biased sampling of cell types (e.g.

enrichment for specific cell types).

Let us call the RHS of Eq 10, f(i, j). For cell pairs that are in the same transcriptional phase

(i.e., the upregulation or the downregulation phase), f(i, j) has a linear relation to d(i, j), with

the slope given by κ. However if either (or both) cells are in steady-state, f will be smaller than

expected from Eq 10. Thus, plotting f(i, j) versus d(i, j) for random pairs of i, j, produces a par-

allelogram of which the left slope equals κ. To recover κ, we fit a parallelogram to the data

points with minimum area, while maximising the number of points in the parallelogram (Note

C in S1 Appendix and S2 Fig).
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Here, we inferred κ from the unspliced counts data. One could similarly use the spliced

counts data and infer κ from the s(t) solution in Eq 5, which yields κ estimations congruent

with those inferred from the unspliced data (see Note D in S1 Appendix and S3 Fig). However,

as u(t) depends only on α, β while s(t) depends on α, β, γ, i.e. on one more imputed parameter,

we consider recovery of κ values from u(t) as more straightforward and less error-prone.

After determination of the gene-wise κ, we are ready to call the high-dimensional, correctly

scaled parameters Θ = (A, B, Γ), with Ag = κgαg, Bg = κgβg and Γg = κgγg. We call the high-

dimensional unspliced counts scaling parameters mg, M. For calculating the high-dimensional

velocity for cell i, we thus use ~V i ¼ BMUi � GSi, where Ui and Si respectively represent the G-

dimensional u-s counts in cell i (G being the number of genes).

Second approach: Eco-velo. Our second approach eco-velo estimates cell state velocities

directly in the high-dimensional gene space by calculating the displacement for each cell in a

fixed time interval. This approach eliminates the need for cumbersome and error-prone gene-

wise parameter estimations. It also specifies the time interval over which high-dimensional

velocities are reported, a feature that the gene-wise parameter estimation approaches (includ-

ing κ-velo) are missing. Specification of the velocity estimation time interval can be important

for data sets that include multiple non-smooth-dynamics genes where short-term cell veloci-

ties can deviate significantly from their long-term velocity directions.

Starting from Eq 3, for the change of the spliced counts of gene g over Δt we can write:

vg ¼ bgugðtÞ � ggsgðtÞ )

sgðt þ DtÞ ¼ sgðtÞ þ vgDt

¼ sgðtÞð1 � ggDtÞ þ bgugðtÞDt

ð11Þ

By fixing Δtg = 1/γg (this is the time in which existing spliced reads for gene g will be

degraded) we get:

sgðt þ DtgÞ ¼ bgugðtÞDtg ¼
bg

gg
ugðtÞ ð12Þ

This means that knowing βg/γg is sufficient to estimate the cell state displacements over Δtg.
If we further assume all genes have a similar β and γ, we can conclude that the unspliced counts

u(t) in a cell are proportional (with a constant factor β/γ) to its spliced counts at the later time

point (t + 1/γ).

The assumption of similar γ as well as β across genes, allows us to avoid decomposition of

high-dimensional velocities into gene-wise components for velocity estimation and recombin-

ing the estimated components again. Thus, leading to another level of simplification that turns

out very handy as a heuristic velocity estimation from u and s counts, where we can find cell

state displacements by mapping U to S. We do so by searching for the nearest neighbors

(NNs) of U in S that are also within the first k nearest neighbors of S in U. We call these pairs

mutual nearest neighbors (MNNs). Note that not every point needs to have MNNs. The veloc-

ity arrow then goes from a cell’s position in S space to the the mean of the first k MNNs of that

same cell’s U space in S. Here, u and s counts can be used directly for estimating cell state

velocity directions without any need for smoothing and parameter fitting.

The strong assumptions of eco-velo (similar γ and β across genes) may not hold for every

biological processes and every subset of genes. Thus here, one would ideally select a set of

genes that are only transcriptionally regulated (via α), but not post-transcriptionally regulated

(involving gene-specific β and γ rates). An example of such a cases seems to occur in Fig 1E of

the original RNA velocity paper [1], where the authors observed for bulk RNA-seq
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measurements of cell cycle genes in the mouse liver over a time course of the circadian cycle,

that unspliced mRNAs appear predictive of spliced mRNA at the next time point with a similar

signal intensity coefficient. Conditioned on its assumptions, eco-velo (in contrast to the meth-

ods based on gene-wise parameter estimation) specifies the time interval of the reported veloc-

ities and also skips several error-prone parameter estimation and data smoothing steps. How

much the different assumptions of each method are satisfied for different experimental set-

tings, data qualities, as well as the purposes of velocity analysis (e.g. estimating the overall

velocity directions or obtaining the average cell state velocities over a specific time scale)

would determine which method is more appropriate to use.

Visualisation

La Manno et al. [1] suggested using projection of the end of the velocity vectors (~s þ~vDt) with

Δt = 1 on an embedding of the spliced counts. While projection using principal component

analysis (PCA) (Note E in S1 Appendix) is the most accurate low-dimensional representation

of cell state velocities, it usually does not capture the full complexity of differentiation mani-

folds with several subpopulations in high-dimensional gene space. Projection of the velocities

onto non-parametric nonlinear embeddings (which do not have gene-defined axes) is more

challenging. To work around this difficulty, velocyto projects the velocities in a direction rela-

tive to the neighbouring cells. This is done by computing a transition probability matrix P con-

taining probabilities of cell-to-cell transitions in accordance with the velocity vector:

Pij ¼ exp corrðrð� !sj � si Þ;rð~viÞÞ

s2

� �
with σ the kernel width parameter, rðxÞ ¼ sgnðxÞ

ffiffiffiffiffi
jxj

p
a variance-

stabilising transformation and corr() the Pearson correlation coefficient. The matrix is row-

normalised so that ∑j Pij = 1. Given n observations and Yi the positions of cell i on a K-dimen-

sional embedding, the projected end of velocity vector for cell i is calculated as ~Yi þ
~DYi ,

where:

~DYi ¼
X

j

Pij �
1

n

� � � !Yj � Yi

kYj � Yik
ð13Þ

To project the velocities, scVelo uses a similar approach to velocyto but with a slightly different

P matrix that calculates Pearson correlations (also called cosine similarity) directly on the ~Dsij

and ~vi vectors without using the ρ(x) transformation, via Pij ¼ exp cosffð� !sj � si ;~viÞ

s2

� �
. A vector sum-

mation as proposed in Eq 13 used in velocyto and scVelo is questionable for three reasons.

First, this approach is not faithful to the velocity vectors length, e.g., two velocity vectors with

the same direction, but different length (in the same neighbourhood) in the high-dimensional

space will be visualised with similar lengths. That is because they will be assigned the same Pij

as Pearson correlation does not respect the length of the vectors. Second,
� !
Yj � Yi
kYj � Yik

does not in

general provide an orthonormal basis as the direction of several neighbouring cells to cell i can

be correlated on the low dimensional embedding. As a result, this approach may change the

direction of the velocity vectors depending on how much the orthonormality principle is dis-

turbed for a given neighbourhood. For example, if the chosen neighbourhood extends longer

along the differentiation path than its width, velocities will be visualised as more smooth vec-

tors along the path. Third, Pij �
1

n

� �
can be negative even if the velocity direction ~vi is corre-

lated with the direction of a neighbouring cell j, which is not correct.
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Nyström projection (velocity visualisation for κ-velo). To deal with visualisation of

complex data manifolds which require nonlinear embeddings, in κ-velo we propose using the

Nyström projection which is more faithful to the actual high-dimensional estimated cell state

velocities than the current practices. We use a nonlinear visualisation of the (normalised)

spliced counts of the single cells as the start of the velocity vectors and project the end points of

the velocity vectors onto this existing embedding using the Nyström method. Nyström projec-

tion has also been used for other single cell data integration applications e.g. in [13, 14]. The

nonlinear embedding choice is arbitrary and can be diffusion maps [15], t-distributed stochas-

tic neighbor embedding (t-SNE) [16] and uniform manifold approximation and projection

(UMAP) [17].

If a K dimensional embedding Ytrain has been created for ntrain data points Xtrain and we

want to project a set of ntest points Xtest on the existing map, we first compute a transition prob-

ability matrix between the new and old data points, P0 of size [ntest, ntrain] calculated as:

ZðiÞ ¼
Xntrain

j¼1

exp �
kxi � xjk

2

2s2
i

 !

; xi; xj 2 Xtrain

P0ði; jÞ ¼
1

ZðiÞ
exp �

kxi � xjk
2

2s2
i

 !

; xi 2 Xtrain; xj 2 Xtest

ð14Þ

Note that when the test data is exactly the same as the training set Xtrain = Xtest, P0 would

(ideally) be the same transition matrix as the one used for generation of the train set embed-

ding (ideally one would use the same parameters σi as used in construction of the transition

matrix for generating the train set embedding. See Note F in S1 Appendix for the spacial case

of projection on Diffusion maps). The projection of new points Ytest is then given by:

Ytest ¼ P0
½ntest�ntrain�

� Ytrain ð15Þ

In our application, ntrain equals ntest as each velocity vector has a start as well as an end point.

For cell i Eq 15 implies:

Ytestði; kÞ ¼
X

j

P0ði; jÞ � Ytrainðj; kÞ

i 2 f1; ::; ntestg; j 2 f1; ::; ntraing; k 2 f1; ::;Kg
ð16Þ

This looks to some extent similar in form to the previously used velocity projection methods

in Eq 13. However, one major difference being that we are calculating the end of the velocity

arrow on the embedding space rather than the displacements, hence avoiding the collapse of

velocity vectors with different lengths onto the same visualised length. Another advantage is

that here Ytrain(j, k) more likely presents an orthonormal basis considering all data points,

hence less affected by the shape of neighbourhoods arbitrarily chosen independent from the

generation of the reference embedding. For some embedding methods (generally those which

perform an analytical embedding optimisation, in contrast to the methods using iterative opti-

misation techniques such as gradient descent) like diffusion maps, the embedding Ytrain(j, k) is

indeed guaranteed to be orthonormal (i.e.,
P

jY
2
trainðj; kÞ ¼ 1 and ∑j Ytrain(j, kl)

� Ytrain(j, km) =

0 for kl 6¼ km). Lastly, all terms in P0 are positive, making the projected point a weighted average

of the data points in the train set.

Note that the Nyström theorem is only valid for projection of test data points which are

close enough to the data points existing in the training set. That is, extrapolation for test data

to expression regions which have not been sampled in the training set is not possible. In κ-
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velo, we ensure closeness of the end point of the velocity vector to the existing data manifold of

spliced counts by adequately down scaling all inferred high-dimensional velocities by the same

factor.

In light of the above, linear projection, e.g. by PCA (Note E in S1 Appendix) although not

capable to capture the complexity of several datasets which consist of multiple branching

events and subpopulations, remains the only approach in which the visualised arrows are a

true representation of the high-dimensional velocity vectors. None of the non-parametric non-

linear projection approaches can deal with projection of out of distribution data points, imply-

ing that near the boundaries of the differentiation paths, where actual velocities may point to

directions going out of the existing manifold of the start point of velocity vectors, velocity visu-

alisations will be less reliable. Moreover, embedding methods which may not keep the continu-

ity of the data manifold (e.g. t-SNE and UMAP) are more prone to the artefacts of out of

distribution data points projection.

Even though our non-linear projection method does not explicitly depend on the dimen-

sion of the train and test data sets, we recommend to use the same gene space for projecting

the velocities (i.e., for computing of P0
½ntest�ntrain �

) as the gene space that was used for generating

the trained embedding, i.e., we use the spliced counts matrix of the filtered gene set S as the

training data in κ-velo. This ensures that the embedding only represents a space that can be

spanned by following the velocity directions, thus making a closed set of the embedding under

addition by velocity vectors. Therefore, we calculate the embedding on the same space used for

parameter recovery and velocities’ estimation. This also means that if we use imputed counts

for parameter recovery, we calculate the low-dimensional embedding on those imputed

counts.

Visualisation for eco-velo. For eco-velo, visualisation of velocities is integrated within the

inference of the velocities and hence does not require visualisation by projection. We identify

the first k mutual nearest neighbours (MNNs) [18] of U and S for every cell, which we use to

visualise the velocities on a low-dimensional embedding of the spliced counts. We simply

draw an arrow starting from the position of a cell on the embedding to the mean of the coordi-

nates of its first k MNNs on the same embedding. That means that our velocity arrows point

from si to
Pk

j sj=k, where these sj are the first k MNNs of ui for cell i. These arrows correspond-

ing to a relatively large Δt in which all current spliced counts in the cell would be degraded.

For ease of visualisation and obtaining an un-cramped map without intersecting cell velocities,

we then scale all velocities by the same factor so that the arrows only point in the direction of

the point and not all the way to the future state.

Processing

Before calculating the velocities, single-cell RNAseq datasets are preprocessed (aligning the

reads and counting numbers of unspliced and spliced reads) and subsequently processed (fil-

tering, normalisation, etc.). Both the κ-velo and the eco-velo workflows start with processing

raw U and S count matrices. Since the methods are based on different assumptions, the pro-

cessing steps differ per method. Below, we will describe the processing protocol for both

approaches.

Processing pipeline of κ-velo. To reduce the number of dimensions of the dataset, we

select only genes with high variability. Variability is calculated on the spliced counts using ana-

lytic Pearson residuals [19]. We then filter genes with extremely low u or s counts because we

want to focus only on genes with significant velocity signal. After gene filtering, the counts in

each cell are size-normalised. Since the size of a cell is represented by its u and s counts

together, the counts in each cell are normalised using the sum of the counts for u and s. To

PLOS COMPUTATIONAL BIOLOGY Cell state velocities

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010031 September 28, 2022 10 / 27

https://doi.org/10.1371/journal.pcbi.1010031


recover the dynamics, the noise in the u and s counts has to be reduced. As such, all counts are

imputed by averaging the counts of each cell’s nearest neighbours. The nearest neighbours for

each cell are found in PCA space calculated on scaled s counts. For a more detailed description

of each step see Note G in S1 Appendix and S4 Fig.

Processing pipeline of eco-velo. Similar to κ-velo processing, the eco-velo workflow

starts by filtering the dataset for genes with high variability and sufficient u and s counts. After

this, all non-zero counts are log-transformed and both count matrices are normalised sepa-

rately. Here, we deviate from the κ-velo protocol, because u and s counts are treated as separate

modalities. Following standard MNN protocols [18], the counts are L2 normalised.

Overview of the workflow for κ-velo and eco-velo

Both the κ-velo and the eco-velo workflows consist of three main steps: processing, velocity

calculation and visualisation (Fig 1). First the data is processed as described in Section

Fig 1. An overview of RNA velocity analysis steps in the κ-velo and eco-velo workflow.

https://doi.org/10.1371/journal.pcbi.1010031.g001
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“Processing”. In κ-velo, after processing, we recover the scaled parameters ακ, βκ and γκ for

all genes in the dataset. For downstream velocity analysis, only genes with a likelihood above a

certain threshold are used. All other genes are filtered out to reduce the technical noise caused

by poorly recovered or noisy genes. Additionally, the user is provided with an option to

remove genes where the order of clusters in the recovered dynamics do not match the known

hierarchy of the cell types (e.g. when an assigned upregulation starts at the the most differenti-

ated cells and ends in the progenitor population). Using the scaled parameters, a high-dimen-

sional velocity vector is calculated for each cell. To visualise the cells and velocities, we

compute an embedding (e.g. PCA, UMAP) using the processed (i.e. filtered, normalised and

imputed) and scaled s counts. Lastly, the velocities are projected onto the embedding.

The eco-velo workflow includes fewer steps. After processing, the u counts are used to find

the first five mutual nearest neighbours of each cell in S space. The embedding is calculated

using processed (i.e. filtered and normalised) s counts and velocities are projected onto the

embedding by averaging the position of the cell’s first five mutual nearest neighbours.

Simulation data

For the simulation, we randomly sampled g log-normally distributed parameters of reaction

rates, scaled by a scaling factor κ: θ = (κα, κβ, κγ). The true time of the n observations is sam-

pled from a uniform distribution. The time points are such that the final mature steady cell

state, for which all genes would reach steady-state, has not been sampled. The u and s counts

are simulated following u(t), s(t) with added random normal noise (Note H in S1 Appendix).

We simulate the data such that the time of activation of each gene’s transcription is inversely

proportional to the gene’s speed. This means that the fastest genes are only active towards the

end of the differentiation trajectory. The resulting differentiation trajectory has high velocity

variation at the beginning when most genes are not yet committed to change and more deter-

ministic dynamics with higher speed at the end of the trajectory. The motivation for this simu-

lation scenario is to include regions with both high- and low variance velocities and to have

velocities for some cells pointing to future states outside of the space observed in the original

set. See Note H in S1 Appendix for a more detailed description.

Real data

We demonstrate the performance of κ-velo and eco-velo on four different datasets and com-

pare them with the state-of-the-art scVelo. The first dataset is a subset of the pancreatic endo-

crinogenesis dataset [20]. The second is a subset of the murine gastrulation dataset [21]. Both

datasets were obtained using the 10x genomics platform. The third dataset consists of mouse

Schwann cell precursors (SCPs) differentiating into chromaffin cells, obtained using SMART-

seq2 [22]. For these three datasets, our RNA velocity analysis starts from the U and S count

matrices, which were originally analysed in [2] (pancreatic endocrinogenesis), [6] (murine gas-

trulation) and [1] (chromaffin cells). Lastly, we also analyse a dataset of murine hematopoiesis

[23], obtained using the 10x genomics platform. We used velocyto’s sequence alignment and

u-s counting pipeline to get the U and S count matrices, as this dataset has not been analysed

for RNA velocity before. For all four datasets, we ran the complete κ-velo and eco-velo work-

flow as described in Section “Overview of the workflow for κ-velo and eco-velo”. See Note I in

S1 Appendix for further details of parameter and threshold settings for each dataset.

Results

In this section, we first demonstrate the artefacts of scVelo’s velocity projection on simulation

data with known cell state velocities (i.e. no velocity inference step involved) and compare
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scVelo to visualisation with linear and nonlinear projection methods. We then compare our

velocities with the velocities returned by scVelo on simulation. Afterwards, we show computa-

tional experiments on real data which support the design of the processing steps we propose

and use in this manuscript. In the last section we apply κ-velo and eco-velo on real datasets:

first a pancreas endocrinogenesis dataset and then a hematopoiesis dataset. To validate the

method on different sequencing technologies, we also applied it to a dataset of Schwann cell

precursors (SCPs) differentiating into chromaffin cells (κ-velo: S5A and S5B Fig and eco-velo:

S5C Fig).

PCA and Nyström projection faithfully represent the high-dimensional

velocity vectors

Ideally, a visualisation of cell state velocities should faithfully represent all aspects of the high-

dimensional vector. The visualisation should respect the direction of velocity vectors as well as

their magnitude (speed of change). This can be particularly difficult if the new states are in

gene space not yet observed in the original set, e.g. the velocities point further than existing

points. The embedding should also preserve local variations, representing fluctuations of the

dynamics and cell plasticities. To assess these points, we compare existing RNA velocity visuali-

sation methods with ours, on simulated data where the true high-dimensional velocities are

known and do not need to be inferred. We design a simulation to assess all these aspects of the

projection. In that simulation the cells follow a hidden true time with a high variance at the

beginning and faster transitions towards the end of the trajectory (Section “Simulation data”).

The final stable cell state is not yet reached in our simulation, and the velocities of the latest

cells point towards not yet observed future states. Projection of the velocities on a PCA embed-

ding (Fig 2A) reliably represents all these aspects. scVelo’s velocity projection on the same PCA

embedding (Fig 2B) smooths over the biologically interesting variation and removes the infor-

mation on speed of change (i.e, disproportionately changes the length of the velocity vectors).

The Nyström projection method (Fig 2C) captures the expected cell to cell variation, as well as

the direction and length of the simulated velocities on PCA (Fig 2D). The velocities are also

well represented when projected on a non-linear embedding such as t-SNE (Fig 2E and S6A

and S6B Fig, UMAP shown in S6C and S6D Fig). t-SNE tends to map regions of higher density,

e.g. of slower velocities, in gene space to a larger space in the embedding as highlighted by the

cells outlined in blue and red. Consequently, the velocity arrows are also visualised in a scale

proportional to the distance of cells in a given region on the embedding, hence looking longer

than their true length in gene space. On embeddings that do not distort cell to cell distances in

the gene space such as PCA or diffusion maps with a constant kernel width, the length of the

velocity arrows are well represented by Nyström projection (S7 Fig diffusion map and Fig 2D

PCA). We note that, unlike PCA projection, neither scVelo’s nor Nyström projection are able

to project end of velocity arrows that are out of distribution of existing data points.

κ-velo recovers simulated velocities

To ensure that the high-dimensional velocity vector points in the right direction we need to

address the scale invariance of gene-wise velocity components (as discussed in Section

“Dynamical inference”, Fig 3A). We introduce κ-velo, a method that recovers the full tran-

scriptional dynamics from s as a function of u and thus does not need to fit a hidden latent

time to the cells. The method then uses the cell densities as a proxy of time spent in a specific

region of the expression space (Fig 3B) to relate velocities across genes and solve the scale

invariance issue. To validate our method we simulate reaction kinetics following randomly

sampled parameters scaled by a factor κ varied between 1 and 15. The method recovers the
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scaling factors (Fig 3C). In fact, using cell densities to infer the scaling factors is equivalent to

using true time for a given differentiation branch (S8 Fig). Note that the recovery becomes

more difficult for higher κ. Very fast genes have few or no cells in transient state so in those

cases we would need to sample more cells to reliably recover κ. We note that the scale of recov-

ered κ and true κ is still off by a constant factor related to the chosen Δt, but if all components

are scaled by the same factor, the direction of the high dimensional vector is still correct. After

scaling, the high dimensional κ-velo velocity vector is much closer to truth (Fig 3D and S9

Fig), than scVelo’s velocity vector. In fact, the errors in the scVelo vectors are proportional to

the relative scale of the genes (Fig 3D). Because the high-dimensional vector is not directly

conceivable to the human mind, low-dimensional representations of the velocities are usually

used for interpretation of the result. We also compare the vectors after projection on a PCA

embedding (S10 Fig) and find that they are also much closer to truth, both for direction and

length (Fig 3E and S11 Fig). Here, for both κ-velo and scVelo, we find the biggest errors in

regions of lowest and highest velocities, but scVelo’s errors are much higher than κ-velo’s.

Careful processing prevents introduction of artefacts

To illustrate the importance of processing, we apply our processing pipeline to a dataset of ery-

throid development during murine gastrulation. Previously, it has been shown that scVelo

Fig 2. Visualisation of simulated velocities with linear and nonlinear projection methods. A. Velocities projected on PCA embedding. The blue

outline highlights a region of high velocity variation and the red outline shows a low-variance, high-velocity region. The arrows in the PCA linear

projection capture both the plasticity in direction and magnitude of the velocities. B. Velocities projected on PCA embedding by scVelo. scVelo

smoothes the velocities as artefact of the projection method, thereby losing the information on cell state velocities variation as illustrated in the cells

outlined in blue. scVelo also loses the information of vector length as shown in the cells outlined in red. C. Summary of velocity projection using the

Nyström method D-E. Velocities projected by Nyström-projection method shown on PCA in (D) and t-SNE in (E).

https://doi.org/10.1371/journal.pcbi.1010031.g002
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falsely predicts de-differentiation at the end of erythroid development. This has been attrib-

uted to the contribution of genes with multiple rate kinetics (MURK genes) to the velocity cal-

culation [6]. In our processing pipeline, we not only filter for low variability genes, but also

remove genes with insufficient u and s counts. After normalisation, the counts are imputed by

averaging spliced or unspliced counts across neighbouring cells, thereby smoothing the data.

This usually produces unreliable results for genes with only few u or s counts (S9 Fig). After fil-

tering, in scVelo’s processing pipeline, the count matrices are normalised separately. This sepa-

rate normalisation introduces artefacts in the u-s phase portrait (S13A and S13B Fig), which

can be traced back to variation in the ratio between total unspliced and total spliced counts

between cell types. We found that some of the patterns identifying MURK genes were artefacts

of this normalisation (S13A and S13B Fig). Furthermore, many MURK genes in the original

publication were imputed from very low counts and are filtered out in our pipeline.

Fig 3. Scaling of gene-wise velocity components. A. If the gene-wise velocities are incorrectly scaled the high-dimensional velocity vector will

change direction (displacement angle θ). B. We propose to use cell densities as a proxy of time. For a same time interval, the displacement in u will

be proportional to a gene’s speed. This allows us to relate velocities across genes and solve the scale invariance problem. C. To validate κ-velo, we

simulate splicing kinetics scaled by a scaling factor κ and evaluate how well the factors are recovered. D. We compare the κ-velo and scVelo

velocities to the true velocities for two genes with different speeds. The high-dimensional velocity vectors are normalised to have equal variance for

ease of comparison. E. The high-dimensional vector is projected on the first two principal components to evaluate differences between true

velocities and recovered velocities. We return the change in direction (cosine similarity) and length (difference in vector norm) (Note J in S1

Appendix) for κ-velo and scVelo. To make the length comparable, the vectors are variance-normalised. Note the log-scale for frequency.

https://doi.org/10.1371/journal.pcbi.1010031.g003
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Comparing the original processing pipeline to our processing steps, we reduce the number of

MURK genes from 98 to 18 (S13C Fig), correcting most of the false de-differentation.

After recovery of the parameters, we remove low-likelihood genes where the learned

parameters do not fit the u-s phase portrait well. This prevents us from including the (usually

noisy) genes for which the recovered parameters could be incorrect (S4 Fig: step 5). The calcu-

lated velocities for those genes would therefore not accurately reflect true dynamics. Even after

filtering of low-likelihood genes, we still find genes where the recovered dynamics do not

match the known order of cell types. For example, early upregulation or late downregulation

can often not be easily differentiated based on the u-s phase portrait alone (S4 Fig: step 6). This

could ultimately lead to incorrect velocity assignments. To avoid this issue, we can use prior

information about the temporal order of cell types to perform one more round of filtering if

that information is given (see Note G in S1 Appendix: step 6). We use this information to

exclude genes where the fitted state assignments of up- or downregulation do not fit the

expected state assignments. After both filtering steps, we calculate the low-dimensional

embedding on the reduced gene set, so that the embedding only represents space that can be

reached by velocities.

κ-velo explains cell state plasticities and speed of transcriptional change in

pancreas endocrinogenesis

To test whether κ-velo’s velocity estimations better capture the different time scales of genes,

we apply our method to a dataset of developing mouse pancreas cells sampled at embryonic

day 15.5 [20]. The endocrine progenitor cells differentiate into four main fates: alpha, beta,

delta and epsilon cells. In previous work, scVelo delineated cycling progenitors and the endo-

crine cell differentiation.

After processing, we recover the reaction rate parameters fitted by scVelo and κ-velo. True

splicing rates are difficult to determine and different ranges have been reported [24] but none

come close to the more than 10000-fold range reported by scVelo (Fig 4A and S14 Fig). We

report a range of splicing rates close to 30-fold (Fig 4A), which is more in line with the

reported ranges. After scaling, we can distinguish fast and slow genes based on their κβ.

Among the fast genes, we find genes associated with the cell cycle such as Adk, while slow

genes are constantly up- or downregulated during the whole differentiation trajectory (Fig

4B). This is consistent with prior expectation as the cell cycle in developing mouse pancreas

takes less than a day [25], while pancreatic endocrine cell differentiation starts at embryonic

day 9 and goes until day 15.5 in the analysed sample. We also find fast genes that are upregu-

lated during commitment to a cell fate at the end of the differentiation trajectory, such as Gcg
and Nnat. We note that when filtering genes based on prior knowledge of the expected order

of cell types, we also filter many cycling genes that tend to have high variance, and thus par-

tially incorrect state assignments.

We display the high dimensional vector field in a UMAP embedding of the data and com-

pare the κ-velo velocities (Fig 4C) to scVelo velocities (Fig 4D), both projected with Nyström

projection to compare only the velocity vectors (S15 Fig show projections of the velocities on a

PCA embedding, S16 Fig shows smoothed velocities on the UMAP embedding). The κ-velo

velocities better capture the differences in speed along the trajectory, as well as the progression

within the four terminal states. scVelo’s embedding (Fig 4E) smooths over the velocities,

returning a view that partially appears more consistent with the expected direction of differen-

tiation but not with the actual noisy velocity vectors. Comparing the projected velocities of the

full scVelo pipeline (Fig 4E) to κ-velo pipeline (Fig 4C), we see that the methods most strongly

disagree in the high-plasticity ductal population (Fig 4F and 4G and S17 Fig). There is also a
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strong disagreement in the delta cells, which scVelo predicts to differentiate into the alpha

cells, as well as in the alpha cells themselves that are predicted to have very small velocities all

along the branch. Looking at single genes u-s phase portrait such as the Gcg gene (Fig 4B), we

see that the cells are still differentiating and the full alpha branch has not reached the terminal

state yet.

κ-velo recovers multiple differentiation paths in hematopoietic system

RNA velocity analysis of single-cell datasets of differentiation of hematopoietic stem cells into

different blood progenitor cells has proved difficult in the past [6, 7], and often the predicted

velocities display a direction reversal. This reversal was attributed to genes with more complex

kinetics leading to u-s phase portraits that do not have the shape expected from the current

RNA velocity model. To investigate the potential of κ-velo on more complex datasets, we

Fig 4. κ-velo on pancreas endocrinogenesis. A. Range of splicing rate β estimated by scVelo (in red) and κ-velo (in blue). B. Examples of fast

and slow genes, selected according to κβ. Learned kinetics are shown by blue (upregulation) and orange (downregulation) curves. C. Velocities

from κ-velo projected onto a UMAP embedding using κ-velo projection. D. Velocities from scVelo projected onto the same UMAP embedding

using κ-velo projection. E. Embedded velocities as returned by scVelo. For ease of comparison, plotting style was matched to (C) and (D). F-G.

Quantitative comparison of the projected velocities from κ-velo (A) and scVelo (E) on the low dimensional embedding. We return the norm of

the errors in F and the cosine similarity in G.

https://doi.org/10.1371/journal.pcbi.1010031.g004
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applied the method to a dataset of murine hematapoietic stem and progenitor cells (HSPCs)

[23]. The HSPCs in this dataset were acquired by sorting bone marrow cells using a broad

Linneg c-Kit+ (LK) gating strategy. Additionally, the datasets has been enriched for long-term

hematopoietic stem cells (HSCs), which are usually less abundant than other populations.

HSCs, which have a high multipotent potential (as indicated by the stemness score, Fig 5A) are

at the beginning of the differentiation trajectory, and give rise to all mature blood cells [26]. In

this dataset, these final states of mature blood cells are not yet reached since only HSPCs were

included. Using a curated set of cell type gene markers, we identify the HSCs and progenitor

populations, matching the original annotations (S18 Fig) [23].

The κ-velo pipeline correctly recovers the overall differentiation paths from the HSCs to

various progenitor populations, such as to the myeloid and megakaryocyte progenitors (Fig

5B), while still capturing cell specific velocity variations (S19 Fig shows smoothed velocities on

the embedding). The velocities show higher plasticity in the regions with higher stemness

score and more commitment towards the ends of the differentiation branches. On the same

dataset, scVelo recovers velocities in the exact opposite directions with velocities pointing

from the more differentiated progenitor cells towards the HSCs (Fig 5C). We also identify fast

genes, such as Fcnb and Ermap (Fig 5D and 5E), which are known to be involved in the com-

mitment to the myeloid lineage and erythroid lineage respectively [27, 28]. Pum2 is identified

as a slow gene because its downregulation takes place over the full span from stem cell to pro-

genitor (Fig 5F). This gene is known to suppress differentiation in HSCs [29].

Fig 5. κ-velo on hematopoiesis. A. UMAP embedding with cells coloured for stemness score. B. κ-velo-recovered velocities projected onto UMAP

embedding of the cells using Nyström projection. C. Velocities from scVelo projected onto the same UMAP embedding plotted using scVelo’s velocity

stream plot. D-F. Recovered dynamics in u-s portrait and expression UMAP of two fast genes Fcnb in D and Ermap in E and one slow gene Pum2 in F.

https://doi.org/10.1371/journal.pcbi.1010031.g005
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Eco-velo approximates cell state velocities using minimal data processing

and computation

As a heuristic method that does not require cumbersome recovery of the rate parameters, we

apply eco-velo on some of the introduced data sets. By simply taking the unspliced counts as a

proxy of a cell’s future state (Fig 6A), we can skip a few gene set filtering steps, imputation and

parameter fitting, all of which are computationally expensive and can kill some of the true sig-

nal variability. We validate the model on a simulated dataset (Fig 6B and S20 Fig), where the

model recovers the expected flow. We then test eco-velo on the pancreas endocrinogenesis

dataset and the hematopoiesis dataset (pancreas endocrinogenesis: Fig 6C and S21 Fig for

smoothed velocities, hematopoiesis dataset: S22 Fig). Since the method is based on the

assumption that genes have the same splicing and degradation rates, and we know that cell

cycle genes have different rates in the pancreas endocrinogenesis dataset, we exclude them

from this analysis. The model delineates the directional flow from progenitor cells to alpha

and beta cell fates. eco-velo also captures the high cell plasticities in the ductal population seen

in Fig 4C. The final state of epsilon cells is also captured (S21 Fig smoothed) but the dynamics

within the delta cells cannot be resolved. For delta and epsilon cells the issues could arise from

trying to capture future states within sparse populations that are transcriptionally close to the

more abundant population of alpha cells. A quantitative comparison of the projected velocities

from eco-velo and κ-velo is shown in S23 Fig, where we see a strong similarity in the Ngn3 low

endocrine progenitor, but more variation between the methods in the cycling ductal

Fig 6. Eco-velo as an alternative to computationally costly reaction rate parameter recovery. A. Under certain conditions, a cell’s

unspliced state will represent the cell’s future spliced state. To infer velocities, we look for the first MNN between a cell’s unspliced counts and

other cells’ spliced counts. We draw an arrow from the cell to the identified MNN. B. We validate eco-velo on simulation and visualise the

resulting velocities on t-SNE. C. eco-velo on pancreas endocrinogenesis.

https://doi.org/10.1371/journal.pcbi.1010031.g006
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population as well as in the terminal states. Given the strong theoretical assumptions of the

model, eco-velo still captures the complex lineages of endocrinogenesis remarkably well. For

the hematopoiesis dataset however, eco-velo is unable to capture the dynamics correctly (S22

Fig). Similarly to scVelo, the velocities are falsely projected back to the most stem-like state,

hinting that the more basic assumptions about the splicing dynamics in eco-velo may not hold

up for this particular biological process.

Computational efficiency of the methods

We report the runtime on an Intel Core i5 CPU with 2GHz, 4 Cores and 16 GB of RAM. On

the pancreatic endocrinogensis dataset with 3696 cells and top 5000 highly variable genes, the

κ-velo workflow takes 15 minutes while the eco-velo worflow takes about 40 seconds. Full

scVelo pipeline on the same dataset takes about 8 minutes.

Data and software availability

All analysed datasets are publicly available. The pancreatic endocrinogenesis dataset is avail-

able from the Gene Expression Omnibus (GEO) under accession GSE132188 [20]. The murine

gastrulation dataset is available on the Arrayexpress database (http://www.ebi.ac.uk/

arrayexpress) under accession number E-MTAB-6967 [21]. For both datasets the count matri-

ces can be downloaded directly from the scVelo Python implementation (https://scvelo.org)

v0.2.4. The raw data from the chromaffin dataset is available on GEO under accession number

GSE99933 [22]. The count matrices are made available by [1] at http://velocyto.org. The count

matrices of the HSPC dataset are available on our GitHub Page: https://github.com/Haghver

diLab/velocity_notebooks. This GitHub page also contains all notebooks necessary to repro-

duce the results reported in this paper. A python implementation of the κ-velo and eco-velo

pipeline can be found at https://github.com/HaghverdiLab/velocity_package.

Discussion

In this manuscript, we study some of the current challenges in the inference of cell state veloci-

ties from scRNA-seq data and suggest novel approaches for tackling these problems. We argue

that one of the interests in obtaining single cell velocities is to quantify the variation of dynam-

ics among individual cells. This variance in single cell velocities can inform us about fluctua-

tions of the dynamics, cell state plasticities and heterogeneity. We demonstrate that the

processing procedure, several data smoothing steps and the visualisation approach in existing

methods kill such biologically meaningful variance. The resulting information is closer to

knowledge we could get from pseudotemporal ordering of cells than the true single cells veloc-

ity directions; one gets good looking cell velocity maps (i.e. conforming the expected pseudo-

time directions) that do not reflect the reality of the information contained in the u-s mRNA

data.

For applications in which obtaining the average cell state velocities over the specific time

scale of mRNAs degradation is desired, we propose the eco-velo approach. It eliminates multi-

ple cumbersome and error-prone steps, such as the gene-wise parameter estimation and visu-

alisation of high-dimensional velocities.

For more detailed velocity analyses, we designed the κ-velo approach. The method recovers

the full dynamics of splicing kinetics and addresses the relative scaling of velocity components

across genes. We also design a consistent processing pipeline and suggest a new visualisation

approach. We demonstrate how our model achieves better estimation of velocities than cur-

rent methods on simulation. On real data, our method returns more plausible ranges of

splicing rates and velocity magnitudes in several differentiation regions. κ-velo’s velocity
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components’ scaling is based on the assumption that cell densities can be used as a proxy of

typical travel time between two cell states. Heterogeneous cell birth and death rates along the

differentiation path could partly disturb this assumption. To further improve this model, one

could therefore consider estimating the heterogeneous cell birth and death rates based on the

activity of apoptotic and proliferation genes [30]. Our results on simulation data (S8 Fig) dem-

onstrate that the true global time of cells also resolves the scale-invariance issue. This indicates

that other proxies of the true global time, e.g. cell density-scaled pseudotime, may also be used

for inferring the relative scaling of velocity components among the genes in future work.

As described in Section “Careful processing prevents introduction of artefacts”, we find

that there can be difficulty in fitting reaction rate parameters for genes that do not display clear

kinetic patterns of up- or downregulation on the u-s phase portrait. In the current version of

κ-velo, we filter out genes where the fitted state assignments do not match the known pseudo-

temporal order of cell types. In future work, we could use this prior information as initialisa-

tion in the parameter fitting procedure. The recovered high-dimensional velocity vectors now

contain the deterministic part, but also capture the stochasticity of the dynamics. This can be

used to perform several downstream analyses and answer questions about cell’s progress

through the dynamical process.

In the past, recovery of cell specific global latent time has been done after velocity analysis

[2]. The recovery of a cell’s global time was based on a heuristic integration of time assignment

from individual genes. However, the gene-wise assignment of latent time are error-prone and

additionally do not take into account the time that genes spend in steady-state. Integrating

these errors does not necessarily mean that they cancel out. Because of these two reasons,

recovery of global latent time should be done more carefully in follow up studies with strategies

similar to CellRank [5], where several sequential cell state transitions are chained together to

construct long transition paths along the differentiation manifold. Alternatively, estimation of

global latent time may be integrated in the expectation maximisation procedure, similar to the

approach in a recent preprint [11].

We also raise awareness about the time scales for which average velocities are being esti-

mated. It would be interesting to measure velocities at multiple time scales to get an overview

on the “plans” individual cells have in preparation for their short- or long-term developmental

journey. One way of studying the changes that cells undergo at different time scales would be

by inferring velocities from different sets of genes related to these time scales. For example

investigating velocities on the time scale of the cell cycle or of the entire differentiation process.

This also supports growing interest for inferring cell state velocities from other pairs of single-

cell data modalities, e.g. mRNA coupled with protein levels [3], as they correspond to different

time scales of gene regulation. Furthermore, inferring cell state velocities from modalities in

which measurements are more accurate (in comparison to the uncertainty in quantification of

unspliced-spliced mRNA counts) can enhance our ability to understand the biological varia-

tion in cell state velocities rather than variations due to measurement noise.

Estimation of cell state velocities in presence of multiple time point measurements or multi-

ple batches of data collection is another important problem. However, the solution is not trivial

as existing batch effect correction methods can distort the proportions between the s and u

counts from separate batches. One possible strategy can be to estimate the velocities within

each batch separately and visualise and project the estimated velocities on a shared embedding

of all batches. Investigation of different approaches and possibilities remain open.

To conclude, we suggest that a comprehensive grasp of what we are actually estimating and

visualising as cell state velocities is crucial for obtaining a full description of cell differentiation

dynamics. True cell state velocities encompass both stochastic and deterministic parts of the

biological dynamics. This information can be complementary to attempts for describing cell
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differentiation as a full diffusion process [1, 5, 12, 15, 31–33] which contains the three terms of

deterministic, stochastic and cell birth and death rates. Reliable quantification of cell state

velocities in different transcriptional regions can put the relative magnitude (i.e. coefficients)

of these terms into perspective in relation with one another.

Supporting information

S1 Table of contents. Table of contents of the main text.

(PDF)

S1 Appendix. Supplementary Notes A-J. Details on theory, the algorithms, the simulation

and processing of the data.

(PDF)

S1 Fig. Average velocities for different time scales can be very different if the expression

dynamics are not smooth. On the left is the example of two noisy genes: the average velocity

over Δt1 is very different from the average velocity over Δt2. For smooth gene dynamics as

shown on the right, the average velocities are more similar.

(TIFF)

S2 Fig. Density estimation for two simulated genes with different time scales. c = 10−3 is a

constant scaling factor. The two simulated genes have the same reaction parameters θ but

those for gene 2 are scaled by 10. (A) a slow gene, where no cells are in steady-state. The slope

of the line gives us κg1 directly. (B) A fast gene, where a lot of cells are in steady-state. The

slope of the red line gives us κg2.

(TIFF)

S3 Fig. Comparison of recovery of scaling factors from unspliced counts (Eq 10) and from

spliced counts (Note D in S1 Appendix). (A) On simulation; the simulation is the same as in

main Fig 3. (B) On the pancreas endocrinogenesis dataset.

(TIFF)

S4 Fig. Overview of all processing steps in the κ-velo workflow. In the middle, a schematic

representation of how the spliced and unspliced matrices change during each step is shown. A

size reduction of the coloured area indicates a filtering step where the number of genes are

reduced. A change in colour represent a data manipulation, which does not changes the num-

ber of cells or genes, but changes the values in the matrix. On the left, some extra information

is provided for some of the processing steps. More detailed information can be read in Note G

in S1 Appendix. On the right, the u-s phase portraits of several example genes are shown to

demonstrate how the different steps change the phase portraits, as well as which kind of genes

are selected or removed in the filtering steps. Each of the genes is selected from the pancreas

endocrinogenesis dataset that is analysed in main Fig 4.

(TIFF)

S5 Fig. κ-velo and eco-velo applied on the chromaffin dataset. The chromaffin dataset

includes Schwann cell precursors (SCPs) (blue) differentiating into chromaffin cells (green).

In the original paper, the purple cluster was identified as symphatoblasts and the yellow and

red cluster as “bridge” cells [22]. (A) κ-velo applied on chromaffin dataset using PCA embed-

ding for visualisation. Principal component (PC) 1 and 2 left and PC 2 and 3 right. (B) κ-velo

applied on chromaffin dataset using UMAP embedding for visualisation (left: raw vector visu-

alisation, right: smoothed vector visualisation). (A) and (B) show that κ-velo correctly captures

the differentiation from SCPs into chromaffin cells. Interestingly, there also seems to be a
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more committed differentiation in the bridge cells than the SCPs in the beginning of the mani-

fold. (C) eco-velo applied on chromaffin dataset using UMAP embedding for visualisation

(left: raw vector visualisation, right: smoothed vector visualisation).

(TIFF)

S6 Fig. Projection of the velocity arrows (test set data points) onto existing embedding of

initial cell positions (training set). We compare our projection approach (left column) to

scVelo’s [2] (right column) projection for t-SNE [16] in (A) and (B) and UMAP [17] in (C)

and (D).

(TIFF)

S7 Fig. Projection of the velocity arrows (test set data points) onto existing diffusion map

embedding of initial cell positions (training set). We compare our projection approach in A

to scVelo’s [2]’s projection in B.

(TIFF)

S8 Fig. Recovery of the scaling factor κ from true time on simulation. The simulation is the

same as in main Fig 3. The factors are recovered similarly to the density approach described in

Note C in S1 Appendix, except that d(i, j) is calculated from ti the true simulated time of cell i:
d(i, j) = |(ti − tj)|. Plotting d on the x-axis and f on the y-axis, the slope of the corresponding

line gives us κ. Here, since we have true time, we do not need to exclude steady-states. (A)

Comparison of the scaling factors recovered from true time to the true simulated factors. Note

that here the range of recovered scaling factors is equivalent to the true factors because they

were recovered from true time and not from a proxy of time that might be off by some con-

stant factor. (B) Comparison of the factors recovered from the density approach to the factors

recovered from true time.

(TIFF)

S9 Fig. Comparison of the high-dimensional velocities recovered by κ-velo and scVelo on

simulation for 100 genes with different speeds. (A) High-dimensional velocity vector. One

point represents a velocity for one cell for one gene. (B) We evaluate differences between true

high-dimensional velocities and recovered velocities. We return the change in direction

(cosine similarity), length (difference in vector norm) and the overall norm of the errors

between real velocities and κ-velo velocities (in blue), or scVelo velocities (in red). To make

the length comparable, the vectors high-dimensional vectors are normalised to have equal var-

iance. Note the log-scale for frequency.

(TIFF)

S10 Fig. Comparison of velocities recovered by κ-velo and scVelo on simulation projected

on PCA embedding of spliced counts. (A) Real simulated velocities (B) velocities recovered

by κ-velo and (C) velocities recovered by scVelo projected on PCA. Cells on PCA coloured by

norm of the errors between real velocities and (D) κ-velo velocities, or (E) scVelo velocities.

(TIFF)

S11 Fig. Comparison of velocities recovered by κ-velo and scVelo on simulation projected

on 2D-PCA embedding of spliced counts. (A) Norm of the errors: k~vt � ~vrk with~vt the true

2D velocity vector on PCA and~vr the recovered vector. (B) Change in direction (cosine simi-

larity) and length (difference in vector norm: k~vtk � k~vrk) for each cell in PCA space.

(TIFF)

S12 Fig. The u-s phase portrait of Acly, Dpysl2 and Gnaz (raw counts, after normalisation

and after recovering of dynamics). The u-s phase portrait of Acly, Dpysl2 and Gnaz (from the
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pancreas endocrinogenesis dataset), which are all genes with insufficient unspliced counts.

Here, we show how scVelo would recover the dynamics if these genes were not filtered out.

(TIFF)

S13 Fig. Applying κ-velo processing pipeline on erythroid lineage dataset. The scRNA-seq

dataset on the erythroid lineage of mouse gastrulation [21] has been described in the context

of RNA velocity by Barile et al. [6]. Here, we show that the subset has a varying ratio of total

unspliced to total spliced counts in different cell types (A). This results in artefacts when using

the standard scVelo processing pipeline (U and S normalised separately) (B, second row).

Those artefacts are mostly resolved by normalising U and S combined (B, third row), which is

part of the κ-velo processing workflow (B, last row). Using the κ-velo processing workflow

fixes some of the reported de-differentiation (C).

(TIFF)

S14 Fig. Comparison of recovered reaction rate parameters on pancreas endocrinogenesis

dataset. Range of transcription rate α, splicing rate β, and degradation rate γ estimated by

scVelo (in red) and κ-velo (in blue).

(TIFF)

S15 Fig. PCA projection of velocities in the pancreas endocrinogenesis dataset. (A) Veloci-

ties returned by κ-velo projected on PCA embedding of spliced counts. (B) Velocities returned

by scVelo projected on PCA embedding of spliced counts. We note that the gene space used is

different for the two methods, as they have different criteria for gene selection. scVelo uses

1809 genes, while κ-velo uses 134.

(TIFF)

S16 Fig. Smoothed κ-velo projection of velocities in the pancreas endocrinogenesis dataset.

The two UMAPs compare (A) smoothed scVelo velocities projected by Nyström projection

and (B) smoothed κ-velo velocities projected by Nyström projection. Velocities were

smoothed by averaging over the 30 nearest neighbours. Neighbourhoods are calculated in S

space.

(TIFF)

S17 Fig. Quantitative comparison of low-dimensional projection of velocities. We compare

scVelo velocities projected by scVelo v1 to κ-velo velocities projected by Nyström-projection

v2 for every cell. (A) UMAP colored by cell types. (B) Difference in the norm of the two vectors

kv1k − kv2k.

(TIFF)

S18 Fig. UMAP embedding of the HSPC dataset as calculated in the κ-velo pipeline. Cells

are coloured for (A) our assigned cell types (see Note I in S1 Appendix) or (B) the cell types

assignments from the original data analysis [23].

(TIFF)

S19 Fig. Smoothed κ-velo projection of velocities in the HSPC dataset. Velocities were

smoothed by averaging over the 30 nearest neighbours. Neighbourhoods are calculated in S

space. Non-smoothed projection in main Fig 5B.

(TIFF)

S20 Fig. Eco-velo projection of velocities (calculated on simulations) shown on PCA in (A)

and UMAP in (B).

(TIFF)
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S21 Fig. Smoothed eco-velo projection of velocities in the pancreas endocrinogenesis data-

set. Velocities were smoothed by averaging over the 50 nearest neighbours. Neighbourhoods

are calculated in S space.

(TIFF)

S22 Fig. Eco-velo applied on HSPC dataset using UMAP embedding for visualisation. Left:

raw vector visualisation, right: smoothed vector visualisation. Like scVelo (main Fig 5C), the

velocities point from the more differentiated populations back to the stem cells.

(TIFF)

S23 Fig. Quantitative comparison of low-dimensional projection of velocities. We compare

κ-velo velocities projected by Nyström-projection v1 to eco-velo velocities projected onto the

UMAP calculated in the κ-velo pipeline and shown in main Fig 4 for every cell. (A) UMAP

colored by cell types. (B) Cosine similarity between the two vectors. (C) Norm of the difference

between the two vectors k~v1 � ~v2k. (D) Difference in the norm of the two vectors k~v1k � k~v2k.

Cells are colored in grey when we do not have a velocity value for eco-velo, i.e. the cell does

not have a mutual nearest neighbour within the top 50 neighbours.

(TIFF)
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