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Simple Summary: Clear renal cell carcinoma (ccRCC) is the most common type of renal cancer. As
with other malignancies, knowledge of the genetic makeup of ccRCC tumors may provide insights
for tumor management and outcomes. However, this normally requires obtaining tissue specimens
from the tumor by invasive interventions—surgery or biopsy. Radiogenomics is a field that aims
to non-invasively predict the genetic makeup of the tumor based on the tumor’s appearance on
conventional imaging, such as CT scans. To achieve this, radiogenomics uses complex machine
learning (artificial intelligence) algorithms to process imaging data and build predictive models
that can infer a tumor’s genetic makeup and clinical outcomes from its features on conventional
imaging. In this article, we searched scientific literature databases for radiogenomic studies in ccRCC,
offering a review and critical analysis of these studies. More research and validation are needed
before applying radiogenomics in clinical practice.

Abstract: Radiogenomics is a field of translational radiology that aims to associate a disease’s radio-
logic phenotype with its underlying genotype, thus offering a novel class of non-invasive biomarkers
with diagnostic, prognostic, and therapeutic potential. We herein review current radiogenomics litera-
ture in clear cell renal cell carcinoma (ccRCC), the most common renal malignancy. A literature review
was performed by querying PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science
databases, identifying all relevant articles using the following search terms: “radiogenomics”, “renal
cell carcinoma”, and “clear cell renal cell carcinoma”. Articles included were limited to the English
language and published between 2009–2021. Of 141 retrieved articles, 16 fit our inclusion criteria.
Most studies used computed tomography (CT) images from open-source and institutional databases
to extract radiomic features that were then modeled against common genomic mutations in ccRCC
using a variety of machine learning algorithms. In more recent studies, we noted a shift towards
the prediction of transcriptomic and/or epigenetic disease profiles, as well as downstream clinical
outcomes. Radiogenomics offers a platform for the development of non-invasive biomarkers for
ccRCC, with promising results in small-scale retrospective studies. However, more research is needed
to identify and validate robust radiogenomic biomarkers before integration into clinical practice.

Keywords: radiogenomics; translational; clear cell renal cell carcinoma

1. Introduction

Renal cell carcinoma (RCC) is the most common malignant kidney tumor, accounting
for approximately 85% of cases [1]. Clear cell carcinoma (ccRCC) is the most common
histologic RCC subtype, particularly in advanced RCC (approximately 60–70%, and 90%, re-
spectively) [2]. With increased use of computed tomography (CT) and magnetic resonance-
guided imaging (MRI), the incidence of RCC is rising in developed countries, usually at
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the clinically localized stage [3]. Despite the advancements in cross-sectional imaging
technology, their ability to differentiate RCC subtypes and their underlying molecular
profiles remain limited [4,5].

One approach to improve the diagnostic ability of conventional imaging has been
the adoption of advanced computational and statistical methods to process high through-
put radiologic features extracted from conventional imaging, giving rise to the field of
radiomics [6]. In parallel, our understanding of the genomic profiles of cancers and their
potential as diagnostic, prognostic, and therapeutic biomarkers has been advanced by the
application of complex computational and statistical methods to analyze high-throughput
next-generation sequencing data, allowing for complex genomic, transcriptomic, and epige-
nomic analyses of tumor specimens. Such analyses in the field of RCC have revealed
that in addition to histologic variance, RCC is a genetically diverse disease, with distinct
molecular genomic and transcriptomic profiles that correlate with clinical outcomes such
as recurrence, progression, and response to systemic therapies [7–10].

Despite the above advances in molecular and radiologic profiling of RCC in general
and ccRCC in particular, the current prognostic models remain based on clinical, pathologic,
and laboratory characteristics, with the pathologic stage heavily influencing cancer-specific
survival [11–14]. The reliance of these models on pathologic staging makes them inherently
invasive, requiring tissue diagnosis based on surgical extirpation or tissue biopsy, with no
standardized non-invasive or pre-treatment biomarkers that can be used to classify RCC or
predict tumor behavior. This limitation applies to genomic profiling tools, as well, as they
also require tissue extraction for their analyses, along with complex and cost-prohibitive
translational infrastructures that currently limit their applicability in clinical practice.

Radiogenomics is a novel field that circumvents the above challenges by utilizing
computational machine learning algorithms to correlate radiomic features of disease (ra-
diologic phenotype) with its underlying molecular profile (genotype), thereby offering a
platform for the development of non-invasive biomarkers to aid in treatment decisions and
disease [15,16]. Of note, while the term “radiogenomics” has been used interchangeably
with “radiomics” in literature to describe the study of radiologic features of predictive
treatment outcomes, “radiogenomics” is more commonly used to describe the study of the
molecular changes underlying the radiologic phenotype of a disease process, including
genetic mutations, gene expression, and methylation (epigenetic) changes [15–19].

Here, we present an in-depth review of the current state of radiogenomics in ccRCC,
and examine the variety of innovative computational models that have been developed in
this field to infer the molecular profile of ccRCC from its radiologic phenotype, concluding
with a discussion of the field’s current limitations and future directions.

2. Methods

A literature review was performed by querying the PubMed, Medline, Cochrane
Library, Google Scholar, and Web of Science databases. We attempted to identify all
articles pertaining to radiogenomics and ccRCC. The search terms included “radiogenomics
and . . . ” one of the following MeSH search terms: “renal cell carcinoma”, “clear cell
renal cell carcinoma”, “kidney cancer”, or “renal cancer”. Titles and abstracts of the
articles retrieved from the above search were then screened for relevance. Inclusion criteria
were (1) publication in the English language, (2) publication between 1/2009 and 9/2021,
(3) and article topic pertaining to radiogenomics of ccRCC. Exclusion criteria included
(1) publication before 1/2009, (2) not published in the English language, (3) study topics not
pertaining to ccRCC or radiogenomics, (4) duplicate articles, and (5) non-primary literature,
e.g., abstracts, review articles, and letters to the editor, which were excluded after being
reviewed to identify any missed primary studies.

3. Results

Overall, 141 articles were identified in our initial search, of which 16 fit our inclusion
criteria described above. Radiogenomic features related to mutational status were the
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most commonly described and targeted features for modeling (eight articles), followed
by gene expression (five articles) and epigenetic features (one article). Only two articles
developed clinical prognostic models utilizing radiogenomic data. Most articles focused
on multiphasic, contrast-enhanced CT scan as the modality of choice, with two paper(s)
discussing MRI features. A PRISMA flow chart of our search with inclusion and exclusion
criteria can be seen in Figure 1. A list of the included articles along with a summary of their
methodology and targeted predictive outcomes can be found in Table 1.
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Table 1. Summary of included radiogenomic studies in this review. Studies were selected based on the literature search strategy summarized in the methods section
and Figure 1. Most studies utilized studies from the publicly available TCGA-KIRC cohort, specifically focusing on patients in that database with corresponding
imaging studies in the TCIA portal.

Author and Year Imaging Modality Primary Outcome of Interest Machine Learning Algorithm Summary of Results Notes

Karlo et al. (2014) [20] Multiphase CT

Investigate association between
CT features of ccRCC and
mutations in VHL, PBRM1,
SETD2, KDM5C, or BAP1

N/A—Development of a predictive
model was not intended

Mutations of VHL were significantly
associated with well-defined tumor

margins, nodular tumor enhancement, and
gross appearance of intratumoral

vascularity. Mutations of KDM5C and BAP1
were significantly associated with evidence
of renal vein invasion. Mutations of SETD2,

KDM5C, and BAP1 were absent in
multicystic clear cell RCC; mutations of

VHL and PBRM1 were significantly more
common among solid clear cell RCC

Retrospective review of
institutional cohort of

233 patients with ccRCC and
known mutation status for

genes of interest.

Shinagare et al. (2015) [21] Multiphase CT and MRI

Investigate association between
CT/MRI features of ccRCC and

mutations in VHL, BAP1, PBRM1,
SETD2, KDM5C, and MUC4

N/A—Development of a predictive
model was not intended

Retrospective review of
103 patients with CT and/or

MRI images; majority (81)
were CT-only.

Chen et al. (2018) [22] Multiphase CT

Create a ML model to
differentiate ccRCC tumors by
radiomic features reflective of
genetic mutation profile (VHL,

PBRM1, BAP1)

Multi-classifier multi-objective
(MO) and MO optimization

algorithm

Model AUC ≥ 0.86, sensitivity ≥ 0.75, and
specificity ≥ 0.80

Used a relatively small
(57 patients) institutional

cohort for training and
validation.

The model was designed to
predict multiple rather than
single outcome (mutation).

Li et al. (2019) [23] Multiphase CT

Create a ML model to
differentiate ccRCC from

non-ccRCC tumors by
radiomic features

Random forest (RF) and minimum
redundancy maximum

relevance (mRMR)

Model AUC of 0.949 and an accuracy of
92.9% vs. an AUC of 0.851 and an accuracy

of 81.2% for the RF and mRMR
models, respectively

Used a large (255 patients)
institutional cohort for
training and validation.
Secondary outcome was
correlation of predictive

features with VHL
mutational status, with false
discovery rate p-value < 0.05.

Kocack et al. (2019) [24] Multiphase CT

Create a ML model to
differentiate ccRCC tumors by
radiomic features reflective of

PRBM1 mutation status

Artificial neural network (ANN)
and RF algorithms

Model accuracy of 88.2% (AUC = 0.925) vs.
95.0% (AUC = 0.987) for the

ANN vs. RF models

Used only 45 patient studies
from the TCGA-KIRC cohort

for training the model (29
PRBM1-unmuated, 16

PRBM1-mutated).
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Table 1. Cont.

Author and Year Imaging Modality Primary Outcome of Interest Machine Learning Algorithm Summary of Results Notes

Kocack et al. (2020) [25] Multiphase CT

Create a ML model to
differentiate ccRCC tumors by
radiomic features reflective of

BAP1 mutation status

RF algorithm
Model specificity of 78.8% and precision of

81% for presence and absence of BAP1
mutations, respectively

Used 65 patients from
TCGA-KIRC for training the

model (13 with and 52
without BAP1 mutation).

Feng et al. (2020) [26] Multiphase CT

Create a ML model to
differentiate ccRCC tumors by
radiomic features reflective of

BAP1 mutation status

RF algorithm Model AUC = 0.77, sensitivity of 0.72,
specificity of 0.87, and precision of 0.65

Used 56 patients (9
BAP1-mutated, 45
BAP1-unmutated)

TCGA-KIRC for training
the model.

Ghosh et al. (2015) [27] Multiphase CT

Create a ML model to
differentiate ccRCC tumors by
radiomic features reflective of

BAP1 mutation status

RF algorithm

AUCs of 0.66, 0.62, 0.71, and 0.52 for the
non-contrast, cortico-medullary,
nephrographic, and excretory

phases, respectively

Used TCGA-KIRC for
training and validation

cohorts (78 patients).
Developed separate

classifiers for BAP1 in the
non-contrast,

cortico-medullary,
nephrographic, and excretory

phases.
Utilized 3D feature

extraction to evaluate
intra-tumoral heterogeneity.

Bowen et al. (2019) [7] Multiphase CT
Describe radiomic features

associated of molecular TCGA
subtypes (m1–m4)

N/A—Development of a predictive
model was not intended

The m1 subgroup had well-defined tumor
margins (vs. ill-defined, OR = 2.104; CI

1.024–4.322).
The m3 subgroup was less frequently
associated with well-defined tumor

margins (OR = 0.421; CI 0.212–0.834); more
collecting system invasion (OR = 2.164; CI
1.090–4.294) and renal vein invasion (OR

2.120; CI 1.078–4.168).
There were no significant CT findings with

the m2 or m4 subgroups

TCGA cohort was used for
this assessment.

Marigliano et al. (2019) [28] Multiphase CT
Describe radiomic features

associated with
miRNA expression

N/A—Development of a predictive
model was not intended

There were no significantly associated
texture-specific features with expression of

any of the evaluated miRNAs

Pilot study using small
institutional cohort of

20 patients.
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Table 1. Cont.

Author and Year Imaging Modality Primary Outcome of Interest Machine Learning Algorithm Summary of Results Notes

Yin et al. (2018) [29] PET and MRI

Develop a combined PET/MRI
model + other features to predict

ccRCC molecular subtype
(ccA vs. ccB)

ML was not used to build the
predictive model

Correct classification rate was 87% vs.
95.6% using the radiomic signature alone vs.
the combined signature (radiomic signature

+ several clinical features)

Very small training/test
subset (23 specimens from 8

primary ccRCC patients).
Sparse partial least squares

discriminant analysis
(SPLS-DA) was used to build

their predictive models.

Cen et al. (2019) [30] Multiphase CT
Identify CT imaging features

predictive of high RUNX3
methylation levels

N/A—Development of a predictive
model was not intended

Well vs. poorly defined margin status (OR
2.685; CI 1.057–6.820), and present/absent

intratumoral vascularity (OR 3.286; CI
1.367–7.898) were all significant

independent predictors of high RUNX3
methylation on multivariate regression

Huang et al. (2021) [31] Multiphase CT

Development of a radiogenomic
model to predict overall survival

in ccRCC using gene
expression data

LASSO-COX regression to identify
a prognostic radiomic signature,
then RF to combine the radiomic
and prognostic gene signatures

The radiogenomic model outperformed the
radiomic features-only model at predicting
overall survival at 1, 3 and 5 years (average
AUCs for 1-, 3-, and 5-year survival of 0.814
vs. 0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751,

respectively)

Trained model using
TCGA-KIRC dataset

(205 patients).

Jamshidi et al. (2015) [32] Multiphase CT

Development of a radiogenomic
risk score (RSS) to predict gene

expression results from a
microarray assay

None—Multivariate regression was
used to identify features most

predictive of variation in
supervised principal component
(SPC) gene expression analysis

Significant correlation of RSS with the
microarray gene signature (R = 0.57,

p < 0.001; classification accuracy 70.1%,
p < 0.001)

Significant correlation of RSS with
disease-specific survival: log-rank p < 0.001

RSS was developed from
data in a 70-patient cohort,

with validation in a separate
cohort (70 for validation of
the signature’s correlation

with micro-array results, 77
for correlation of signature
with disease-free survival).

Jamshidi et al. (2016) [33] Multiphase CT

Correlation of RSS developed in
above study with radiologic

progression free survival (rPFS)
in a cohort of 41 mRCC patients

undergoing CRN and
pre-surgical bevacizumab

None—Purpose of study was to
compare rPFS in the low- vs.

high-RSS cohorts

Patients with a low RSS vs. high RSS had
longer rPFS (25 months vs. 6 months;

p = 0.005) and OS (37 months vs. 25 months;
p = 0.03)
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Table 1. Cont.

Author and Year Imaging Modality Primary Outcome of Interest Machine Learning Algorithm Summary of Results Notes

Udayakumar et al. (2021) [34] Dynamic
contrast-enhanced MRI

Correlation of enhancement
scores for tumors with their TME

expression signature
None

Enhancement-high tumors exhibited
upregulated angiogenesis-related TME

gene signatures, while enhancement-low
areas exhibited higher levels of T-cell

infiltration signatures.
Better PFS with TKI in the

enhancement-high compared to
enhancement-low tumor groups (adjusted
p < 0.0001), but no significant difference in

PFS with IO between the two groups

Cutoff for determining
tumors to have high or low

enhance-
ment/angiogenesis/infiltration

was relative to the median
value of the distribution of
these values in the training

cohort. Authors did not
utilize any previously

published TME signatures
for angiogenesis or

immune infiltration.
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3.1. Key Genetic Mutations in ccRCC

Key gene mutations identified in ccRCC include VHL, PBRM1, BAP1, SETD2, and
KDM5C; most of which are located on the short arm of chromosome 3 [35]. Key genetic
mutations and their radiogenomic characteristics as well as prognostic value are discussed
below, and are summarized in Table 2.

Table 2. Summary of the top 5 most common gene mutations in ccRCC.

Gene Mutation Frequency in
ccRCC (%) Protein Function Clinical and Prognostic

Implications
Associated Features on

CT Imaging

VHL >90% Tumor Suppressor None

Defined tumor margins,
nodular tumor

enhancement, intratumor
vascularity

PRBM1 40–50% Tumor Suppressor

Inconsistent clinical
significance in localized

ccRCC; may be predictive
of better prognosis and

response to immune
checkpoint inhibitors in

metastatic ccRCC

Solid ccRCC

BAP1 10–15% Tumor Suppressor Poor prognosis

Renal vein invasion,
ill-defined tumor margins,

and intratumor
calcificationsAbsent in

multicystic ccRCC

SET2D 10–15% Tumor Suppressor Poor prognosis Inconsistent
Absent in multicystic ccRCC

KDM5C 6–7% Tumor Suppressor Good prognosis Renal vein invasion
Absent in multicystic ccRCC

3.1.1. VHL

VHL gene alteration is the most common mutation in solid ccRCC, with very high
frequency (>90%) of biallelic inactivation due to deletion, mutation, or loss of heterozy-
gosity [36,37]. As normal VHL protein complexes with other proteins to degrade hypoxia-
inducible factor (HIF), VHL loss or mutation results in constitutive activation of HIF,
promoting cell growth and neo-angiogenesis through the VEGF pathway [38]. Despite
its prevalence in ccRCC, the presence of a VHL mutation in patients with ccRCC has no
prognostic value [10,36,39,40].

3.1.2. PBRM1

PBRM1 is the second most commonly mutated tumor suppressor gene in ccRCC
(40–50%), and is often co-deleted with VHL. This gene encodes for a nucleosome re-
modeling complex which limits DNA accessibility to RNA polymerase and transcrip-
tion factors [35,41]. The prognostic value of PBRM1 mutation is unclear, with a recent
meta-analysis suggesting that mutation and/or loss of in PBRM1 is a poor prognostic
factor in localized disease and a good prognostic factor in advanced disease [42,43]. Other
analyses suggest that PBRM1 mutation status may be predictive of response to immune
checkpoint inhibitors [44,45]. PBRM1 mutations are most associated with solid ccRCC on
imaging [20,21].

3.1.3. BAP1

BAP1 gene, present on the short arm of chromosome 3, is mutated in 10–15% of ccRCC,
and is typically mutually exclusive of PBRM1 mutation [35,46]. This tumor suppressor
gene encodes a ubiquitin carboxyl-terminal hydrolase that regulates with downstream



Cancers 2022, 14, 2085 9 of 17

targets involved in cell breakdown and replication, with BAP1 inactivation resulting in
uncontrolled cell proliferation [41,47]. BAP1 mutation has been associated with more
aggressive disease and lower overall survival in ccRCC, with coagulative necrosis and high
Furman grade on tumor pathology [48,49].

Typical radiologic features associated with BAP1 mutation include renal vein invasion,
ill-defined tumor margins, and intratumor calcifications. Of note, BAP1 mutations were
absent in multicystic ccRCC [20,21].

3.1.4. SETD2

As with BAP1, SETD2 is a tumor suppressor gene located on the short arm of chro-
mosome 3, and is mutated in approximately 10–15% of ccRCC [35]. SETD2 loss has been
associated with poor prognosis in nonmetastatic ccRCC [48]. Radiomic analyses note
SETD2 mutation to be absent in multicystic ccRCC, with no consistent CT imaging findings
predictive of SETD2 mutation in solid ccRCC [20,21].

3.1.5. KDM5C

KDM5C is mutated in approximately 6–7% of ccRCC [35]. The prognostic value of
KDM5C remains debated, with one series noting an association with prolonged survival in
metastatic ccRCC [50]. Tumors with KDM5C mutation were consistently associated with
renal vein invasion on CT and absent in multicystic ccRCC [20,21].

3.2. Overview of Radiogenomics Workflow

As mentioned earlier, radiomics refers to the extraction and analysis of quantitative
imaging features from cross-sectional imaging modalities, while radiogenomics refers to
the study of the translational phenotype underlying these imaging features [51]. A typical
radiogenomic workflow is shown in Figure 2. First, the region of interest (ROI), being the
tumor and/or specific tumor sub-region(s), is “segmented”, i.e., outlined in all slices of the
imaging study using manual or semi-automated segmentation software, generating a 3D
rendering of the ROI. Next, specialized software is used to extract hundreds to thousands
of radiomic features from the ROI “agnostically”, with no knowledge of its clinical context
or molecular profile, such as malignant/benign status, RCC subtype, or mutational profile.
Extracted features may include first-order statistics of voxel intensity and distribution, as
well as higher level metrics of tumor shape, texture, and 2D/3D features, extracted from
one or more phases of the imaging study. Next, machine learning (ML) algorithms are
used to process these raw features to identify the subset of features that are predictive of
an outcome of interest, which in radiogenomics would include specific gene mutation,
gene expression profile, or clinical outcome [52]. The radiogenomic model constructed
from this subset of features is usually “trained” using one dataset, followed by external
cross-validation in an independent dataset.
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Figure 2. Flowchart showing typical radiogenomic workflow. Using cross-sectional images, a region
of interest (ROI) that contains either the whole tumor or subregions within the tumor can be identified
and outlined using manual in process called segmentation, using semi-automated, or automated
segmentation software. Some segmentation software, such as 3D Slicer (shown above) allow for
further ROI rendering in 3D dimensions. Quantitative radiomic features are extracted from ROI
using separate or built-in radiomic feature extraction modules. Finally, this data is integrated with
corresponding tumor molecular profile, as well as patient clinical data. These data are then processed
using machine learning algorithms to develop diagnostic, predictive, or prognostic models for
outcomes of interest.

3.3. Mutational Radiogenomic Biomarkers

In this section, we review articles that develop radiogenomic models to predict tumor
gene mutational profile in ccRCC, which mostly focused on the previously discussed
PBRM1 and BAP1 mutations.

Chen et al. (2018) presented a radiogenomic predictive model to predict multiple
ccRCC gene mutations (VHL, PBRM1, and BAP1) using quantitative CT features. To achieve
this, they developed a new multi-classifier multi-objective (MCMO) model to train their
model against multiple objectives (ccRCC mutations of interest) rather than a single objec-
tive. After training their model using an institutional cohort of 57 patients, it was validated
using The Cancer Genome Atlas’s Kidney-Renal Cell Carcinoma (TCGA-KIRC) cohort.
Their model achieved prediction accuracy of 0.81, 0.78, and 0.90 for VHL, PBRM1, and
BAP1 genes, respectively, with AUC ≥ 0.86, sensitivity ≥ 0.75, and specificity ≥ 0.80 [22].

Focusing on PBRM1 mutation, which is a likely good prognostic factor in advanced
ccRCC [42,53], Kocack et al. (2019) developed two predictive radiogenomic models using
artificial neural network algorithm (ANN) and RF algorithms to differentiate ccRCC tumors
by PBRM1 mutations status in the TCGA-KIRC cohort (45 patients; 29 without and 16 with
PBRM1 mutation). Their ANN model demonstrated an accuracy of 88.2% (AUC = 0.925)
compared to 95.0% (AUC = 0.987) with the RF algorithm. However, they did not directly
evaluate their model’s correlation with clinical outcomes [24].

The same group (Kocak et al., 2020) then developed an RF-based radiogenomic model
for the prediction of BAP1 mutation status, which carries poor prognostic implications
in ccRCC [20,21,25], in a subset of 65 patients from TCGA-KIRC (13 with and 52 without
BAP1 mutation). This model correctly classified BAP1 mutation status in 84.6% of cases
(AUC = 0.897) [20,21,25]. The same algorithm (RF) and dataset (TCGA-KIRC) were used by
Feng et al. (2020) to also predict BAP1 mutation status, but using different segmentation
and radiomic feature extraction platforms; the model accurately classified 83% (AUC = 0.77)
of BAP1 mutation status with a sensitivity of 0.72, specificity of 0.87, and precision of
0.65 [26]. Finally, targeting BAP1 status as well, Ghosh et al. (2015) developed four imaging
phase-specific BAP1 classifiers for the non-contrast, cortico-medullary, nephrographic, and
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excretory phases of CT studies from the TCGA-KIRC cohort (78 patients). Interestingly,
their model utilized 3D feature extraction to evaluate intra-tumoral heterogeneity (ITH),
which they hypothesized reflected BAP1 mutational status [27]. In contrast, none of the
previously discussed studies considered ITH in their model design, despite its known
prevalence and influence on clinicopathological and molecular assessment of ccRCC, as
one tumor area’s molecular profile may be different from another’s, with downstream
implications for the extracted radiomic features in these models [54,55].

3.4. Beyond Gene Mutations: Transcriptomic and Epigenetic Radiogenomic Biomarkers

As discussed earlier, the clinical relevance of some of the most common mutations
in ccRCC remains unclear, particularly given the low prevalence of some of these mu-
tations, limiting their potential as clinical biomarkers [20,21,35–39,41–50,56]. In contrast,
transcriptional (gene-expression based) signatures have been shown to be better tools for
classifying ccRCC into clinically-relevant molecular subtypes [57,58]. Such subgrouping
classifications include clear cell type A (ccA) and clear cell type B (ccB) described by Bran-
non et al. using microarray data. Using these tumor classifications, they noted a prognostic
difference between the two groups; ccA was significantly associated with better survival
compared to ccB [8]. As transcriptomic research shifted from microarray to next-generation
RNA-sequencing (RNA-Seq) technology, Brooks et al. developed a 34-gene expression
signature, ClearCode34, for the classification of localized ccRCC tumors to ccA and ccB
categories using RNA-Seq data [57]. Another attempt at transcriptomic profiling of ccRCC
performed by the TCGA group using unsupervised clustering of RNA-Seq data identified
four subgroups, m1–m4. Supervised clustering of these subgroups against ccA/ccB sub-
grouping noted cluster m1 to correspond to ccA, m2–m3 to correspond to cluster ccB, and
m4 to correspond to the 15% of tumors that did not align with either ccA or ccB. As with
ccA, the m1 subgroup had a survival advantage over m2–m4, sharing some of its genes
with the PBRM1 mutation group and functions within the chromatin remodeling process.
In contrast, the m3 subgroup harbored mutations of PTEN and CDKN2A, while patients
within the m4 subgroup exhibited a higher frequency of BAP1 mutations [35]. Furthermore,
these subtypes were associated with distinct radiomic features; the m1 subgroup had
well-defined tumor margins (vs. ill-defined, OR = 2.104; CI 1.024–4.322), while the m3
subtype was less frequently associated with well-defined tumor margins (OR = 0.421; CI
0.212–0.834) and had more collecting system invasion (OR = 2.164; CI 1.090–4.294) and
renal vein invasion (OR 2.120; CI 1.078–4.168). There were no significant CT findings with
the m2 or m4 subgroups [7].

In this section, we explore radiogenomic models that correlate radiologic tumor “phe-
notype” to its underlying transcriptomic and epigenetic molecular profile, rather than
genetic mutational profile. In addition to their ability to reflect variations in individual
tumor gene expression and hypermethylation patterns, these models are potentially more
applicable to clinical practice than radiogenomic models that predict only genomic mu-
tational profile, given the ability of their targeted molecular expression profiles to better
reflect survival and therapeutic outcomes [29,30].

3.4.1. Transcriptomic Radiogenomic Biomarkers

Using the aforementioned transcriptomic ccA/ccB ccRCC subtype, Yin et al. developed
a model utilizing radiomic features extracted from MRI/PET data to classify ccRCC into
ccA or ccB subtypes, using sparse partial least squares discriminant analysis (SPLS-DA) to
build two predictive models—one with the radiomic features alone, and one incorporating
clinical characteristics, mRNA, microvascular density, and molecular subtype information.
The correct classification rate was 87% vs. 95.6% using the radiomic signature alone vs.
the combined signature, respectively [29]. However, the study utilized a small cohort
(23 specimens from eight primary ccRCC patients), and PET imaging is not usually used
for evaluation nor surveillance of localized ccRCC.
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3.4.2. Epigenetic Radiogenomic Biomarkers

At the epigenetic level, DNA methylation, particularly the runt-related transcription
factor 3 (RUNX3) gene, has been correlated with overall survival [30]. Cen et al. (2019)
evaluated the correlation between RUNX3 methylation levels and certain imaging features
on CT in ccRCC. Among somatic CT findings, margin status (ill vs. well-defined; OR 2.685;
CI 1.057–6.820) and intratumoral vascularity (present or absent; OR 3.286; CI 1.367–7.898)
were significant independent predictors of high RUNX3 methylation levels on multivariate
logistic regression [30].

3.5. Beyond Predicting Molecular Profile: Radiogenomic Models as Clinical Biomarkers

While the above reviewed studies present impressive analyses and methods for infer-
ring tumor biology using radiomic features, the clinical relevance of their proposed features
and models remains unproven without direct assessment of their ability to predict clinical
outcomes. In this section, we review a few notable radiogenomic studies that go beyond
correlating only radiomic and molecular features to also demonstrating a direct correlation
between their radiogenomic biomarkers with clinical outcomes for ccRCC.

Focusing on radiologic features predictive of survival outcomes, Huang et al. per-
formed radiogenomic analysis of CT imaging for ccRCC cases with corresponding RNA
expression data in the TCGA-KIRC cohort. LASSO-COX regression was used to identify
prognostic radiomic features and prognostic gene signatures. An RF algorithm was then
used to combine prognostic and radiomic features into a radiogenomic prognostic model.
The radiogenomic model outperformed the radiomic features-only model at predicting
overall survival at 1, 3, and 5 years (average AUCs for 1-, 3-, and 5-year survival of 0.814 vs.
0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751, respectively) [31].

In another study, Jamshidi et al. constructed a radiogenomic risk score (RSS) using a
cohort of patients who underwent nephrectomy with corresponding micro-array-derived
gene expression data. Following CT imaging feature extraction, multivariate regression was
used to identify features most predictive of variation in supervised principal component
(SPC) gene expression analysis. These features were used to constitute their RSS, which
was validated in a separate patient cohort (70 for validation of the signature’s correlation
with micro-array results, 77 for correlation of signature with disease-free survival). The
RRS exhibited a statistically significant correlation with micro-array SPC variation (R = 0.57,
p < 0.001, classification accuracy 70.1%, p < 0.001) and disease-specific survival (log-rank
p < 0.001), accounting for stage, grade, and performance status (multivariate Cox model
p < 0.05, log-rank p < 0.001) [32]. In a separate study, the RRS was validated in a cohort
of 41 mRCC patients undergoing cytoreductive nephrectomy (CRN) and pre-surgical
bevacizumab, noting that it was able to stratify radiological progression-free survival (rPFS)
in this cohort; patients with a low RSS vs. high RSS had longer rPFS (25 months vs. 6 months;
p = 0.005) and OS (37 months vs. 25 months; p = 0.03) [33].

Focusing on micro-RNA (miRNA) expression in RCC, Marigliano et al. (2019) eval-
uated the correlation between a variety of radiomic features extracted from a cohort of
20 ccRCC patients, and their expression levels of selected microRNAs. Specifically, they
examined the correlation of these features with miR-21-5p, miR-210-3p, miR-185-5p, miR-
221-3p, and miR-145-5p, which had been shown to correlate with clinical outcomes in
ccRCC [59]. They found no significant correlation between their extracted features and
expression of any of their evaluated miRNAs [28].

While the molecular profiling of tumors using transcriptomic and epigenetic signa-
tures offers more clinically meaningful biomarkers than genomic mutational signatures, it
overlooks the critical role of the tumor’s stromal and immune background, collectively re-
ferred to as the tumor microenvironment (TME), in the prognosis and therapeutic response
of ccRCC. This role has been increasingly recognized with the rise of immunotherapy
(IO) regimens, which target the immune component of the TME as monotherapy or in
combination with TKI agents, which target the angiogenic component of the TME, as
well [60–63].
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In this regard, Udayakumar et al. (2021) utilized dynamic contrast-enhanced MRI
(DCE-MRI) imaging to identify areas of high and low colocalized enhancement within tu-
mor regions of 49 ccRCC patients undergoing DCE-MRI prior to nephrectomy, followed by
targeted sampling and RNA-sequencing of nephrectomy specimen regions corresponding
to these areas. They found enhancement-high tumors to exhibit upregulated angiogenesis-
related TME gene expression signatures, while enhancement-low areas exhibited higher
levels of immune (T-cell infiltration) TME signatures, confirmed by immunohistochem-
ical analysis. They then validated their model’s ability to predict response to TKI or
immunotherapy (IO) treatments in a cohort of 19 patients with metastatic ccRCC, not-
ing better PFS with TKI in the enhancement-high compared to enhancement-low tumor
groups (adjusted p < 0.0001), but no significant difference in PFS with IO between the two
groups [34].

4. Discussion

In this review, we provided an overview of radiogenomic studies in ccRCC, the most
common subtype of RCC, and renal malignancies in general. While the majority of studies
focused on developing models for the prediction of tumor gene mutational profiles, we
noted a shift towards the prediction of gene expression patterns and epigenetic changes
within the tumor as well as the tumor microenvironment, which provide better insights
into tumor biology and potential therapeutic response than isolated gene mutation pro-
files. A minority of the reviewed models were also shown to be predictive of relevant
clinical outcomes, such as cancer-specific survival and response to systemic therapy in
advanced ccRCC. Such models may complement the management of localized renal tu-
mors to confirm whether the tumor exhibits high- or low-risk features that may warrant
more aggressive management vs. surveillance, and in advanced ccRCC to determine the
optimal systemic treatment regimens based on radiogenomic assessment of the tumor and
its microenvironment.

However, the clinical applicability of these models remains limited by several factors.
First, all the predictive models presented by the reviewed studies were developed using
relatively small cohorts, mostly utilizing the same publicly available cohort (TCGA-KIRC),
potentially overfitting their models to this cohort, with only a few performing external vali-
dation in independent cohorts. Second, the quality of CT studies is dependent on a variety
of technical factors, such as the CT scanner, acquisition mode, and voxel reconstruction
algorithms, thereby affecting the quality of extracted radiomic data. Third, the extracted
radiomic features come from segmented tumor images, which are usually manually or
semi-automatically delineated by a human user—a process that is inherently subjective and
liable to inter-observer variability. Fourth, there are no standardized protocols or software
tools for radiomic feature extraction, with the concern that the hundreds to thousands of
radiomic features extracted by one software package are often redundant and difficult to
replicate by other software packages [64], thus limiting the external validity of the models
developed from these features. The Image Biomarker Standardization Initiative is a recent
attempt at addressing this issue, establishing a standardized set of unique radiomics fea-
tures [65], although compliance with this initiative has yet to be seen in radiogenomics
publications. This lack of a unified radiomic feature extraction protocol or terminology
limits our ability to compare the subsets of predictive radiomic features across different
models, which consequently limits the ability to identify any consistent radiomic features
across different models. Furthermore, it hinders attempts to identify the biologic processes
that may underlie changes in these radiomic features. Fifth, most of the models did not
consider intra-tumoral heterogeneity, despite its known influence on clinicopathological
and molecular assessment of ccRCC, with different tumor regions expressing different
pathologic phenotypes and molecular profiles, with implications for therapeutic response.
Therefore, a radiogenomic model that was trained to treat the entire tumor region as a single
homogenous entity may not accurately predict a tumor’s molecular profile or its correlated
clinical outcomes. Finally, while the ultimate measure of any biomarker is to show reli-
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able and independent correlation with clinical outcomes, complementing standard-of-care
biomarkers and predictive tools, most of these studies focused on developing models to
predict molecular profiles without directly demonstrating clinical relevance as an inde-
pendent biomarker of key prognostic and therapeutic outcomes, or in combination with
established predictive models and nomograms. These are critical limitations that must be
addressed for radiogenomics to be reliably used as a tool in clinical practice.

Despite these limitations, the above studies demonstrate the potential of radiogenomics
as a non-invasive biomarker of tumor biology, utilizing complex computational tools to
identify radiologic tumor features that correlate with genomic, transcriptomic, and/or
epigenetic features of the tumor, and their downstream clinical implications.

5. Conclusions

The field of radiogenomics is a potentially promising tool in constructing personalized
cancer care, offering a novel non-invasive translational biomarker that can be used for
molecular profiling of clear cell renal carcinoma. However, this field remains relatively
immature, and all the reviewed studies in the field rely on retrospective analyses, with
no large-scale prospective trials, a critical requirement for the implementation of this
technology in clinical practice.
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