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Hippocampal hyperactivity has been proposed as a biomarker in schizophrenia. However, there is a debate
whether the CA1 or the CA2/3 subfield is selectively affected. We studied 15 schizophrenia patients and 15
matched healthy control subjects with 3T steady state, gadolinium-enhanced, absolute cerebral blood volume
(CBV) maps, perpendicular to the long axis of the hippocampus. The subfields of the hippocampal formation
(subiculum, CA1, CA2/3, and hilus/dentate gyrus) weremanually segmented to establish CBV values. Comparing
anterior CA1 and CA2/3 CBV between patients and controls revealed a significant subfield-by-diagnosis interac-
tion. This interaction was due to the combined effect of a trend of increased CA1 CBV (p = .06) and non-
significantly decreased CA2/3 CBV (p = 0.14) in patients relative to healthy controls. These results support the
emerging hypothesis of increased hippocampal activity as a biomarker of schizophrenia and highlight the impor-
tance of subfield-level investigations.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The hippocampus is dysfunctional in schizophrenia (Weiss, 2003;
Ongür, 2006; Ragland, 2001; Ledoux, 2013; Heckers, and Konradi,
2010). Meta-analyses have concluded that schizophrenia is associated
with memory impairment (Heinrichs, and Zakzanis, 1998; Aleman,
1999) and that hippocampal recruitment is impaired during the perfor-
mance of memory tasks (Weiss, 2003; Heckers, 1998). However, a
notable limitation of such functional studies is that individuals with
cognitive deficits may have difficulty performing tasks in a scanning
environment.

To circumvent issues associatedwith cognitive deficits and the limits
in the interpretation of neural origins of the BOLD signal (Arthurs,
and Boniface, 2002), several investigators have measured baseline
hippocampal activity using non-BOLD methods. Initial baseline 18F-
deoxyglucose positron emission tomography (PET) studies of medial
temporal lobe activity in schizophrenia provided mixed results
(i.e., decreased (Nordahl, 1996; Tamminga, 1992) or increased (DeLisi,
1989; Gur, 1995) in schizophrenia). However, several 15O-PET and
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Single Photon Emission Computed Tomography (SPECT) studies of re-
gional cerebral blood flow (CBF) have established increased hippocam-
pal baseline activity in schizophrenia (Heckers, 1998; Lahti, 2009; Lahti,
2003; Friston, 1992;Malaspina, 2004). A recent resting-state BOLD fMRI
study revealed greater right hippocampal activity in schizophrenia by
measuring intrinsic signal intensity fluctuations (Tregellas, 2014).

Hippocampal hyperactivity has been proposed as a biomarker for
schizophrenia (Tregellas, 2014), but it is unclear whether it affects all
hippocampal subfields. An initial study by Schobel reported increased
cerebral blood volume (CBV) in subfield CA1 only (Schobel, 2009).
This finding was limited to a single slice of the hippocampal formation,
averaged across the right and the left hemisphere. A follow-up study by
the same group explored CBV changes along the long axis of the hippo-
campal formation in a cohort at high risk for psychosis and demonstrat-
ed that increased left anterior CA1 CBV spreads to the subiculum after
psychosis onset (Schobel, et al., 2013).

In contrast, Tamminga predicted increased CBV in the CA3 subfield,
as the downstream result of dentate gyrus pathology (Tamminga,
2012). This model initially emerged as a way to bring together several
findings in schizophrenia: smaller hippocampal volume, impaired acti-
vation during declarative memory tasks, increased baseline hippocam-
pal perfusion, and reduced dentate gyrus neurogenesis and efferent
signaling (Tamminga, Stan, and Wagner, 2010). They hypothesized
that reduced pattern separation (i.e., the ability to distinguish between
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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similar events at different time periods) and greater pattern completion
(i.e., the retrieval of information based on partial cues) result in the
production and retrieval of incorrectly coded memories, leading to
psychosis.

Taken together, the two competing models predict increased CBV
either in CA1 or CA2/3.

Here we performed high spatial resolution, contrast-enhanced, T1-
weighted steady state MRI in patients with schizophrenia and healthy
controls to test these two opposingmodels of subfield-specific hyperac-
tivity in the anterior hippocampus in schizophrenia. This method
provides the necessary high spatial (sub-millimeter) resolution to
parse out subfields of the hippocampal formation (Small, 2011) and
has been implemented in our lab to characterize CBV gradients in differ-
ent subfields (Talati, 2014).

2. Methods

2.1. Participants

15 healthy subjects and 15 patients with schizophrenia or schizo-
affective disorder provided informed consent in a manner approved
by the Vanderbilt Institutional Review Board. Patients and healthy con-
trols were group-matched on age, gender, race, education, and parental
education. Subjects were recruited from the Vanderbilt Psychotic Disor-
ders Program or the local community and were paid for their participa-
tion. All subjects underwent a Structural Clinical Interview for DSM-IV
Axis I disorders (SCID, (First et al., 2002)) to confirm the diagnosis,
and healthy controls had no major psychiatric, neurological, or medical
illness. Serum creatinine was measured in all participants before
and after contrast administration to minimize the potential risk of
nephrogenic systemic fibrosis.

2.2. Cerebral blood volume mapping

A Phillips 3T Achieva scannerwith an 8 channel SENSE head coil was
used for imaging. A 3D T1 FFE sequence (Lin, Celik, and Paczynski, 1999)
was implemented to acquire T1-weighted pre- and post-contrast im-
ages with the following parameters: TR = 20 ms, TE = 3.98 ms, Field-
of-View= 256 × 256 mm2, Spatial resolution = 0.80 × 0.80 × 4 mm3,
slices = 30, SENSE factor = 2.5. A power injector (Medrad®, PA, USA)
was used for contrast administration (Magnevist® — Gadopentate
dimeglumine, Bayer Schering Pharma, Germany, 0.1mmol/kg) and sub-
sequent 40 ml saline flush through an 18G needle in the antecubital
vein. After contrast administration, post-contrast images were acquired
approximately 4 min later. To allow for accurate segmentation of the
hippocampal subfields (Moreno, 2007), images were acquired perpen-
dicular to the long axis of the hippocampus. For each subfield, the re-
gions of interest (ROIs) were centered to avoid border regions with
neighboring subfields. We compared the fractional increase in tissue
signal after the contrast agent had thoroughly perfused themicrovascu-
lature and equilibrated in the blood.

2.3. Analysis

2.3.1. CBV calculations
AFNI (Cox, 1996) was used to correct for subject motion in pre- and

post-contrast steady state images. Absolute CBV (units = ml blood/ml
parenchyma) was calculated using the following equation:

CBV ¼ Spar;post−Spar;pre
Sss;post−Sss;pre

� 100 ð1Þ

where Spar,post − Spar,pre is the difference between the post- and pre-
contrast signals in the parenchyma and Sss,post − Sss,pre denotes the dif-
ference between the post- and pre-contrast signals in the superior
sagittal sinus (Lin, Celik, and Paczynski, 1999). To minimize
contribution from large epicortical vessels, a 10% regional CBV threshold
was used (i.e., voxels with CBV values greater than 10 were excluded)
(Lin, Celik, and Paczynski, 1999).

2.3.2. Hippocampal segmentation
The T1-weighted pre-contrast image was used for manual segmen-

tation of the allocortical subfields of the hippocampal formation:
subiculum, CA1, CA2/3, and hilus/dentate gyrus (referred to here as
dentate gyrus) (Gloor, 1997). The post-contrast image was used to
exclude large epicortical vessels. From manual segmentation, 5 ROIs
were generated for each slice: hippocampal formation, subiculum,
CA1, CA2/3, and dentate gyrus. All segmentations were performed by
one blinded rater (PT) and verified by another blinded rater (SR). If
there were any discrepancies, the ROI was drawn by both raters until
a consensus was reached.

The uncus is defined in coronal sections as more than one cut
through the hippocampal formation andwas used to delineate between
the anterior and posterior regions (Woolard, and Heckers, 2012;
Duvernoy, and Bourgouin, 1998). The coronal series for each subject
was numbered and aligned across all subjects using the presence or
absence of the uncus as a guide. From this method, three slices (slices
two–four) were labeled as anterior and three slices (slices five–seven)
were labeled as posterior for the whole hippocampal formation,
subiculum, CA1 subfield, and CA2/3 subfields. Of note, the dentate
gyrus CBVanalysis only included slices three–seven because the dentate
gyrus did not consistently extend into the first two slices of the anterior
region. The anterior–posterior boundary was denoted by the transition
between slice four to slice five. The final five hippocampal regions of
interest were bilateral hippocampal formation, subiculum, CA1, CA2/3,
and dentate gyrus (see Fig. 1 for segmentation in a representative
subject). CBV values were generated for each region and used in the
statistical analyses.

2.3.3. Statistical analyses
Prior to statistical analyses, data were inspected to detect multivari-

ate outliers; one subject in each group was identified as an outlier and
removed from the analytic dataset. The remaining 14 healthy controls
and 14 patients were group-matched on age, gender, race, subject edu-
cation, and parental education (see Table 1). The Positive And Negative
Symptom Scale (PANSS) was used to assess patient symptom severity
across positive, negative, and general psychopathology (Kay, Fiszbein,
and Opler, 1987) and is reported in Table 1. 12 patients were taking a
variety of atypical (i.e., aripiprazole, olanzapine, quetiapine, asenapine)
and typical (i.e., haloperidol, risperidone, thiothixene) antipsychotic
medications at the time of the study. Chlorpromazine equivalent doses
were calculated from an international consensus study by Gardner
(2010). The chlorpromazine equivalent dose could not be calculated
for one subject treated with asenapine, and two subjects were not
taking any antipsychotic medications at the time of the study.

To determinewhether hemisphere should be included in themodel,
we performed a preliminary repeated-measures ANOVA to test for
hemisphere main effects or interactions. None of the hemisphere tests
were significant (all p N 0.10); therefore all subsequent analyses were
performed on average (left/right) CBV values.

To test the primary hypothesis of diagnosis differences in anterior
subfield CBV activity, we performed a repeated-measures ANOVA. Diag-
nosis was the between-subject factor and subfield (CA1 or CA2/3) was
the within-subject factor. Age and gender were matched between
groups and were not included as covariates in the ANOVA. We calculat-
ed effect sizes (Cohen3s d (Cohen, 1988)) and followed upwith post-hoc
comparisons to aid in interpretation of findings. Post-hoc one-tailed
t-tests then investigated group differences in the anterior three slices
of the two subfields. As an exploratory analysis, we also tested for
group differences in the anterior slices of the subiculum and dentate
gyrus. The Statistical Package for Social Sciences software (SPSS Version
20.0. Armonk, NY: IBM Corp.) was used for statistical analyses.



Fig. 1.Manual segmentation of the hippocampal formation and subfields for a representative subjectwith a structuralMRI (radiological orientation). Left: Anterior hippocampal formation
(slice 2) outlined in the black boxwith an inset series of slices through the anterior region. The dark red ROI in slices 2 and4 illustrates thehippocampal formation ROIwhile slice 3 denotes
the segmented subfields (green= subiculum, red= CA1, yellow= CA2/3, and blue= dentate gyrus). Right: Posterior hippocampal formation (slice 5) outlined in the black box with an
inset series of slices through the posterior region. The dark red ROI in slices 5 and 7 illustrates the hippocampal formation ROI while slice 6 denotes the segmented subfields (green =
subiculum, red = CA1, yellow= CA2/3, and blue = dentate gyrus).
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3. Results

The CBV values ranged from 2.82 to 3.37 (see Table 2) andwere sim-
ilar to values previously reported for the hippocampus (Kuppusamy,
1996).

To test for anterior CA1 versus CA2/3 hyperactivity in schizo-
phrenia, we performed a repeated-measures ANOVA. The resulting
analysis showed a diagnosis-by-subfield interaction (F(1,26) =
5.55, p b 0.05, d = 0.176) and no main effect of subfield (F(1,26) =
2.72, p N 0.10). Healthy controls had significantly lower CBV in CA1 rela-
tive to CA2/3 (mean = 2.57 versus mean = 3.07; F(1,13) = 12.04,
p b 0.05). Patients with schizophrenia failed to show this pattern
(p N 0.10): CBV was similar in CA1 (mean = 2.90) and CA2/3 (mean =
2.81). Post-hoc one-tailed t-tests within the two subfields revealed a
trend for patients with schizophrenia to have increased CBV relative to
Table 1
Subject Demographics Fourteen controls andpatientswith schizophreniawere group-matched
on age, gender, race, subject education, and parental education. CPZ denotes chlorpromazine;
PANSS denotes Positive and Negative Syndrome Scale.

Controls
(n = 14)

Schizophrenia
(n = 14)

Statistic p-value

Age (yrs ± stdev) 34.57 ± 9.32 32.93 ± 10.89 t(26) = 0.43 0.67
Males 9 9 Χ2(1) = 0 0.65
Race (W/B) 10/4 9/5 Χ2(1) = 0.16 0.50
Subject Edu.
(yrs ± stdev)

15.79 ± 2.69 14.07 ± 2.69 t(26) = 1.69 0.10

Avg. Parental Edu.
(yrs ± stdev)

14.57 ± 1.86 13.69 ± 2.13 t(26) = 1.18 0.25

Duration of Illness
(yrs ± stdev)

- 8.47 ± 7.92 -

CPZ equivalent
(mg/day)

- 316.36 ± 170.43 -

PANSS - Positive: 15.93± 7.13
Negative: 16.00 ± 6.88
General: 29.64 ± 7.35

-

controls in CA1 (t(26) = 1.60, p = 0.06, d = 0.63; Fig. 2). In contrast,
CBV in CA2/3 was slightly decreased in patients with schizophrenia
(p= 0.14, d= 0.43).

To determine whether the subfield-by-diagnosis difference was
consistent across the anterior hippocampal formation, or localizedwith-
in a specific slice, we performed two-sample, one-tailed t-tests within
each of the three anterior slices. For the CA1 subfield, patients with
schizophrenia had increased CBV relative to controls in two of the
three slices (see Fig. 3A): slice 2 (trend, t(25) = 1.591, p = 0.06) and
slice 4 (t(26)=1.904, p b 0.05). For the CA2/3 subfield, healthy controls
had increased CBV relative to patients with schizophrenia in slice 4
(trend, t(26) = 1.553, p = 0.07, Fig. 3B).

We then performed an exploratory investigation to test for group
differences in the anterior subiculum and dentate gyrus. For the
subiculum, healthy controls had an average CBV of 4.08, 3.63 and 2.85
for slices 2–4, while patients with schizophrenia had a mean CBV of
4.34, 3.78, and 3.21. Post-hoc two-tailed t-tests demonstrated no signif-
icant group differences (all p N 0.10; see Fig. 3C). For the dentate gyrus,
healthy controls had an average CBV of 3.44 and 3.03 for slices 2 and 3,
while patients had a mean CBV of 3.45 and 3.17. There were no group
differences in the dentate gyrus (all p N 0.10; see Fig. 3D).

Finally,we testedwhether the anterior CA1 CBV correlatedwith pos-
itive, negative, or general psychopathology, or the dose of antipsychotic
medication. In the 14 patients, the anterior CA1 CBV did not correlate
with positive (r = 0.18, p = 0.53), negative (r = –0.12, p = 0.69), or
general (r = –0.03, p = 0.91) psychopathology as assessed by the
PANSS. Three of the fourteen patients were not on antipsychotics
or the chlorpromazine equivalent dose could not be calculated. Of the
remaining 11 patients, there was no significant correlation between
dose of antipsychotic medication and anterior CA1 (r=0.46, p=0.16).

4. Discussion

We used high resolution, steady state, contrast-enhanced T1-
weighted imaging to test for anterior CA1 versus CA2/3 hippocampal sub-
field hyperactivity in schizophrenia. Here we report a significant

image of Fig.�1


Table 2
Cerebral blood volume (CBV) values for each of the 5 regions of interest (ROIs). CBV values
(mean ± standard deviation; units = ml blood/ml parenchyma) averaged across
hemisphere and along the long axis of the hippocampus for each manually segmented
ROI. HF denotes hippocampal formation, and DG denotes dentate gyrus.

HF Subiculum CA1 CA2/3 DG

Control 3.37 ± 0.18 3.11 ± 0.60 2.67 ± 0.16 2.98 ± 0.23 3.18 ± 0.16
Schizophrenia 3.40 ± 0.28 3.29 ± 0.66 2.88 ± 0.15 2.82 ± 0.13 3.09 ± 0.24
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diagnosis by subfield interaction due to the combined effect of a trend of
increased CA1 CBV (p= .06) and non-significantly decreased CA2/3 CBV
(p= 0.14) in patients relative to healthy controls.

The hippocampal formation integrates multimodal information for
the encoding of new and the retrieval of old memories. The entorhinal
cortex sends glutamatergic fibers directly to the CA1 subfield (direct
pathway) or indirectly to the CA1 subfield via the dentate gyrus and
CA3 subfields (indirect pathway) (Amaral, and Witter, 1989). Any dys-
function along these two pathways could lead to increased CA1 CBV.
Our results support the hypothesis of increased CA1 CBV in schizophre-
nia (Schobel, 2009; Schobel, et al., 2013; Small, 2011), but do not
support the hypothesis of increased CA3 metabolism in the context of
dentate gyrus pathology in schizophrenia (Tamminga, 2012).

Schobel reported increased CBV in the CA1 subfield, which was cor-
relatedwith positive and negative symptoms of schizophrenia (Schobel,
2009). In a follow-up study, they showed that increased CBVwas limit-
ed to a single slice in the left anterior CA1 in high-risk patients which
spread to the subiculum after psychosis onset (Schobel, et al., 2013).
We replicate the CBV increase in schizophrenia selectively in CA1, but
do not find it to be limited to the left hemisphere and do not find it to
be correlated to positive or negative symptoms.

Shape-based analyses also have reported structural findings in the
CA1 subfield. One study in first-episode schizophrenia patients demon-
strated regional volume reductions in the left anterior andmidbody CA1
(Narr, 2004). Another imaging study has linked left anterior CA1 defor-
mity to antipsychotic dosage and symptom severity in a schizophrenia
cohort (Zierhut, 2013). Together, these studies suggest structural and
functional alterations in the anterior CA1 in schizophrenia. The CA1
subfield supports novelty detection by comparing information from
the indirect pathway (i.e., entorhinal cortex to dentate gyrus to CA3 to
CA1) to information received by the direct pathway (i.e., entorhinal cor-
tex to CA1) (Vinogradova, 2001; Knight, 1996; Li, 2003; Lisman, and
Otmakhova, 2001). Hippocampal hyperactivity can lead to the forma-
tion of delusions and hallucinations through the incorrect formation
Fig. 2. Increased CBV in the CA1 but not CA2/3 subfield in schizophrenia. For each subject,
CA1 or CA2/3 CBV values were collapsed across hemisphere and anterior slices. A
repeated-measures ANOVA illustrated a significant diagnosis by slice interaction
(p b 0.05). A post-hoc one-tailed t-test shows a trend towards increased CBV in the CA1
subfield (p = 0.06) but not CA2/3 subfield (p = 0.14). Error bars denote standard error
of the mean.
and association of memories retrieved by the hippocampal formation
(Lisman, 2010; Ewing, and Winter, 2013).

Severalmechanisms of diseasemay lead to hippocampal hyperactiv-
ity in schizophrenia. Postmortem and imaging studies have provided
support for N-methyl-D-aspartate receptor (NMDAR) hypofunction
(Kristiansen, 2007; Théberge, 2002), dopamine dysregulation (Abi-
Dargham, 2004; Laruelle, 1999), and gamma-aminobutyric acid-
(GABA-)ergic interneuron loss (Akbarian, and Huang, 2006; Konradi,
2011; Nakazawa, 2012; Zhang, and Reynolds, 2002). These threemech-
anisms have been integrated into a comprehensivemodel of hippocam-
pal dysfunction in schizophrenia (Lisman, 2008). Hippocampal
interneurons are more sensitive than pyramidal neurons to NMDAR
blockade (Lisman, 2008; Grunze, 1996; Jones, and Bühl, 1993; Bolton,
2012). In addition, the number of fast-spiking parvalbumin-positive in-
terneurons in CA1 is decreased in schizophrenia (Konradi, 2011). Since
hippocampal pyramidal neurons are under tonic inhibition by this in-
terneuron subtype, decreased interneuron function (either through
cell loss or pyramidal cell-sensing activity via NMDARhypofunction) re-
sults in the disinhibition of pyramidal neurons in CA1 (which can be
registered as increased CBV). In animalmodels, hyperactivity of CA1 py-
ramidal neurons results in decreased inhibition of ventral tegmental
area (VTA) neurons (Blaha, 1997; Legault, and Wise, 1999; Lodge,
2011), which results in dopaminergic dysfunction and may lead to the
positive and negative symptoms of schizophrenia. This prediction is
consistent with the finding of CA1 CBV to be correlated positively with
delusions and negatively to social dysfunction and avolition in a prodro-
mal cohort (Schobel, 2009). In addition, there is direct evidence that the
experience of auditory hallucinations is linked to increased hippocam-
pal activity (using BOLD fMRI (Dierks, 1999) and SPECT with a 99m-
Technetium exametazine radiotracer (Musalek, 1989), for review, see
(Weiss, and Heckers, 1999)).

We also studied CBV in the subiculumand the dentate gyrus. Since the
subiculum serves as themain outflow of the hippocampus, an increase of
CBV in CA1 could result in an increase of CBV in the subiculum. Schobel
et al. reported increased subiculum CBV at psychosis onset (Schobel,
et al., 2013) but, similar to our findings, did not report increased
subiculum CBV in chronic schizophrenia patients (Schobel, 2009). This
set of results could be due to structural changes in the subiculum after
psychosis onset (Rosoklija, 2000).Wehave recently demonstrated a sig-
nificant anterior–posterior CBV gradient in the subiculum (Talati,
2014) and further studies are needed to elucidate the role of the
subiculum in first-episode psychosis and chronic schizophrenia.

Small sample size is the main limitation of our study and the results
should be considered preliminary. But the sample size is comparable to
the original study of hippocampal CBV in schizophrenia (18 schizophre-
nia patients and 18 healthy controls), and we confirm the original find-
ing of increased CA1 CBV (Schobel, 2009) in schizophrenia. We were
able to match the control group to the patient group on several param-
eters, including age, race, and parental education. Most of our patients
were treated with antipsychotic medication at the time of the study.
However, our studies are consistent with those by Schobel et al. and
indicate that antipsychotic medications are not likely to affect resting-
state CBV (Schobel, 2009; Schobel, et al., 2013).

In conclusion, we report a subfield by diagnosis interaction due to the
combined effect of a trend of increased CA1 CBV (p = .06) and non-
significantly decreased CA2/3 CBV (p = 0.14) in patients relative to
healthy controls. Future studies should investigate the evolution of hyper-
activity in hippocampal subfields in the early stages of psychosis and their
contribution to the generation of the signs and symptoms of psychosis.
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Fig. 3. IncreasedCBV in the anterior CA1 in schizophrenia. For each subject, subfield CBV valueswere collapsed acrosshemisphere for each slice along the long axis of each subfield.Post-hoc
one-tailed t-tests illustrate increased CA1 CBV in slices two (# p=0.06) and four (* p b 0.05) (panel A) and decreased CA2/3 CBV in slice 4 (# p=0.07) (panel B) in schizophrenia. There
were no significant group CBV differences in the subiculum (panel C) and dentate gyrus (panel D). Error bars denote standard error of themean. A/P refers to anterior/posterior boundary.
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