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e3 nanorods as nanotheranostic
agents for photoacoustic imaging and
photothermal therapy in NIR-I bio-windows†

Botao Qu, ‡a Xiaoyan Li,‡a Xiaomin Zhang,a Weihua Lib and Ruiping Zhang*a

Antimony selenide (Sb2Se3) as a simple, low toxicity, low-cost p-type semiconductor material with broad

absorbance ranging from the UV to the NIR region has many potential applications in photovoltaic,

thermoelectric, and phase-change memory devices. Owing to these excellent properties, Sb2Se3 nanorods

were firstly synthesized with triphenylantimony and dibenzyldiselenide under solvothermal conditions. In

order to enhance the biocompatibility of the Sb2Se3 nanorods, polyvinylpyrrolidone (PVP) was coated onto

the surface of the Sb2Se3 nanorods to form PVP-coated Sb2Se3 nanorods. The cell viability of PVP-coated

Sb2Se3 nanorods toward Hep-2 cells was assessed for 24 h using a Cell Counting Kit-8 (CCK-8) assay. The

results showed that Hep-2 cells treated with PVP-coated Sb2Se3 nanorods were alive at a concentration as

high as 100 mg mL�1 in the absence of NIR irradiation. In vivo assessment confirmed that PVP-coated

Sb2Se3 nanorods exhibited excellent photoacoustic imaging and PTT performance, which yielded complete

ablation of tumors after laser irradiation (808 nm or 980 nm) in the NIR-I bio-window.
1 Introduction

Semiconductor nanotherapeutics have attracted widespread
attention in the treatment of cancer due to their remarkable
physicochemical and biochemical properties, such as low band
gap, prolonged circulation time and enhanced permeability and
retention (EPR) effect.1–5 Currently, diverse types of nano-
therapeutics, such as organic dye ICG; inorganic nanoparticles Pd,
Ge, Au, black phosphorus QDs, CuS, MoS2, Bi2S3 and WO3�X

nanocrystals; organic semiconducting polymer nanoparticles
(SPNs) and ppy nanoparticles, have been investigated for NIR
PTT.6–20 Antimony selenide (Sb2Se3) as a simple, low toxicity, low-
cost p-type semiconductor material with broad absorbance
ranging from the UV to the NIR region has many potential
applications in photovoltaic, thermoelectric, and phase-change
memory devices.21–23 Owing to these excellent properties, much
effort has been devoted to the fabrication of Sb2Se3 and its
photovoltaic applications, rarely have this material been explored
for its biomedical applications. In view of the above consideration,
it is highly recommended to develop a novel Sb2Se3 nano-
therapeutic agent that can be applied in PTT for cancer cells.
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Photothermal therapy (PTT), as a ourishing therapeutic
modality, employs light-absorbing agents to generate localized
heat upon continuous irradiation of near-infrared (NIR) laser
for hyperthermia ablation of cancer cells. In the light of the
superiority of PTT in therapeutic modality, such as minimal
invasiveness, noninvasive penetration and low toxicity, PTT has
received increasing attention in recent years.24–35 Photoacoustic
imaging (PAI), which convert incident light into acoustic waves
by exciting nanoparticle or chromophore with a strong optical
absorbance spectrum in the NIR region, show powerful advan-
tage such as deep tissue penetration, high spatial resolution,
high signal-noise ratio in contrast to conventional X-ray
computed tomography (CT), positron emission tomography
(PET), magnetic resonance imaging (MRI) and uorescence
images (FLI).36–49

In this work, we report a biocompatible PVP-coated Sb2Se3
nanorods as PTT theranostic agents with relatively narrow band
gap energy, which are responsive to the light (808 and 980 nm)
in the NIR-I bio-windows (Scheme 1). The PTT studies in vitro
and in vivo showed that PVP-coated Sb2Se3 nanorods were
effective for photoacoustic imaging and photothermal
destruction of cancer cell. Therefore, Sb2Se3 is a promising
nanotherapeutics agent for PAI and PTT.
2 Experimental section
2.1 Chemicals

Triphenylantimony (97%), dibenzyldiselenide (98%), PVP-K30
were purchased from Sinopharm Chemicals. Cell Counting
Kit (CCK-8) and 40,6-diamidino-2-phenylindole (DAPI) were
RSC Adv., 2020, 10, 15221–15227 | 15221
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Scheme 1 Schematic illustration of PVP-coated Sb2Se3 nanorods
nanotheranostic agent for photoacoustic imaging diagnosis and
photothermal cancer treatment in NIR-I bio-windows.
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purchased from Sigma-Aldrich. All solvents were of analytical
grade and used without further purication. Deionized water
(18 MU cm) used in the experiments was produced from a Milli-
Q Gradient System.
2.2 Synthesis of PVP-coated Sb2Se3 nanorods

In a typical procedure,50–52 0.10 mmol (105.4 mg) triphenylanti-
mony and 0.15 mmol (68 mg) dibenzyldiselenide were dissolved
in 5.0 mL oleylamine. Besides, 0.2 g PVP was dissolved in 10 mL
EtOH. Then, two solutions were mixed and stirred, transferred
into 25 mL Teon-lined stainless steel autoclave. The reaction
was kept at 200 �C for 16 h. Aer that, the autoclaves were cooled
to room temperature naturally. The resulting product was
washed with ethanol several times. To improve the biocompati-
bility of the Sb2Se3 nanorods, 10 mg of PVP was dissolved in 2mL
of Sb2Se3 nanorods aqueous solution (2 mg mL�1) with stirring
for 12 h. Aer several washes with deionized water, the nal
product was stored at room temperature for later use.
2.3 CCK-8 assays in laryngeal cancer

Hep-2 cells (z10 000 cells per well) pressed in a 96-well plate
were cultured in fresh media that contained 10% fetal calf
serum. The PVP-coated Sb2Se3 nanorods at various concentra-
tions were added and cultivated at 37 �C for 24 h. Then, 10 mL of
CCK-8 was added to each well aer 24 h. The Hep-2 cells were
further incubated for 2 h. The determination was carried at
460 nm with enzymatic marker.
2.4 Cell photothermal performance

The photothermal behavior of PVP-coated Sb2Se3 nanorods
against Hep-2 cells was investigated in the presence or absence
of NIR irradiation. Hep-2 cells were seeded at a concentration of
1 � 104 cells per well onto a 96-well plate and precultured for
24 h at 37 �C. Aer incubated with PVP-coated Sb2Se3 nanorods,
the cells were exposed to NIR laser (808/980 nm, 1 W cm�2) for
5 min and then stained with calcein AM and PI for 20 min to
verify the photothermal behavior for killing cancer cells, and
15222 | RSC Adv., 2020, 10, 15221–15227
the cells image were obtained using a uorescence microscope
(Olympus, IX73).

2.5 Animal tumor model

The animal procedures were performed in accordance with the
Guidelines for Care and Use of Laboratory Animals of Shanxi
Medical University, and the experiments were approved by the
Animal Ethics Committee of Shanxi Medical University. The six-
week-old female nude mice (16–18 g) were purchased from
Beijing Vital River Experimental Animal Company. Aer 2
weeks of acclimatization, tumor models were established by
subcutaneous injection of 1� 106 Hep-2 cells into the RL region
of the nude mice. When the tumor volumes reached 100 mm3,
the mice were used for imaging and treatment in vivo.

2.6 In vivo PAI study

For in vivo PAI, the tumor-bearing mice were injected with PVP-
coated Sb2Se3 nanorods via intratumoral administration and
then monitored by a real-time MSOT imaging system with
a laser wavelength of 730 nm at 1, 2, 4, 6 and 12 h post injection.

2.7 In vivo PTT study

To investigate the PTT effect of PVP-coated Sb2Se3 nanorods in
vivo, Hep-2 tumor-bearing mice were divided into four groups
and given following treatments: (I), laser (808 nm); (II), PVP-
coated Sb2Se3 nanorods + laser (808 nm); (III), laser (980 nm);
(IV), PVP-coated Sb2Se3 nanorods + laser (980 nm). Aer 2 h
intratumoral injection, the mice were irradiated with NIR laser
for 5 min. Then an infrared thermal camera (Fluke Ti400) was
applied to record the temperature of tumor site. Aer treat-
ment, the tumor volume and body weight of each mice were
inspected in the following 14 days.

2.8 Characterization

The morphology and size of PVP-coated Sb2Se3 nanorods were
characterized by a TEM (JEOL-2100F) operated at 200 kV. UV-
Vis-NIR absorption spectra were acquired by a UV-2550 spec-
trophotometer. The Fourier transform infrared (FTIR) spectrum
was measured by a Vector 22 spectrometer with KBr pellets
(Bruker AXS, Inc., Madison, WI, USA). Thermogravimetric
analyses (TGA) were performed on a simultaneous SDT 2960
thermal analyzer from 30 to 600 �C with a heating rate of
20 �C min�1 under N2 atmosphere. Zeta potential were
measured by a Nano-Zetasizer (Malvern Instruments Ltd.).

3 Results and discussion

Sb2Se3 nanorods were prepared using a previously reported
method with slight modication. PVP was coated on the surface
of Sb2Se3 nanorods in order to enhance the biocompatibility of
Sb2Se3 nanorods. The successful coating of the Sb2Se3 nanorods
can be veried by the TGA (Fig. 1C) and FT-IR spectra (Fig. S1†).
Thermogravimetric analysis revealed that the mass fraction of
PVP in the as-prepared PVP-coated Sb2Se3 nanorods is 7%.53 The
characteristic absorption band at 1660 cm�1 belongs to the
This journal is © The Royal Society of Chemistry 2020



Fig. 1 TEM images of Sb2Se3 (A-a) and PVP-coated Sb2Se3 nanorods (A-b) and (A-c) EDX elemental mapping images of PVP-coated Sb2Se3
nanorods. (B) UV-vis-NIR absorption spectra of Sb2Se3 and PVP-coated Sb2Se3 nanorods aqueous solution. (C) TGA curves of PVP, Sb2Se3 and
PVP-coated Sb2Se3 nanorods.
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C]O stretching vibration mode, suggesting that the coating of
PVP on the surface Sb2Se3.54 Due to the low loading capacity, the
FT-IR spectra of PVP-coated Sb2Se3 nanorods show weak
absorbance intensity. Transmission electron microscopy (TEM)
images of Sb2Se3 and PVP-coated Sb2Se3 nanorods were shown
in Fig. 1A. All the PVP-coated Sb2Se3 show a nanorod
morphology with average size of 500 nm. The composition of
the core–shell nanostructures was more evident from the EDX
elemental mapping data. Evidently, the elements Sb and Se is
mainly distributed in the core and the elements C and N are
homogenously distributed throughout the whole nano-
structures, indicating that the Sb2Se3 core is surrounded with
a uniform and continuous PVP shell. The z potentials of Sb2Se3
and PVP-coated Sb2Se3 nanorods are �20 mV and +2.5 mV,
respectively (Fig. S2†). All data above indicate that the layer
Fig. 2 (A) Temperature changes of PVP-coated Sb2Se3 nanorods at differ
cm�2. (B) Infrared thermal images of the solution containing PVP-coated
for 5 min. (C) Temperature change of PVP-coated Sb2Se3 nanorods at a c
of PVP-coated Sb2Se3 nanorods aqueous solution under 808 nm laser i
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coated on Sb2Se3 nanorods is PVP. UV-Vis spectra were recorded
to investigate the effect of Sb2Se3 and PVP-coated Sb2Se3
nanorods. As displayed in Fig. 1B, the Sb2Se3 and PVP-coated
Sb2Se3 nanorods show similar absorbance spectra from 400 to
1000 nm. However, the absorbance of PVP-coated Sb2Se3
nanorods is much higher than Sb2Se3 in the range of 400 to
1000 nm, which encourage us to further explore the PA perfor-
mance of PVP-coated Sb2Se3 nanorods. To evaluate photo-
acoustic behavior of PVP-coated Sb2Se3 nanorods, the
photoacoustic signals of PVP-coated Sb2Se3 nanorods aqueous
dispersions with concentrations from 0.2 to 1.0 mg mL�1 were
determined with water. As shown in Fig. 4C, PVP-coated Sb2Se3
nanorods aqueous solution showed concentration-dependent
PA signals under 808 nm light excitation due to their
ent concentrations exposed to 808 nm laser at a power density of 1.5 W
Sb2Se3 nanorods under the NIR laser (808 nm, 1.0 W cm�2) irradiation
onstant concentration with different power. (D) Temperature variation
rradiation (1.0 W cm�2) for four laser on/off cycles.

RSC Adv., 2020, 10, 15221–15227 | 15223
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thermoelastic expansion in aqueous solution, indicating that
PVP-coated Sb2Se3 nanorods might act as a PA contrast agent.

In order to investigate the photothermal properties of the
obtained PVP-coated Sb2Se3 nanorods, PVP-coated Sb2Se3
nanorods with different concentrations (0, 0.125, 0.25, 0.5 and
1.0 mg mL�1) were irradiated with an 808 nm laser for 300 s.
The temperature elevation of PVP-coated Sb2Se3 nanorods
aqueous dispersions shows an obvious concentration-
dependent temperature increase in response to NIR irradia-
tion (808 nm, 1.5 W cm�2) (Fig. 2A), especially for that with
a higher PVP-coated Sb2Se3 nanorods concentration and
extended irradiation duration. For example, the temperature of
Fig. 3 (A) Cell viability of Hep-2 cells after cultured with various conce
images of live (green) and dead (red) cells stained by calcein AM and PI
nanorods, and PVP-coated Sb2Se3 nanorods + NIR (808 nm). Scale bar:

Fig. 4 (A) PA images of tumors at different time points after injection of P
(C) Linear relationship between concentrations and PA signals, with corr

15224 | RSC Adv., 2020, 10, 15221–15227
PVP-coated Sb2Se3 nanorods (0.25 mg mL�1) raised up to 55 �C
within 5 min which can kill cancer cells effectively, while the
control group of phosphate buffered saline (PBS) only showed
a mild temperature elevation (from 12.2 to 20.0 �C). The color
change in the photothermal images was clearly observed
(Fig. 2B), which was measured using an infrared thermal
camera with the PVP-coated Sb2Se3 nanorods solution (0.125,
0.25, 0.5, 1.0 and 2.0 mg mL�1) under 808 nm light exposure at
1.0 W cm�2 for 5 min and PBS was selected as the control. It is
clearly seen that the photothermal effect of PVP-coated Sb2Se3
nanorods was proportionally improved as the concentrations
increased. At the same concentration of 0.25 mg mL�1, the
ntrations of PVP-coated Sb2Se3 nanorods for 24 h. (B) Fluorescence
after being treated with PBS, PBS + NIR (808 nm), PVP-coated Sb2Se3
100 mm.

VP-coated Sb2Se3 nanorods. (B) Quantitative analysis of PA values in (A).
esponding PA images in the inset.

This journal is © The Royal Society of Chemistry 2020
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temperature increase of the PVP-coated Sb2Se3 nanorods solu-
tion may be controlled under continuous radiation of an
808 nm laser, as shown in Fig. 2C. It also conrmed that the
photothermal effect of the PVP-coated Sb2Se3 nanorods solution
was complying with a laser power density-dependent mode.

To evaluate their photostability, four cycles of light irradia-
tion was carried out (Fig. 2D). PVP-coated Sb2Se3 nanorods
dispersions (0.5 mg mL�1) was irradiated with 808 nm laser at
1 W cm�2 for 10 min, and the irradiation was tuned off for
leaving the photothermal temperature to room temperature.
The same switch on/off was repeated for another three times.
The results exhibited that PVP-coated Sb2Se3 nanorods showed
the temperature increase of 54.2 �C aer the rst irradiation,
and there was no obvious change in temperature variation aer
three switch on/off cycles, suggesting that PVP-coated Sb2Se3
nanorods dispersions possess excellent photostability under
repeated irradiation. The photothermal and photostability
behavior of PVP-coated Sb2Se3 nanorods upon 980 nm laser
irradiation was also investigated, similar outcome was shown in
Fig. S3,† which attributed to the NIR absorption.

In view of above results, NIR-mediated PVP-coated Sb2Se3
nanorods displaying photothermal effect urge us to examine
Fig. 5 (A) IR thermal images of Hep-2 tumor bearing nude mice. (B)
treatments. (C) Representative photographs of mice tumor after various t
nude mice after treatment for 14 days. (E) Body weights of mice during di
spleen, lung, kidney). Scale bar: 100 mm.

This journal is © The Royal Society of Chemistry 2020
phototherapeutic effect toward Hep-2 cells in vitro. Prior to in
vitro photothermal therapy, the biosafety evaluation illustrated
in Fig. 3A is vitally important for the next task. Therefore, the
cell viability of PVP-coated Sb2Se3 nanorods toward Hep-2 cells
was assessed for 24 h by Cell Counting Kit-8 (CCK-8) assay. The
result showed that Hep-2 cells treated with PVP-coated Sb2Se3
nanorods were alive at a concentration as high as 100 mg mL�1

in the absence of NIR irradiation. Furthermore, a live/dead cell
assay was performed using calcein acetoxymethyl (calcein AM,
green) and propidium iodide (PI, red) staining aer NIR light
irradiation at 808 nm for 5 min. Under NIR light irradiation,
almost all the cells induced by PVP-coated Sb2Se3 nanorods to
death emitted red uorescence. In contrast, there was green
uorescence observed in the absence of laser irradiation, which
implied that cells were living (Fig. 3B and S4†). In a word, these
results indicate that PVP-coated Sb2Se3 nanorods have prom-
ising potential as a photothermal agent to kill cancer cells. We
further investigate photothermal effect and live/dead cell assay
of PVP-coated Sb2Se3 nanorods under 980 nm laser irradiation,
as shown in Fig. S5.† All results conrmed that PVP-coated
Sb2Se3 nanorods show promising photothermal ability for
killing cancer cells in the NIR-I bio-windows.
Time-dependent temperature change in mice tumor after different
reatment 0–14 day. (D) Tumor growth curves of Hep-2 tumor bearing
fferent treatments. (F) H&E staining images of major organs (heart, liver,

RSC Adv., 2020, 10, 15221–15227 | 15225
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Encouraged by the photoacoustic and photothermal proper-
ties in vitro, we continued to evaluate the potential of PVP-coated
Sb2Se3 nanorods as photoacoustic imaging and thermal imaging
agent. The PA imaging was investigated in vivo. As shown in
Fig. 4A, mice bearing Hep-2 tumors were injected with PVP-
coated Sb2Se3 nanorods. PA signals in tumor was gradually
enhanced over time and reached their maximum 2 h aer
injection, indicating that the optimal treatment time was 2 h
aer i.t. injection (Fig. 4B). Furthermore, the IR thermal imaging
was applied to detect the real-time temperature of tumor region
at 2 h post injection. For mice treated with PVP-coated Sb2Se3
nanorods, tumor temperature gradually increased to 60 �Cwithin
5 min when exposed to 808 nm laser, while the temperature of
control group displayed little change (Fig. 5A and B). In
comparison, the tumor temperature reaches 57.5 �C exposed to
980 nm laser under the same condition, both of which could
absolutely meet to the requirement and efficacy of PTT (Fig. S6A
and B†). Thus, the PVP-coated Sb2Se3 nanorods could be utilized
as photoacoustic and photothermal contrast agent.

In view of above good PAI and PTT, upon NIR light irradiation,
we further evaluated the potential application of PVP-coated
Sb2Se3 nanorods for cancer therapy using the Hep-2 tumor
bearing nude mice. At 2 h postinjection, the 808 nm or 980 nm
NIR laser was applied to irradiate the tumor site. Aer 14 d of
treatment, the tumor was completely eliminated in the PVP-coated
Sb2Se3 nanorods plus laser and increased in PBS plus laser (Fig. 5C
and S6C†), which is in accordance with the tumor volume change
(Fig. 5D and S6D†). More importantly, the body weight of themice
showed no apparent change during treatment (Fig. 5E and S6E†).
Due to complete ablation of tumor aer treatment, the hematox-
ylin and eosin (H&E) staining of tumor slides have not been
shown. Meanwhile, there were no evident organs damage
observed in the slices collected from major organs of control
group and PVP-coated Sb2Se3 nanorods plus laser, indicating the
negligible toxicity of PVP-coated Sb2Se3 nanorods in vivo (Fig. 5F).
The in vivo photothermal therapy by i.t. injection further veried
the efficient cancer therapy ability of PVP-coated Sb2Se3 nanorods.

4 Conclusions

In summary, this work rstly presented the biomedicine
application of PVP-coated Sb2Se3 nanorods as photothermal
nanotherapeutics under either 808 nm or 980 nm in ghting
against cancer cell. Due to the strong NIR absorption capability
in the NIR-I bio-windows (750–1000 nm),55 the PVP-coated
Sb2Se3 nanorods display preferable photoacoustic and photo-
thermal behavior. In vivo assessment conrmed that PVP-
coated Sb2Se3 nanorods effectively induced PTT properties,
which yielded complete ablation of tumor aer laser irradiation
(808 nm or 980 nm) in the NIR-I bio-windows. This work
inspires us to develop much more photovoltaic semiconductor
materials with low toxicity and expands their potential appli-
cation in biomedical eld for cancer treatment.
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