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Glioblastoma (GBM) is the most common malignant tumor of the central nervous system
with poor prognosis. Although the field of immunotherapy in glioma is developing rapidly,
glioblastoma is still prone to recurrence under strong immune intervention. The major
challenges in the process of immunotherapy are evaluating the curative effect, accurately
distinguishing between treatment-related reactions and tumor recurrence, and providing
guidance for clinical decision-making. Since the conventional magnetic resonance
imaging (MRI) is usually difficult to distinguish between pseudoprogression and the true
tumor progression, many studies have used various advanced imaging techniques to
evaluate treatment-related responses. Meanwhile, criteria for efficacy evaluation of
immunotherapy are constantly updated and improved. A standard imaging scheme to
evaluate immunotherapeutic response will benefit patients finally. This review mainly
summarizes the application status and future trend of several advanced imaging
techniques in evaluating the efficacy of GBM immunotherapy.

Keywords: glioblastoma, immunotherapy, treatment response, pseudoprogression, tumor recurrence,
advanced imaging
INTRODUCTION

Glioblastoma is the most common malignant brain tumor in adult and is extremely aggressive. The
current standard treatment involves maximal safe resection, followed by radiotherapy and adjuvant
chemotherapy (1). Despite this active treatment, the prognosis remains poor, with a median survival
of less than 2 years (2). The main reason is that glioblastoma is strongly aggressive and grows
rapidly, specifically, tumor cells are prone to infiltrate the normal brain parenchyma aside the lesion
(3, 4). Thus, there is a risk of tumor recurrence once tumor stem cells remain after the resection and
follow-up treatment. Many other treatments have been studied, such as immunotherapy, aiming to
stimulate or mobilize the immune system and enhance the antitumor immunity in the tumor
microenvironment, so as to control and kill tumor cells (5). This treatment concept has derived a
org November 2021 | Volume 12 | Article 7906741

https://www.frontiersin.org/articles/10.3389/fimmu.2021.790674/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.790674/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.790674/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.790674/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wuminscu@scu.edu.cn
https://doi.org/10.3389/fimmu.2021.790674
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.790674
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.790674&domain=pdf&date_stamp=2021-11-25


Li et al. Evaluating Immunotherapy Efficacy by Imaging
variety of treatment strategies, and remarkable progress of those
methods has been made in the treatment of patients with
intractable solid tumors such as melanoma and nonsmall cell
lung cancer (6, 7). There are also many immunotherapy studies
of glioma not only basic but also clinical. Due to the existence of
blood-brain barrier (BBB) in the central nervous system (8),
obvious loss of lymphatic reflux system (9), and the strong
he t e rogene i t y o f GBM (10) , the e ff e c t i venes s o f
immunotherapy for brain tumors might be limited.
Fortunately, it has been found that immunotherapy has the
potential to induce immune changes in brain tumors (11, 12).

One of the challenges in the treatment of GBM is how to
assess the treatment response accurately in order to make more
informed clinical decisions. It is important to evaluate the
treatment response to immunotherapy in an early stage by
using noninvasive imaging, which can reduce unnecessary
clinical complications. However, conventional imaging
techniques are usually difficult to distinguish between
pseudoprogression and tumor recurrence. Immune response is
usually accompanied with inflammatory reaction characterized
by the enlargement of enhanced foci, which is easily confused
with the behavior of tumor relapse. Effective immunotherapy
may be mistakenly terminated if being misdiagnosed, thus
causing a negative impact on the prognosis. To solve this
problem, researchers have carried out a lot of researches on
advanced imaging techniques. This review describes the
definition and clinical significance of pseudoprogression,
generalizes the response evaluation criteria of GBM,
summarizes the status and future development direction of
advanced imaging techniques relevant to immunotherapy in
GBM, and discusses the strengths and deficiencies of artificial
intelligence (AI) in monitoring therapeutic response in GBM.
PSEUDOPROGRESSION OF GBM

About 30% of GBM patients who received radiotherapy and
ad juvant t emozo lomide -ba sed chemotherapy had
pseudoprogression, which mainly occurred within 3 months
after treatment (13). According to the Response Assessment in
Neuro-Oncology (RANO) criteria, pseudoprogression was defined
as the appearance of new lesion or an increase in contrast-
enhancing areas, but these changes gradually faded or stabilized
without changing the treatment (14). At present, it is believed that
the enlargement of enhanced foci may be caused by the infiltration
of inflammatory factors after radiotherapy and chemotherapy, but
the real cause of pseudoprogression remains to be further studied.
In addition, the methylation status of the O6-methylguanine-
DNA methyltransferase (MGMT) promoter was associated with
pseudoprogression, and about 2/3 of GBM patients with MGMT
methylation exhibited pseudoprogression (15).

Patients with pseudoprogression usually have no clinical
symptoms and only show new or enlarged enhanced lesions on
images. Such patients usually only need symptomatic treatment
and do not need to change the treatment project, while patients
with tumor recurrence probably need to resect the lesion again or
find another cure. If there is no accurate distinction between
Frontiers in Immunology | www.frontiersin.org 2
them, the effectiveness of treatment may be reduced. Therefore,
correct identification of pseudoprogression and tumor
recurrence is of great significance to guide clinical
decision-making.
RESPONSE EVALUATION CRITERIA
OF GBM

Noninvasive imaging for GBM can help define widely applicable
treatment response criteria to assess disease progression and
make clinical decisions. In order to address imaging challenges
such as pseudoprogression, multidisciplinary experts developed
RANO criteria (14), which suggested that the original treatment
regimen can be maintained for patients with no clear clinical
symptoms and only tumor progression on imaging. These
patients only need regular follow-up. At present, the RANO
criteria have been widely accepted in the field of neuro-oncology
and applied in clinical and scientific researches. However,
evaluating the therapeutic response to immunotherapy only by
RANO criteria may not be sufficient. For example, the
mechanism of pseudoprogression caused by immunotherapy
may be different from that of standard therapy, which may be
due to the infiltration of immune cells and inflammatory cells. It
is necessary to establish corresponding imaging response criteria
for immunotherapy in GBM.

Based on the important factors above, experts developed
immunotherapy Response Assessment in Neuro-Oncology
(iRANO) criteria for patients with GBM receiving
immunotherapy to provide guidance for imaging changes in
the early stage of progression (16). According to the iRANO
criteria, the time window for pseudoprogression after
immunotherapy is 6 months. Hence, the criteria recommend
that patients with no significant clinical symptoms and evidence
of early imaging progress within 6 months after immunotherapy
should continue to receive immunotherapy before follow-up
imaging confirms the tumor progression. In other words,
patients with evidence of imaging progress outside the time
window after immunotherapy will have a higher probability of
potential true tumor progression, and these patients should be
advised to discontinue ongoing immunotherapy.
APPLICATION OF ADVANCED IMAGING
IN IMMUNOTHERAPY OF GBM

At present, the researches of glioma immunotherapy strategy
mainly include the following: (1) specific peptide vaccine; (2)
immunotoxin therapy; (3) immune checkpoint inhibitors (ICIs)
therapy; (4) dendritic cell (DC) therapy; and (5) chimeric antigen
receptor T-cell (CAR-T) Immunotherapy (17–21). The
feasibility and safety of DC vaccine in the treatment of glioma
have been proved, and it could induce immune response (20). It
is worth noting that a new type of gamma delta T (gd T)-cell
therapy is becoming a rising star of cancer immunotherapy (22).
Unlike the alpha beta T (ab T) cells involved in most T-cell
November 2021 | Volume 12 | Article 790674
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researches and clinical applications, gd T cells recognize their
target cells independently of major histocompatibility complex
(MHC) and do not cause graft-versus-host disease. gd T cells
infiltrate in a variety of tissues, which can quickly respond to the
target cells and release effector cytokines. Furthermore, the
recognition and killing of tumor by gd T cells do not depend
on the expression of single antigen (23). Based on the advantages
of gd T cells, a new CAR-T therapy can be developed to break
through the limited application of ab T-cell-based CAR-T-cell
therapy in solid tumors (including gliomas) (24, 25). Currently,
gd T-cell therapy has been studied in the treatment and
prevention of recurrence of solid tumors including head and
neck cancer, breast cancer, and lung cancer (26–28). The
therapeutic effect in glioma still needs to be verified in a large
number of clinical trials.

Advanced imaging techniques based on physiological or
metabolic characteristics may reflect the state of tumor more
accurately, so various advanced imaging techniques are being
studied to correctly identify immunotherapy-related changes and
tumor progression and provide a credible basis for the treatment
of patients. The advanced imaging techniques used in GBM
currently include perfusion-weighted imaging (PWI), diffusion
imaging, amide proton transfer (APT), magnetic resonance
spectroscopy (MRS), positron emission tomography (PET)
(i.e., Table 1). Some of these imaging techniques have been
used to evaluate the immunotherapy efficacy of glioma. The
following will introduce the basic concepts of these imaging
techniques and describe the latest research progress and future
application prospects that support them in the evaluation of
therapeutic response to immunotherapy.

Perfusion-Weighted Imaging
PWI can reflect tissue perfusion by quantitatively calculating
perfusion parameters including relative cerebral blood volume
Frontiers in Immunology | www.frontiersin.org 3
(rCBV), relative cerebral blood flow (rCBF), mean transit time
(MTT), and time to peak (TTP). When the tumor progresses,
neovascularization and increased perfusion could be observed in
the lesion area. As pseudoprogression is usually caused by
inflammation, there is no neovascularization and the perfusion
is relatively low. As a consequence, these perfusion parameters
can be used to distinguish between pseudoprogression and
tumor recurrence in GBM patients receiving standard
treatment or immunotherapy (30, 40).

DSC-MRI is the most commonly used perfusion technique in
clinic. Evidence has shown that adding perfusion imaging to
conventional MRI in patients with gliomas is helpful for clinical
decision-making (41, 42). A recent meta-analysis including 35
studies on the role of various advanced imaging techniques in
evaluating the therapeutic response of high-grade gliomas
indicated that the diagnostic accuracy of perfusion imaging
was only second to MR spectroscopy (MRS). The sensitivity
and specificity of DSC were 87% and 86%, respectively, while the
sensitivity and specificity of DCE were 92% and 85%, respectively
(43). In addition, a retrospective study comparing the value of
DSC-MRI and DCE-MRI combined with T1WI enhancement
and DWI imaging in predicting the recurrence of GBM revealed
that both the two perfusion imaging could significantly improve
the diagnostic accuracy, and there was no significant difference in
diagnostic performance (42). Similarly, some studies have
compared the diagnostic accuracy of DSC-MRI with three-
dimensional pseudocontinuous arterial spin labeling (3D-
pcASL) and suggested that the ability of 3D-pcASL perfusion
imaging in distinguishing between pseudoprogression and tumor
recurrence in GBM patients is almost the same as that of DSC,
but 3D-pcASL is superior to DSC when the lesions are disturbed
by magnetic susceptibility artifacts (44, 45). The reason is that the
fast spin echo (FSE) technology used in GE 3D-ASL can
effectively overcome the disadvantages of DSC being vulnerable
TABLE 1 | Studies of applying advanced imaging techniques to assess immunotherapeutic responses in GBM.

References Advanced
imaging

Evaluation parameters Tumor type Immunotherapy category Evaluation
criteria

(29) DSC-MRI DrCBVmax GBM DC vaccination RANO
DWI-MRI rADC

(30) DSC-MRI Maximum lesional rCBV ratios Recurrent GBM DC vaccination Macdonald
DWI-MRI Minimum ADC

(31) DSC-MRI rCBV GBM Immunogene-treated NA
(32) DCE-MRI Ve GBM (rats) mAb9.2.27+NK NA
(33) DSC-MRI Interval change in rADC Recurrent GBM ICIs mRANO

DWI-MRI
(34) DWI-MRI Serial parametric response mapping of

ADC
Pediatric diffuse intrinsic pontine
glioma

Peptide-based vaccine NA

(35) DWI-MRI IADC VOI Recurrent GBM ICIs RANO
Pathological

(36) DWI-MRI RSI GBM ICIs Pathological
(37) MRS Cho, NAA, Crea, Lac GBM IL-4 toxin Pathological
(38) Amino acid PET 18F-FET PET/CT GBM DC vaccination RANO
(39) dck PET [18F]-CFA PET/CT GBM (human) DC vaccination and/or PD-1 mAb

blockade
NA

[18F]-FAC PET/CT Orthotopic malignant gliomas
(mice)
November 2021 | Volume 12 | Ar
Ve, extravascular extracellular space volume fraction; IADC, intermediate ADC; VOI, volumes of interest; mAb9.2.27, a monoclonal antibody-targeting NG2; NK, natural killer cells; IL-4,
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to susceptibility artifacts. The artifacts can attenuate the imaging
signal, usually when the focus is on the skull base, paranasal
sinuses or large surgical resection cavity with blood residue.
Another deficiency of DSC imaging is that the contrast medium
may leak into the space where the BBB is destroyed. When it
happens, the values of rCBV parameters cannot reflect the real
perfusion level (46). Also, there is no unified standard between
different imaging parameters and postprocessing methods. These
factors will affect the diagnostic accuracy of DSC perfusion
imaging to varying degrees.

So far, there are still few researches about the application of PWI
onassessing the immunotherapeutic response ofGBM. Ina studyof
advanced MRI assessing dendritic cell immunotherapy against
GBM, it was found that the difference of relative cerebral blood
volume (△rCBVmax) could effectively differentiate tumor
recurrence from pseudoprogression, with a sensitivity of 67% and
specificity of 75% (p = 0.004), suggesting that the value of△rCBV
mightbemorehelpful todistinguish themthan the absolute valueof
rCBV during follow-up (29) (Figure 1). Research by Vrabec et al.
showed that the maximal rCBV ratios in the contrast-enhancing
area were potential radiological indicators to distinguish between
inflammatory response induced by immunotherapy and tumor
recurrence (30). Another follow-up study on immunogene-treated
glioblastoma multiforme with DSC perfusion imaging combined
with contrast-enhancedMR imaging also supported this view (31).

It is worth noting that both DCE-MRI and ASL techniques
have not been widely explored in GBM patients treated with
immunotherapy, which may be due to the lack of standardized
acquisition parameters of DCE-MRI and the poor image signal
of ASL perfusion imaging. However, these two perfusion
techniques still have their own advantages. For instance, DCE-
MRI can measure vascular permeability by pharmacokinetic
parameters to quantify the movement of contrast media
through BBB (47, 48). Compared with DSC-MRI, the ability of
DCE-MRI of quantifying the permeability can make the
calculation of cerebral blood volume more precise. 3D-pcASL
can avoid the influence of magnetic susceptibility artifacts. If we
could combine the advantages of various perfusion imaging to
make up for the shortcomings, we would have a powerful
supplementary tool to evaluate immunotherapeutic response
in GBM.

Diffusion Imaging
Diffusion-Weighted Imaging (DWI) reflects the diffusion of
water molecules in the tissue of interest. The most widely used
quantitative parameter is the apparent diffusion coefficient
(ADC), which is inversely proportional to the cell density (49,
50). Based on this characteristic, it has been used in tumor
identification, grading, and therapeutic response monitoring
(51–54). In patients with recurrent gliomas, the diffusion of
water molecules within the tumor was limited and the ADC
values decreased, while treatment-related response, such as
pseudoprogression, had higher ADC values than recurrent
gliomas. This point of view was confirmed by a meta-analysis
of diffusion magnetic resonance imaging combined with ADC
measurements for distinguishing between glioma recurrence and
Frontiers in Immunology | www.frontiersin.org 4
pseudoprogression. Six cohort studies were included in the meta-
analysis, and different ADC values were analyzed, including
mean ADC values, relative ADC (rADC), and 5th percentile
values. The results proved that the ADC values of
pseudoprogression was higher than that of tumor recurrence,
which provided a reliable foundation for the differentiation of the
two (55). To date, some researches have applied this technique to
the assessment of glioma immunotherapy and studied the
evaluation effect of different ADC values. Song et al. conducted
a retrospective study of 19 patients with recurrent GBM to
evaluate whether the early changes in the quantitative
parameters of diffusion and perfusion MRI before and after
immunotherapy can determine the treatment-related changes.
They calculated the rADC values and several perfusion
parameters of the lesions before and after treatment and found
that only the change of rADC could be used as an early marker to
evaluate the response within 6 months after treatment (33).
Another study also proved that rADC could help predict the
immuno-therapeutic response and survival rate in patients with
GBM (29) (Figure 2). Moreover, serial parametric response
mapping of ADC performed at multiple time points of therapy
may help identify pseudoprogression as an imaging biomarker in
vaccine therapy for pediatric diffuse intrinsic pontine glioma
(34). However, some studies believe that the application of the
mean ADC values on differentiating pseudoprogression from
tumor recurrence has some limitations, because the ADC values
of cystic and necrotic areas are higher than that of solid tumors,
which will affect the accuracy of the final results. It is considered
that the 5th percentile values are better for the distinction (56,
57). Although ADC has good diagnostic value as a whole, the
practicability of these different ADC parameters needs to be
further studied. In addition, these results need to be verified in
multicenter and larger cohorts.

Another kind of imaging technique commonly used in clinic
is diffusion tensor imaging (DTI), which uses the diffusion
anisotropy of water molecules for imaging. The fractional
anisotropy (FA) images can show the structure and anisotropy
of white matter fibers in the brain, and the change of FA can
evaluate the therapeutic effect. Wang et al. combined DTI and
DSC-MRI and found that the best models to distinguish between
true progression and none-true progression (pseudoprogression
and mixed progression) included FA, linear anisotropy
coefficient (CL), and rCBVmax. It is suggested that the
combination of DTI and DSC perfusion parameters could help
evaluate the therapeutic response of gliomas (58). Although DTI
has not been applied to the evaluation of immunotherapy in
GBM, a recent study on the association of T cell density and
diffusion tensor MRI changes in brain metastases revealed that
FA in the peritumoral region was closely related to the density of
CD3+ T-cell infiltration, indicating that FA could reflect the
tumor immune microenvironment. This finding supports future
researches and can be used to detect the sensitivity of
neurological tumors to immunotherapy (59).

Furthermore, researchers also explored the role of some
advanced diffusion models in assessing therapeutic response of
brain tumors. These techniques are mainly used in scientific
November 2021 | Volume 12 | Article 790674
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FIGURE 1 | A case of glioblastoma relapsed during immunotherapy, T2, ADC map, T1-enhanced, and CBV map from left to right. (A–C) MRI was performed in the
2nd, 6th, and 8th months of immunotherapy, respectively, showing that the edema degree of the lesion was gradually aggravated, the enhancement was more
obvious, and the perfusion was higher.
FIGURE 2 | Another case of glioblastoma developed pseudoprogression during immunotherapy, with FLAIR, ADC map, T1-enhanced, and CBV map from left to
right. (D–G) MRI was performed before immunotherapy and 2, 4, and 6 months after immunotherapy, respectively. Although tumor recurrence was suspected at the
second month, the subsequent two MRI showed that the lesion became smaller, the degree of edema and imitation of diffusion alleviated, and the perfusion
decreased. These two cases demonstrate that the combination of conventional MRI and advanced MRI imaging can accurately identify pseudoprogression and
tumor recurrence of glioblastoma after immunotherapy. The above two figures were reproduced with the permission of (29) (Copyright at Multidisciplinary Digital
Publishing Institute).
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 7906745
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researches, such as intravoxel incoherent motion (IVIM) MRI,
restriction spectrum imaging (RSI) MRI, etc. Based on the
double exponential model, IVIM can simultaneously obtain
diffusion and perfusion parameters reflecting tumor cellularity
and vascularity. Fast diffusion coefficient (D*) mainly reflects
perfusion information, slow diffusion coefficient (D) represents
real diffusion information, and perfusion fraction (f) reflects
blood flow (60). At present, it has been successfully used in
gliomas for grading and distinguishing between treatment-
related changes and tumor progression (61–63). However, this
technique has not been used to monitor the response to
immunotherapy yet. RSI-MRI is an advanced DWI technique,
which provides a direct method for measuring tumor cellularity
in vivo (64). Compared with the traditional DWI model, RSI can
improve the conspicuity and delineation of high-grade tumors
(65), better distinguish between true and pseudoresponse in
antiangiogenic therapy (66), and better display white matter
tracts in peritumoral edema areas (67). These advantages
indicate that RSI-MRI have a good application prospect in the
immunotherapy of neurological tumors. In a case report of
immunotherapy for GBM, authors demonstrated that RSI
could differentiate between pseudoprogression and tumor
relapse while conventional DWI imaging could not provide
more information (36). Despite that these advanced DWI
techniques can provide better tissue structural characteristics
than traditional DWI, the potential pathophysiological
mechanism of tumor is still unknown.

Amide Proton Transfer
Currently, APT is a relatively popular MR molecular imaging
technique that can quantify free proteins with noninvasion and
nonradiation. It reflects the changes of concentration and
environment by detecting amide proton (NH) in endogenous
low-concentration proteins or peptides. This technique displays its
application value in a variety of central nervous system diseases
(68–73) and shows great potential in glioma grading and curative
effect evaluation (74, 75). Ma et al. used three-dimensional APT
imaging technique combined with several conventional MRI
sequences to evaluate the imaging features of tumor recurrence
and pseudoprogression in 32 patients with gliomas who received
standard treatment. It was found that the two kinds of progression
had similar performance on conventional MRI. On the contrary,
patients with tumor recurrence exhibited high signal intensity
(relative to contralateral normal brain tissue) on APT-weighted
(APTw) images, while patients with pseudoprogression showed
equal to mild hyperintensity on APT-weighted images.
Quantitative results demonstrated that compared with
conventional MRI sequences, APTw could greatly improve the
ability of MRI to distinguish between pseudoprogression and
tumor recurrence (76). Additionally, as the therapeutic benefit
and prognosis of glioma are related to its molecular subtypes and
the expression of some proteins, APT imaging can detect the
expression of MGMT protein before operation and provide
relevant information for the possible drug resistance during
treatment and the corresponding targeted therapy (77).

APT also has some shortcomings. In APTw images, red
represents higher protein content, but not all red areas represent
Frontiers in Immunology | www.frontiersin.org 6
lesions or high-grade gliomas. Some tissues present high signal
intensity on APTw images as well, like fat, cysts, and blood vessels.
In addition to gliomas, there are other lesions that may also show
high signal intensity, such as meningiomas, lymphomas, and some
metastases. Most APTw images remove skull information because
of the high signal of skull, which may hide potential lesions near
the cerebral cortex. For this reason, using APT imaging alone to
judge the nature of lesions may not be accurate enough, and it is
best to combine multiple sequences to make a comprehensive
diagnosis. Up to now, no research has reported the use of APT in
the evaluation of immunotherapeutic response in GBM, but
previous studies have shown that APT imaging is of great help
to improve the diagnostic accuracy. If it is to become a powerful
tool to assess immunotherapeutic response, it is necessary to
continue exploiting and developing this technique and carrying
out more clinical and scientific researches.

Magnetic Resonance Spectroscopy
MRS uses the phenomenon of magnetic resonance chemical shift
to determine the molecular composition of substances. It can
simultaneously measure the concentrations of several
metabolites in brain tissue and tumors and can be used to
diagnose, grade, and evaluate the curative effect of brain
tumors (78). The metabolism of brain tumor is exuberant,
while that of chronic inflammation is lower. From the
metabolism degree of lesion, we can decide its composition
and distinguish between benign and malignant tissues (79, 80).
The typical proton magnetic resonance spectroscopy (1H-MRS)
manifestation of glioma exhibits obvious inversion of Cho/NAA
ratio, while inflammatory lesions are characterized by increased
Cho/Cr ratio and normal or decreased NAA/Cr ratio (81, 82).
Thus, the response induced by immunotherapy and tumor
progression in glioma patients can be distinguished by the
concentration of metabolites. Floeth et al. found that the
metabolic data of MRS may help to distinguish between tumor
recurrence and pseudoprogression after local immunotherapy of
GBM and contribute to further decision-making (37). In
addition, a recent meta-analysis suggested that among the
advanced MRI techniques, MRS had the highest diagnostic
accuracy in distinguishing between treatment-related changes
and tumor recurrence, with a sensitivity and specificity of 91%
and 95%, respectively, which showed the good diagnostic
performance of MRS (43).

MRS has some limitations in detecting small lesions
compared with other MR imaging techniques due to its low
spatial resolution, and it needs to be collected in high quantities
because of the low concentration of metabolites in tumor tissues,
which needs more time. The determination of metabolite
concentration may also be affected by MR equipment, pulse
sequence and data postprocessing methods. Lastly, MRS requires
experienced operators to define exactly areas of interest, which is
faced with technical challenges in clinical practice (78).

Positron Emission Tomography
Positron emission tomography-computed tomography (PET-
CT) is a metabolic functional imaging technique, which is
applied to diagnose and analyze lesions by imaging radioactive
November 2021 | Volume 12 | Article 790674
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markers. It is commonly used in clinical tumor staging, curative
effect evaluation, and therapy. The most widely used PET tracer
is 18F-fluorodeoxyglucose (18F-FDG) based on glycolysis, whose
tracer concentration occurs in hypermetabolic lesions. Every
technology has some deficiencies, and FDG-PET is no
exception. First of all, the resolution of PET is relatively low,
and normal brain tissue also shows high metabolism. If the lesion
is close to the cerebral cortex, the measured FDG uptake value
cannot reflect the true condition of the lesion. Furthermore,
treatment-related necrotic reactions can also be characterized by
increased glucose metabolism, resulting in increased FDG uptake
(83). Although FDG-PET is widely used in clinic, it may be for
some reasons above that make the accuracy of differential
diagnosis of tumor recurrence and pseudoprogression not high
(84, 85). Therefore, radioactive tracers with higher tumor-
background uptake ratio have been studied.

Due to the increased proliferative activity and amino acid
transport of malignant brain tumors, and the relatively low level
of amino acid uptake in normal brain tissue, the use of amino acid-
based radioactive tracers can improve the tumor-background ratio
to some extent and identify tumors better (86). Till now, some
radioactive tracers based on amino acids have been developed,
such as 11C-methyl-L-methionine (11C-MET) and O-(2-[18F]
fluoroethyl)-L-tyrosine (18F-FET). Studies have indicated that
these two tracers have good accuracy in making a distinction
between treatment-related response and tumor recurrence, and
their manifestations are similar (87). However, 11C-MET is
difficult to be commonly used in clinic owing to its short half-
life and difficulties of preparation. Contrarily, 18F-FET has a long
half-life, and the preparation process is relatively easy. In a study of
immunotherapy with DC vaccination in GBM patients, 18F-FET
PET imaging showed a more accurate identification ability than
that of contrast-enhanced MRI initially (38). Although this study
had several limitations such as a small sample size, it pointed out
that 18F-FET PET had a potential role in monitoring the
immunotherapy efficacy of GBM. In addition, Joseph et al.
speculated that the PET probe for deoxycytidine kinase (dCK)
could be used to distinguish between immune inflammatory
response and enhancement foci caused by other factors in
contrast-enhanced MRI imaging. They applied DC vaccination
and/or PD-1 mAb blockade therapy to mice with orthotopic
malignant gliomas model and GBM patients, and then used
dCK PET probe and contrast-enhanced MRI for imaging
respectively. The ratio of MRI contrast enhancement region to
PET probe uptake area (immunotherapeutic response index) was
used to describe the immune inflammatory activity in tumors.
Finally, it was found that the accumulation of dCK PET probe in
tumors and secondary lymphoid organs increased after
immunotherapy, indicating that the immunotherapeutic
response could be quantified by combining dCK PET probe
with MRI imaging, which could be a potential biomarker for
monitoring tumor immunotherapy (39).

With the gradual development of PET/MRI, the combination
of PET and MRI makes full use of the good soft tissue contrast
and multi-parameter evaluation ability of MRI. Compared with
PET/CT, PET/MRI has superiority in the diagnosis and
Frontiers in Immunology | www.frontiersin.org 7
characterization of several diseases (88). Researchers have
found the potential of PET/MRI in evaluating therapeutic
response of GBM (89, 90) and the potential benefit of F-18
fluorothymidine (FLT)–PET/MRI for the diagnosis of melanoma
brain metastasis and treatment monitoring of targeted therapy
and immunotherapy (91). The ability of PET/MRI imaging in
monitoring the treatment response to immunotherapy of GBM
needs to be further studied. The future of PET/MRI is bright, and
any new techniques need lots of researches to prove its value in
clinical application.
APPLICATION OF ARTIFICIAL
INTELLIGENCE IN IMMUNOTHERAPY
OF GLIOMA

AI has developed rapidly in medical field in the past decade,
especially in image identification. Many studies have reported the
application of AI in diagnosis, grading, curative effect evaluation,
and overall survival prediction of glioma, showing the great
superiority of AI technology (92–99). Among them, radiomics is
a new field that uses automatic data mining algorithm to transform
a large number of image data into high-dimensional feature space.
In the identification of treatment response and tumor progression
inglioma, studieshave investigated that thediagnostic performance
of multiparameter radiomics model is better than single parameter
model. The former can findmore hidden information in the image
data of glioma and improve the treatment of patients (100). The
expression status of genes related to the prognosis of GBM can also
be predicted from the features extracted from radiomics (101).
Furthermore, radiogenomics, which combines imaging features
with genome maps, is also helpful to find prognosis-related
immune biomarkers (102). Despite the rapid development of AI,
there are still some problems. Any algorithm needs to provide a
large amount of high-quality data, andmany researches onAI have
a small amount of data, poor quality, and lack unified standards.
These are the problems that need to be solved in the future.
CONCLUSION

Pseudoprogression is the main problem that needs to be tackled
in the treatment process of GBM, and the identification of which
is also essential for the follow-up treatment. However, current
assessment of treatment response of immunotherapy is still in
the exploratory stage and does not meet the standard of routine
clinical use. Fortunately, establishing a standard imaging scheme
is the key to reverse this situation. The advanced imaging
techniques have been widely studied and used as a tool to
evaluate the therapeutic response in GBM. A large number of
studies supported that the combination of various advanced
imaging techniques can improve the diagnostic accuracy,
expanding our prospective to the development of multimodal
imaging. As for now, however, these imaging methods need to be
further verified in multicenter and large sample clinical trials to
November 2021 | Volume 12 | Article 790674
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drive them to truly become powerful diagnostic tools in
the future.
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