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Cyclin proteins are capable to regulate the cell cycle by forming a complex with cyclin-dependent kinases
to activate cell cycle. Correct recognition of cyclin proteins could provide key clues for studying their
functions. However, their sequences share low similarity, which results in poor prediction for sequence
similarity-based methods. Thus, it is urgent to construct a machine learning model to identify cyclin pro-
teins. This study aimed to develop a computational model to discriminate cyclin proteins from non-cyclin
proteins. In our model, protein sequences were encoded by seven kinds of features that are amino acid
composition, composition of k-spaced amino acid pairs, tri peptide composition, pseudo amino acid com-
position, geary correlation, normalized moreau-broto autocorrelation and composition/transition/distri
bution. Afterward, these features were optimized by using analysis of variance (ANOVA) and minimum
redundancy maximum relevance (mRMR) with incremental feature selection (IFS) technique. A gradient
boost decision tree (GBDT) classifier was trained on the optimal features. Five-fold cross-validated results
showed that our model would identify cyclins with an accuracy of 93.06% and AUC value of 0.971, which
are higher than the two recent studies on the same data.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cyclin belongs to a group of proteins which are capable to con-
trol the cell cycle by triggering Cdk [1]. Cyclin concentration
changes on different levels at several stages of the cell cycle. These
changes occurred due to the ubiquitin-mediated cyclin degrada-
tion [2]. Cyclin combines with cyclin dependent kinases, like
cdk1 proteins and p34, to trigger the cyclin dependent kinase
active sites. This cdk1, p34 and cyclin combination forms a MPF
(maturation-promoting factor) which activates other proteins [3].
However, phosphorylation is needed for the complete activation
of cyclin dependent kinase active sites [3]. Therefore, these phos-
phorylated proteins are liable for the specific movements during
the division of cell cycle e.g., chromatin remodeling and the forma-
tion of microtubules [3,4].

After the Human Genome Project (HGP), biological sequence
data has progressively shattered [5]. The traditional investigational
techniques have not only low efficient and expensive but also are
time consuming. Therefore, it is urgent to identify sequences
efficiently in a short period of time. However, existing tools such
as FASTA [6] and BLAST [7] only compare the sequence with the
known protein databases [8,9], these tools cannot discriminate
whether it is a cyclin or non-cyclin. Now, machine learning classi-
fications are popular in this area [10–13]. In prior methods, StAR
[14] and other classifiers using Pseudo-amino acid composition
(PseAAC) could identify cyclins with an accuracy of 83.53%. Sun
et al. [15] established a cyclin prediction model based on support
vector machine (SVM) which could produce an accuracy of
91.90%. Although both cyclin prediction model can produce good
outcomes, there is still room for further improvement by extract-
ing more feature information.

To address the aforementioned issues, an ensemble model was
established to predict cyclin in multiple eukaryotic genomes. Fig. 1
shows the workflow of the proposed model. First, seven types of
feature descriptors, Amino acid composition [16], Tri-peptide com-
position [17], Composition of K-spaced amino acid composition
[18,19], Geary autocorrelation [20], Normalized moreau-broto
autocorrelation [21], C/T/D [22] and PseAAC [23,24] were used as
features to input into a GBDT classifier [25]. After this, ANOVA
[26] and the mRMR [27] with IFS [28] technique was utilized to
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Fig. 1. The flowchart of the whole study.
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get optimal feature vectors. The outcomes were evaluated by using
five-fold cross validation.
2. Materials and methods

A reliable and accurate dataset is necessary to establish a pre-
diction model [29–35]. Therefore, the dataset was obtained from
Mohabatkar et al. [14]. They collected 215 cyclins and 204 non-
cyclin proteins to train and test the methods for cyclins prediction.
To reduce the overfitting derived from high similarity of sequences,
we applied a cluster database at high identity with tolerance 90%
[36] and discarded the sequences that exhibited more than 90%
sequence identity. As a result, we attained the 167 cyclin and
167 non-cyclin proteins. Then we divided into 70/30 ratio in order
to training and testing the model.
2.1. Feature descriptors

Selecting the feature-encodings that are instructive and auton-
omous is an important step in creating machine learning models
[37–40]. Expressing the protein sequences with a mathematical
formulation is key and difficult in functional element identification
[41–44]. Therefore, seven types of feature-encoding approaches
were presented to describe the protein sequences.
2.1.1. Amino acid composition descriptor (AAC)
AAC calculates the frequency of single type of amino acids in a

protein sequence [16,45–50]. The frequencies f pð Þ of 20 residues
can be calculated as

f pð Þ ¼ N pð Þ
N

p 2 fACDEFGHIKLMNPQRSTVWYg ð1Þ

where N pð Þ is the number of the p-th residue in a protein sequence
with the length of N residues.
Table 1
Attribute classification.

C 1 C 2 C 3 Attributes

±tive
R, K

Not + tive nor -tive
A, N, C, Q,
H, I, G, L,
F, P, S, M,
W, Y, V, T

-tive
D, E

Charge

Polar
D, E, K, N, Q, R

Not + tive nor -tive
A, G, H, P, S, T, Y

Hydrophobic
C, F, I M, V, W

Hydrophobicity
2.1.2. Composition of k-spaced amino acid pairs descriptor (CKSAAP)
The encoding technique composition of k-spaced nucleic acid

pairs embodies the incidence of nucleotide pairs disconnected by
any K nucleotide (K = 0, 1, 2, 3, 4, 5). The CKSAAP [18,45,51] is
defined as k-spaced residue pairs Qxy which is illustrated as

Qxy ¼ Nxy

N�k ðk ¼ 0;1;2;3;4;5 and xy ¼ type of AAÞ (2)where
Nxy is the number of residue pairs and k denotes the number of
nucleotides. In this study, k = 3 and the dimension of the composi-
tion of k-spaced amino acid pairs feature was 1600.
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2.1.3. Pseudo amino acid composition descriptor (PseAAC)
PseAAC describes the occurrence of the amino acid frequency

and the correlation of between two residues’ physicochemical
properties [23]. It consists of Aci and Ac@i.

Aci ¼ Ni

1þx�P20
i¼1hi

ð)hi ¼
PN�d

i¼1 ðQi � QiþdÞ2
NQ

; ði

¼ 1;2;3 � � � ;20ÞÞ ð3Þ

Ac@i ¼ x� hi

1þx�P20
i¼1hi

; ðhere;x ¼ 0:05Þ ð4Þ

where NQ is the number of properties and Ni is the i-th amino acid
occurrence. Qi is the ith amino acid property value and hi is the
sequence order factor.

2.1.4. Tri-peptide composition descriptor (TPC)
TPC are three amino acid molecules joined together and reflects

hypothetically substantial starting points for the design of small
biotic modulators [17]. Tripeptide composition is defined as

f lmn ¼ Nlmn

N � 2
ð)l;m;n 2 ðA;B;C � � � :;ZÞÞ ð5Þ

where Nlmn represents the number of tripeptide amino acid type l,
m, n.

2.1.5. Composition\transition\distribution descriptor (C/T/D)
C/T/D defines the global composition of an amino acid sequence

and the frequencies of two different adjoining amino acids and the
distribution pattern of an amino acid sequence. Sequence scram-
bling is the first job to compute the composition, transition and
distribution [52]. On the basis of their attributes, amino acids are
alienated into three classes (class 1, class 2 and class 3) [24], also
named reduced or simplified amino acids [53,54]. Classifications
of charge and hydrophobicity are shown in Table 1. C/T/D with
composition Ca, transition Tb and distribution is defined as Db;z.



H. Zulfiqar, Shi-Shi Yuan, Qin-Lai Huang et al. Computational and Structural Biotechnology Journal 19 (2021) 4123–4131
Ca ¼ Na

N
ð)a ¼ 1;2;3 � � �Þ ð6Þ

Tb ¼ Nb;c þ Nc;b

N � 1
ð)b ¼ 1;2;3 � � � ; c–bÞ ð7Þ

Db;z ¼ Nb;z

N
ð)b ¼ 1;2;3 � � � ; z ¼ 1; 0:15N � � � ;NÞ ð8Þ

where Na is the class number, Nb;c is the adjoining number of class b
and c. Nb;z is the number of those AA which are in z-th of b-th class.

2.1.6. Geary descriptor (GD)
Geary descriptor is a kind of correlation descriptor and have a

maximum similarity with Moran descriptor [55]. It is well-
defined as QðrÞ:

QðrÞ ¼ N � 1
2� N � rð Þ �

PN�r
i¼1 Pi � Piþrð Þ2PN

i¼1ðPi�rÞ2
ð)r ¼ 1;2; :::;20 ð9Þ

where Pi is the property value of the i-th amino acids in AA index.

2.1.7. Normalized moreau-broto autocorrelation descriptor (NMBroto)
NMBroto is also a type of autocorrelation [21] and also have a

likeness with Moran as shown in below equation.

QðrÞ ¼
PN�r

i¼1 ðPi � PiþrÞ
N � r

ð)r ¼ 1;2; :::;20 ð10Þ

where Pi is the property value of the i-th amino acids in AA index.

2.2. Feature selection

The noise in feature vector might result in the unsatisfactory
performance of a model [56–63]. Therefore, the selection of fea-
tures is an obligatory phase to remove the less important features
and increase the productivity of a model [37,64–69]. Many feature
selection and ranking techniques are available, such as ANOVA, F-
score [70], mRMR [27], Chi-square [71], LGBM [72,73]. A high fea-
ture dimensions both can create overfitting and information
redundancy and produce poor accuracy of the cross -validation
prediction. Therefore, ANOVA is good option to tackle these issues
because it consumes less time and gave efficient results. The com-
bination of some of the top-executing features does not mean that
the top predictive results can be attained. These features are prob-
ably to have a high degree of correlation, which leads to additional
redundant information in the feature vectors. Therefore, mRMR is a
good option to tackle these issues due to less time consuming and
efficient results. These techniques are also used in many high
dimensional protein features selection. In this study, the ANOVA
and mRMR [27] with IFS [56] was applied to obtain the optimal
feature subset. The comparison with other state of the art feature
selection techniques is given in Fig. 2S in Supplementary file 1.

2.2.1. ANOVA
ANOVA is used for significance test of mean difference between

two or more samples. F-value is the ratio of variance between
groups and variance within groups [74]. If the F-value will be lar-
ger, then the ability of distinguishing positive and negative sam-
ples will be better. Therefore, all features can be sorted according
to this F-value.

Q2
mðnÞ ¼

Xr

i¼1

li
ðxi � xÞ2

dfm
ð11Þ

Q2
nðnÞ ¼

Xr

i¼1

Xli
j¼1

ðxi;j � xiÞ2
dfn

ð12Þ
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FðnÞ ¼ Q2
mðnÞ

Q2
nðnÞ

ð13Þ
2.2.2. mRMR with IFS
mRMR is a filter-based selection technique [75] to achieve an

optimal model. Compactness functions are described as y and z,
and P(y) and P(z) are the two corresponding probabilities. P (y, z)
is the possibility of compactness, and the common information
between the two functions can be defined as

I y; zð Þ ¼
ZZ

P y; zð Þlog P y; zð Þ
P yð ÞP zð Þ dydz ð14Þ

In shared information, searching a subset S with m optimum
features helps to determine the feature transmission, which
majorly depends on the target {yi} class q.

maxd S; qð Þ;d ¼ 1
Sj j
X

yi2S
I yi; qð Þ i ¼ 1;2;3 � � �mð Þ ð15Þ

Minimum redundancy can be defined as

minr S; qð Þ; r ¼ 1

Sj j2
X

yi;yj2S
I yi; yj
� � ð16Þ

Final selection criteria can be articulated as

max£ d; rð Þ;£ ¼ d� r ð17Þ
The principle of the mRMR technique is to use a typical redun-

dancy and relevance to rank features to acquire the best subset.
The IFS [28,76] scheme was applied in the present study to select
the best feature. The details about the IFS method can be found
in [56].

2.3. Machine learning classifiers

Classification is a type of supervised learning and have an
important role in the decision making [77–85]. In this study, we
select GBDT [25] to identifying cyclin and non-cyclin proteins.
Another four kinds of machine learning classifiers Naïve Bayes
[86], Support Vector Machine [56,57,87], and Ada Boost [88] and
Random Forest [84] were performed for comparison.

Gradient boost decision tree algorithm is a very important
learning algorithm and has been applied by the researchers in
many bioinformatics and mathematical and biological applica-
tions [89,90]. It constructs a climbable and authentic model
from a non-linear joint of different weak learners. The main
idea of the gradient boost decision tree is to establish a base
learner which is excellently interrelated with the loss function
of negative gradient [25]. Suppose that there are n numbers
of samples:

{(x1; y1). . .(xn; yn)} ()xi�x#Rn; andyi�y#R)

f k xð Þ :¼
Xk

k¼1

T x; hkð Þ ð18Þ

where T x; hkð Þ is the new decision tree (k = 1,2,3. . ..), and hk is the
risk minimization parameter of the new decision tree which is
shown in below equation.

ĥk ¼ argmin
Xn
i¼1

L yi; f k�1 xð Þ þ T x; hkð Þð Þð)Listhelossfunction ð19Þ

Gradient boost decision tree algorithm calculates the final
assessment in a forwarding mode.

f k xð Þ ¼ f k�1 xð Þ þ T x; hkð Þ (20)
Finally, Loss function f k�1 of negative gradient is used for resid-

ual calculation.



Table 2
Best parameters of the proposed
model.

Best Parameters

‘Max-depth’ 20
‘Max-features’ 05
‘Min-samples-leaf’ 03
‘Learning-rate’ 0.05
‘Min-samples-split’ 02
‘N-estimators’ 80
‘Mean square error’ 0.1287
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Rki ¼ � @L yi; f xið Þð Þ
@f yið Þ

� �
f xð Þ¼f k�1 xð Þ

ð)i ¼ 1;2;3::::nÞ ð21Þ

At the end, we trained the model by all Rki to calculates the risk
minimization parameterhk. This type of decision trees logically
models the relations amongst predictor variables. e.g., mapping
the parameters input space X in to J split sections R1:::RJ, and the
output is ZJ for region RJ.
Tðx; hÞ ¼
XJ

j¼1

zjIðxj�RjÞ ð22Þ

The pseudo code of gradient boost decision tree is given below
in Algo 1.
Fig. 2. Plot showing the Incremental Feature Selection (IFS) procedure for identifying Cyclin
10,200 features by ANOVA. (B) 304 optimal features were further obtained from the 5711
descriptor contribution in GBDT-based fusion model to predict cyclins. (D) Comparison
classifiers.
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Algo 1: Gradient Boosting Decision Tree Algorithm

Input: Training Data: = xi; yið Þni¼1
Where, xi is a data point and yi is the label for xi
Loss function: = L (yi, f (x))

1. Initialize the model f xð Þ: = argmin
Pn

i¼1L yi; zð Þ
2. for k = 1,2, 3. . ., K Do
3. for I = 1,2, 3. . ., n Do
4. By Calculating the Pseudo residual error:

Rki=� @L yi ;f xið Þð Þ
@f yið Þ

h i
f xð Þ¼f k�1 xð Þ

5. End
6. End
7. By Constructing a new Decision Tree Tk x; hkð Þ, based on

Rki; hk= {Rkjj ¼ 1;2;3 � � � J½ �}
8. for j = 1, 2, 3. . .., J Do
9. zkj = argmin

Pn
xi2Rkj L yi; f k�1 xð Þ þ zð Þ

10. End
11. Updating the model f k xð Þ = f k�1 xð Þ + Pj

j¼1zkjI x̂IRkj

� �
12. f (x) =

PK
k¼1

PJ
j¼1zkjI x̂IRkj

� �
Output: The decision tree function f (x)
Scikit - learn package (v – 0.22.1) [91] was used to execute the ran-
dom forest classifiers. Firstly, we used randomized search cross-
validation and then grid search cross-validation to tune hyperpa-
rameter. The best tuned parameters of the proposed model are
given in Table 2.
s in 5-fold cross-validation. (A) Firstly, 5711 features were selected from a total of
features by using mRMR. The Acc increases from 88.92% to 93.06%. (C) Feature
between single-encodings and fusion features on different machine learning
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2.4. Evaluation metrics

Sensitivity (Sn), specificity (Sp), accuracy (Acc), and matthews
correlation coefficient (MCC) [92–106] were used in this study to
check the overall efficiency of the model defined as Equation (23).

Sn ¼ TP
TPþFN

Sp ¼ TN
TNþFP

Acc ¼ TPþTN
TPþFPþTNþFN

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ� TNþFNð Þ� TPþFPð Þ� TNþFPð Þ

p

8>>>>><
>>>>>:

ð23Þ

where TP represents the overall cyclins sequences in benchmark
data and FP signifies the cyclins sequences false-classified as non-
cyclins. Likewise, TN represents the overall non-cyclins sequences
in the data and FN signifies the non-cyclin sequences, which were
false-classified as cyclins. Consequently, the receiver operating
characteristic (ROC) curve was used to illustrate the efficiency of
the model graphically. The ROC curvature could assess the project-
ing ability of the proposed model on the whole assortment of resul-
tant values. The area under the curve (AUC) was premeditated to
check the efficiency of the model. A good classifier gave AUC = 1,
and the arbitrary performance gave AUC = 0.5.

3. Results and discussion

3.1. Performance evaluation

First, the training data were converted into feature vectors
using feature descriptors (amino acid composition, composition
of k-spaced amino acid pairs, tri peptide composition, pseudo
amino acid composition, geary correlation, normalized moreau-
broto autocorrelation and composition/transition/distribution),
and the feature vectors of each encoding model were evaluated
by gradient boost decision tree algorithm using a five-fold CV test.
Firstly, the ANOVA and mRMR with IFS were used to pick the best
feature subset for the sake of better prediction accuracy. Fig. 2(A)
and (B) shows the incremental feature selection curve of optimal
features and comparison of single encodings and fusion on differ-
ent machine learning classifiers on the basis of AUC. Table 3 shows
the efficiency of the optimized single-encoding models and the fea-
ture fusion model on different machine learning methods. The per-
formance of single-encoding models and the fusion model on
different machine learning classifiers before feature selection is
recorded in Table 1S in Supplementary file 1. We also visualized
the single-encoding features and fusion features using t-SNE (t-
distributed Stochastic Neighbor Embedding) method before and
after feature selection. The t-SNE visualization of single-encoding
and fusion before feature selection is available in Fig. 1S in Supple-
mentary file 1 and the t-SNE visualization of the optimized
single-encodings and the fusion is shown in Fig. 3. The AUCs of
single-encoding models are 0.827, 0.526, 0.825, 0.506, 0.896,
0.854, and 0.890, respectively for AAC, CKSAAP, PseAAC, TPC, C/T/
D, GD, and NMBroto. The AUC of composition/transition/distribu
tion was around 0.6% – 39% higher as compared with those of
the other encodings. On the contrary, the Acc, Sp, Sn, MCC, and
AUC of the feature fusion model were 93.06%, 94.00%, 92.00%,
0.862% and 0.971, respectively. The Acc, Sp, Sn, MCC, and AUC on
independent data were 89.36%, 90.10%, 89.45% and 0.823%. ROC
with the AUC of 0.954 is given in Fig. 3S in Supplementary file 1.
In order to check the better performance and reliability of our
model, we further randomly extracted 50 non-cyclin sequences
from the public databases and checked the performance by run-
ning our model. We found quite reasonable results. The Accuracy,
specificity, sensitivity and matthews correlation coefficient were
90.09%, 91.11%, 89.45%, and 0.829%.



Fig. 3. t-SNE visualization of optimized single encoding features and fusion feature. From (A) to (G) showing single encodings and (H) showing fusion of the single encodings.
In the figure, 0 in blue color represents non-cyclin and 1 in orange color showing cyclins. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Comparison between proposed model and existing methods.

Method CV Acc (%) MCC Sn (%) Sp (%) AUC Reference

Mohabatkar et al., model Jack-knife 83.53 – 87.44 – 0.894 [14]
Sun et al., model Jack-knife 91.90 – 91.00 92.80 0.915 [15]
iCyclin Jack-knife 92.74 0.853 91.60 93.21 0.958 This Work
iCyclin Five-fold 93.06 0.862 92.00 94.00 0.971 This Work

Fig. 4. ROC curve of proposed model and the two existing methods on the basis of
jackknife and five-fold cross-validation. The AUCs of different models have been
showed.
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3.2. Performance evaluation of different ML algorithms

Single-encoding AAC, CKSAAP, PseAAC, TPC, C/T/D, GD, NMBroto
and feature fusion models were inputted into different machine
learning classifiers such as Ada boost, SVM, and Naive bayes algo-
rithm. Their performances were compared with that of gradient
boost decision tree classifier-based models. A five-fold cross-
validation test was used to evaluate these model performances.
Results were shown in Table 3. We may notice that the accuracies
of feature fusion models were always higher than those of single-
encoding models, indicating that the multiple information was
effective to achieve better results. Fig. 2 (C) showed the feature
descriptor contribution in GBDT-based fusion model. The opti-
mized fusion model consists of 304 features of seven descriptors.
AAC descriptor contributed 3.28 % in final fusion model because
their 10 features were participated in the fusion model. CKSAAP
descriptor contributed 16.11 % in final model because their 49 fea-
tures were participated in the fusion model. CTD descriptor con-
tributed 13.15 % in final model because their 40 features were in
the final fusion model. Geary descriptor contributed 32.89 %
because their 100 features were participated in the fusion model.
NMBroto descriptor contributed 26.31 % in the final optimized
model due to their 80 best features. PAAC contributed 4.93 % in
the model with their 15 features and TPC contributed 3.28 % in
the final optimized model with their best 10 features. Fig. 2 (D)
exhibited that the GBDT-based fusionmodel performed best among
4128
all methods. Particularly, the AUC of GBDT classifier was almost
3.5% – 17.7% higher than that of the other models, indicating that
the GBDT-based model was the best for cyclin identification.



H. Zulfiqar, Shi-Shi Yuan, Qin-Lai Huang et al. Computational and Structural Biotechnology Journal 19 (2021) 4123–4131
3.3. Comparison with existing models

In recent studies, Mohabatkar et al., [14] and Sun et al., [15]
used the similar dataset for training their models by using jack-
knife cross-validation. The accuracies of their models were
83.53% and 91.90%, respectively. We also used the same dataset
and applied GBDT algorithm. Results on jackknife cross-
validation and five-fold cross-validation showed that our model
is better than the two existing models. The comparison of two
existing models with our model has been shown in Table 4 and
Fig. 4.

4. Conclusions

Cyclin proteins are capable to regulate the cell cycle and forms a
complex with cyclin-dependent kinases. This complex activates
cell cycle but the full activation requires phosphorylation. Cyclin
protein have low similarity between their sequences. To date,
numerous predictors have been established to classify cyclins in
diverse species [14,15,107]. In this study, an advanced ensemble
model was established to identify cyclins. In the proposed model,
protein sequences were encoded by using AAC, CKSAAP, PseAAC,
TPC, C/T/D, GD, and NMBroto. Then, these encoding-features were
optimized by using ANOVA and mRMR with IFS technique. On the
basis of top feature subset, the finest sorting model was achieved
by the gradient boost decision tree classifier using five-fold CV test.
The estimated outcomes on training data showed that the pro-
posed model provided outstanding generalization capability. The
data and codes are also available in the Supplementary file 2. Fur-
ther studies will aim to create a user-friendly web server for the
projected model. Also, additional feature selection methods and
algorithms will be implemented to further improve the efficiency
to classify cyclins [108–117].

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been supported by the National Natural Science
Foundation of China (61772119), Sichuan Provincial Science Fund
for Distinguished Young Scholars (2020JDJQ0012).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.07.013.

References

[1] Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural
differentiation. Oncogene 2003;22(33):5208–19.

[2] Morgan DO, The cell cycle: principles of control. 2007: New science press.
[3] Ferby I, Blazquez M, Palmer A, Eritja R, Nebreda AR. A novel p34cdc2-binding

and activating protein that is necessary and sufficient to trigger G2/M
progression in Xenopus oocytes. Genes Dev 1999;13(16):2177–89.

[4] Robinson DR, Gull K. Basal body movements as a mechanism for
mitochondrial genome segregation in the trypanosome cell cycle. Nature
1991;352(6337):731–3.

[5] Lee TF, The Human Genome Project: Cracking the genetic code of life. 2013:
Springer.

[6] Pearson WR, Finding protein and nucleotide similarities with FASTA. Current
protocols in bioinformatics, 2016. 53(1): p. 3.9. 1-3.9. 25.

[7] Madden T, The BLAST sequence analysis tool, in The NCBI Handbook
[Internet]. 2nd edition. 2013, National Center for Biotechnology Information
(US).
4129
[8] Xu Baofang, Liu Dongyang, Wang Zerong, Tian Ruixia, Zuo Yongchun. Multi-
substrate selectivity based on key loops and non-homologous domains: new
insight into ALKBH family. Cell Mol Life Sci 2021;78(1):129–41.

[9] Liu Yu, Li Ao, Zhao Xing-Ming, Wang Minghui. DeepTL-Ubi: a novel deep
transfer learning method for effectively predicting ubiquitination sites of
multiple species. Methods 2021;192:103–11.

[10] Zhang Dan, Chen Hua-Dong, Zulfiqar Hasan, Yuan Shi-Shi, Huang Qin-
Lai, Zhang Zhao-Yue, et al. iBLP: An XGBoost-based predictor for
identifying bioluminescent proteins. Comput Math Methods Med
2021;2021:1–15.

[11] Zulfiqar Hasan, Masoud Muhammad Shareef, Yang Hui, Han Shu-Guang, Wu
Cheng-Yan, Lin Hao, et al. Screening of Prospective Plant Compounds as H1R
and CL1R inhibitors and its antiallergic efficacy through molecular docking
approach. Comput Math Methods Med 2021;2021:1–9.

[12] Dao Fu-Ying, Lv Hao, Yang Yu-He, Zulfiqar Hasan, Gao Hui, Lin Hao.
Computational identification of N6-methyladenosine sites in multiple
tissues of mammals. Comput Struct Biotechnol J 2020;18:1084–91.

[13] Yang Yu-He, Ma Chi, Wang Jia-Shu, Yang Hui, Ding Hui, Han Shu-Guang, et al.
Prediction of N7-methylguanosine sites in human RNA based on optimal
sequence features. Genomics 2020;112(6):4342–7.

[14] Mohabatkar H. Prediction of cyclin proteins using Chou’s pseudo amino acid
composition. Protein Pept Lett 2010;17(10):1207–14.

[15] Sun Jia-Nan, Yang Hua-Yi, Yao Jing, Ding Hui, Han Shu-Guang, Wu Cheng-Yan,
et al. Prediction of cyclin protein using two-step feature selection technique.
IEEE Access 2020;8:109535–42.

[16] Zuo Y et al., iDEF-PseRAAC: identifying the defensin peptide by using reduced
amino acid composition descriptor. Evolutionary Bioinformatics, 2019. 15: p.
1176934319867088.

[17] Wu Jianping, Aluko Rotimi E. Quantitative structure-activity relationship
study of bitter di-and tri-peptides including relationship with
angiotensin I-converting enzyme inhibitory activity. J Peptide Sci
2007;13(1):63–9.

[18] Chen Zhen, Chen Yong-Zi, Wang Xiao-Feng, Wang Chuan, Yan Ren-Xiang,
Zhang Ziding, et al. Prediction of ubiquitination sites by using the
composition of k-spaced amino acid pairs. PLoS ONE 2011;6(7):e22930.

[19] Chen Wei, Feng Pengmian, Nie Fulei. iATP: A sequence based method for
identifying anti-tubercular peptides. Med Chem 2020;16(5):620–5.

[20] Sokal RR, Thomson BA. Population structure inferred by local spatial
autocorrelation: an example from an Amerindian tribal population. Am J
Phys Anthropol 2006;129(1):121–31.

[21] Horne David S. Prediction of protein helix content from an autocorrelation
analysis of sequence hydrophobicities. Biopolymers 1988;27(3):451–77.

[22] Cai CZ, Han LY, Ji ZL, Chen YZ. Enzyme family classification by support vector
machines. Proteins Struct Funct Bioinf 2004;55(1):66–76.

[23] Chou Kuo-Chen. Prediction of protein cellular attributes using pseudo-amino
acid composition. Proteins Struct Funct Bioinf 2001;43(3):246–55.

[24] Zuo Yongchun, Li Yuan, Chen Yingli, Li Guangpeng, Yan Zhenhe, Yang Lei.
PseKRAAC: a flexible web server for generating pseudo K-tuple reduced
amino acids composition. Bioinformatics 2017;33(1):122–4.

[25] Ke G et al. Lightgbm: a highly efficient gradient boosting decision tree. Adv
Neural Inf Process Syst 2017;30:3146–54.

[26] Tang Hua, Zhao Ya-Wei, Zou Ping, Zhang Chun-Mei, Chen Rong, Huang Po,
et al. HBPred: a tool to identify growth hormone-binding proteins. Int J Biol
Sci 2018;14(8):957–64.

[27] De Jay N et al., mRMRe: an R package for parallelized mRMR ensemble feature
selection. Bioinformatics, 2013. 29(18): p. 2365-2368.

[28] Yang Wuritu, Zhu Xiao-Juan, Huang Jian, Ding Hui, Lin Hao. A Brief Survey of
Machine Learning Methods in Protein Sub-Golgi Localization. Curr Bioinform
2019;14(3):234–40.

[29] Su Wei, Liu Meng-Lu, Yang Yu-He, Wang Jia-Shu, Li Shi-Hao, Lv Hao, et al.
PPD: a manually curated database for experimentally verified prokaryotic
promoters. J Mol Biol 2021;433(11):166860. https://doi.org/10.1016/j.
jmb.2021.166860.

[30] Ning L et al., MNDR v3.0: mammal ncRNA-disease repository with increased
coverage and annotation. Nucleic Acids Res, 2021. 49(D1): p. D160-d164.

[31] Liang ZY et al. Pro54DB: a database for experimentally verified sigma-54
promoters. Bioinformatics 2017;33(3):467–9.

[32] Hong Z et al. Identifying enhancer–promoter interactions with neural
network based on pre-trained DNA vectors and attention mechanism.
Bioinformatics 2020;36(4):1037–43.

[33] Zeng X et al., deepDR: a network-based deep learning approach to in silico
drug repositioning. Bioinformatics, 2019. 35(24): p. 5191-5198.

[34] Yu Liang, Wang Meng, Yang Yang, Xu Fengdan, Zhang Xu, Xie Fei, et al.
Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-
specific pathways. PLoS Comput Biol 2021;17(2):e1008696.

[35] Zhao Xudong, Jiao Qing, Li Hangyu, Wu Yiming, Wang Hanxu, Huang Shan,
et al. ECFS-DEA: an ensemble classifier-based feature selection for differential
expression analysis on expression profiles. BMC Bioinf 2020;21(1):43.

[36] Fu L et al., CD-HIT: accelerated for clustering the next-generation sequencing
data. Bioinformatics, 2012. 28(23): p. 3150-3152.

[37] Zheng Nantao, Wang Kairou, Zhan Weihua, Deng Lei. Targeting virus-host
protein interactions: Feature extraction and machine learning approaches.
Curr Drug Metab 2019;20(3):177–84.

[38] Zeng X et al., Predicting disease-associated circular RNAs using deep forests
combined with positive-unlabeled learning methods. Briefings in
bioinformatics, 2020. 21(4): p. 1425-1436.

https://doi.org/10.1016/j.csbj.2021.07.013
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0005
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0005
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0015
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0015
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0015
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0020
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0020
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0020
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0040
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0040
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0040
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0045
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0045
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0045
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0050
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0050
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0050
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0050
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0055
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0055
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0055
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0055
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0060
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0065
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0065
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0065
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0070
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0070
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0075
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0075
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0075
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0085
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0090
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0095
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0095
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0100
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0100
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0100
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0105
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0105
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0110
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0110
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0115
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0115
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0120
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0120
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0120
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0125
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0125
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0130
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0130
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0130
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0140
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0140
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0140
https://doi.org/10.1016/j.jmb.2021.166860
https://doi.org/10.1016/j.jmb.2021.166860
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0155
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0155
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0160
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0160
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0160
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0170
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0170
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0170
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0175
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0175
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0175
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0185
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0185
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0185


H. Zulfiqar, Shi-Shi Yuan, Qin-Lai Huang et al. Computational and Structural Biotechnology Journal 19 (2021) 4123–4131
[39] Min X et al., Predicting enhancer-promoter interactions by deep learning and
matching heuristic. Briefings in Bioinformatics, 2021. Doi: 10.1093/bib/
bbaa254.

[40] Shang Yifan, Gao Lin, Zou Quan, Yu Liang. Prediction of drug-target
interactions based on multi-layer network representation learning.
Neurocomputing 2021;434:80–9.

[41] Liu Bingqiang, Han Ling, Liu Xiangrong, Wu Jichang, Ma Qin. Computational
prediction of sigma-54 promoters in bacterial genomes by integrating motif
finding and machine learning strategies. IEEE/ACM Trans Comput Biol Bioinf
2019;16(4):1211–8.

[42] Zeng Xiangxiang, Zhu Siyi, Lu Weiqiang, Liu Zehui, Huang Jin, Zhou Yadi, et al.
Target identification among known drugs by deep learning from
heterogeneous networks. Chem Sci 2020;11(7):1775–97.

[43] Lin X et al., A novel molecular representation with BiGRU neural networks for
learning atom. Briefings in Bioinformatics, 2020. 21(6): p. 2099–2111.

[44] Yu Liang, Shi Yayong, Zou Quan, Wang Shuhang, Zheng Liping, Gao Lin.
Exploring drug treatment patterns based on the action of drug and multilayer
network model. Int J Mol Sci 2020;21(14):5014.

[45] Lv Zhibin, Jin Shunshan, Ding Hui, Zou Quan. A random forest sub-golgi
protein classifier optimized via dipeptide and amino acid composition
features. Front Bioeng Biotechnol 2019;7.

[46] Schaduangrat Nalini, Nantasenamat Chanin, Prachayasittikul Virapong,
Shoombuatong Watshara. ACPred: a computational tool for the prediction
and analysis of anticancer peptides. Molecules 2019;24(10):1973.

[47] Win Thet Su, Malik Aijaz Ahmad, Prachayasittikul Virapong, S Wikberg Jarl E,
Nantasenamat Chanin, ShoombuatongWatshara. HemoPred: a web server for
predicting the hemolytic activity of peptides. Future Med Chem 2017;9
(3):275–91.

[48] Win Thet Su, Schaduangrat Nalini, Prachayasittikul Virapong, Nantasenamat
Chanin, Shoombuatong Watshara. PAAP: A web server for predicting
antihypertensive activity of peptides. Future Med Chem 2018;10
(15):1749–67.

[49] Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the
bioactivity of anticancer peptides as deduced from machine learning. EXCLI
J 2018;17:734.

[50] Tao Z et al. A method for identifying vesicle transport proteins based on
LibSVM and MRMD. Comput Math Methods Med 2020;2020:8926750.

[51] Fu X et al., StackCPPred: a stacking and pairwise energy content-based
prediction of cell-penetrating peptides and their uptake efficiency.
Bioinformatics, 2020. 36(10): p. 3028-3034.

[52] Dubchak I, Muchnik I, Holbrook SR, Kim SH. Prediction of protein folding class
using global description of amino acid sequence. Proc Natl Acad Sci 1995;92
(19):8700–4.

[53] Zheng L et al., RaacLogo: a new sequence logo generator by using reduced
amino acid clusters. Brief Bioinform, 2020.

[54] Zheng L et al., RAACBook: a web server of reduced amino acid alphabet for
sequence-dependent inference by using Chou’s five-step rule. Database
(Oxford), 2019. 2019.

[55] Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa
M. AAindex: amino acid index database, progress report 2008. Nucleic Acids
Res 2007;36(Database):D202–5.

[56] Dao FY et al., Identify origin of replication in Saccharomyces cerevisiae using
two-step feature selection technique. Bioinformatics, 2019. 35(12): p. 2075-
2083.

[57] Feng CQ et al., iTerm-PseKNC: a sequence-based tool for predicting bacterial
transcriptional terminators. Bioinformatics, 2019. 35(9): p. 1469-1477.

[58] Chen Wei, Feng Pengmian, Liu Tao, Jin Dianchuan. Recent advances in
machine learning methods for predicting heat shock proteins. Curr Drug
Metab 2019;20(3):224–8.

[59] Zeng Xiangxiang, Wang Wen, Chen Cong, Yen Gary G. A consensus
community-based particle swarm optimization for dynamic community
detection. IEEE Trans Cybern 2020;50(6):2502–13.

[60] Wang Tian, Luo Hao, Zeng Xiangxiang, Yu Zhiyong, Liu Anfeng, Sangaiah
Arun Kumar. Mobility based trust evaluation for heterogeneous electric
vehicles network in smart cities. IEEE Trans Intell Transp Syst 2021;22
(3):1797–806.

[61] Cheng Liang, Zhao Hengqiang, Wang Pingping, Zhou Wenyang, Luo Meng, Li
Tianxin, et al. Computational Methods for Identifying Similar Diseases. Mol
Ther. Nucleic acids 2019;18:590–604.

[62] Cheng L, Computational and Biological Methods for Gene Therapy. Current
Gene Therapy, 2019. 19(4): p. 210-210.

[63] Zhai Y et al. Identifying antioxidant proteins by using amino acid composition
and protein-protein interactions. Front Cell Dev Biol 2020;8:591487.

[64] Zou Quan, Wan Shixiang, Ju Ying, Tang Jijun, Zeng Xiangxiang. Pretata:
predicting TATA binding proteins with novel features and dimensionality
reduction strategy. BMC Syst Biol 2016;10(S4). https://doi.org/10.1186/
s12918-016-0353-5.

[65] Deng L, Li W, Zhang J. LDAH2V: exploring meta-paths across multiple
networks for lncRNA-disease association prediction. IEEE/ACM Trans Comput
Biol Bioinf 2019.

[66] Lv H et al., A sequence-based deep learning approach to predict CTCF-
mediated chromatin loop. Briefings in bioinformatics, 2021.

[67] Wang H et al., eHSCPr discriminating the cell identity involved in endothelial
to hematopoietic transition. Bioinformatics, 2021.

[68] Zhao T et al., DeepLGP: a novel deep learning method for prioritizing lncRNA
target genes. Bioinformatics, 2020.
4130
[69] Zhao X et al. Identifying plant pentatricopeptide repeat proteins using a
variable selection method. Front Plant Sci 2021;12:506681.

[70] Song QingJun, Jiang HaiYan, Liu Jing. Feature selection based on FDA and F-
score for multi-class classification. Expert Syst Appl 2017;81:22–7.

[71] Rachburee N, Punlumjeak W. A comparison of feature selection approach
between greedy, IG-ratio, Chi-square, and mRMR in educational mining. 2015
7th International Conference on Information Technology and Electrical
Engineering (ICITEE). IEEE; 2015.

[72] Lv Zhibin, Wang Donghua, Ding Hui, Zhong Bineng, Xu Lei. Escherichia Coli
DNA N-4-methycytosine site prediction accuracy improved by light gradient
boosting machine feature selection technology. IEEE Access 2020;8:14851–9.

[73] Lv Z et al. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites.
Frontiers In Bioengineering And Biotechnology 2020;8:134.

[74] Tabachnick BG, Fidell LS. Experimental designs using ANOVA. CA: Thomson/
Brooks/Cole Belmont; 2007.

[75] Peng H, Long F, Ding C. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern
Anal Mach Intell 2005;27(8):1226–38.

[76] Tan J-X et al. Identification of hormone binding proteins based on machine
learning methods. Math. Biosci. Eng 2019;16(4):2466–80.

[77] Yang Hui, Luo Yamei, Ren Xiaolei, Wu Ming, He Xiaolin, Peng Bowen, et al.
Risk Prediction of Diabetes: Big data mining with fusion of multifarious
physical examination indicators. Information Fusion 2021;75:140–9.

[78] Charoenkwan P et al., BERT4Bitter: a bidirectional encoder representations
from transformers (BERT)-based model for improving the prediction of bitter
peptides. Bioinformatics, 2021.

[79] Wei L et al., Computational prediction and interpretation of cell-specific
replication origin sites from multiple eukaryotes by exploiting stacking
framework. Brief Bioinform, 2020.

[80] Hasan MM, et al., HLPpred-Fuse: improved and robust prediction of
hemolytic peptide and its activity by fusing multiple feature
representation. Bioinformatics, 2020. 36(11): p. 3350-3356.

[81] Cheng L, et al., MetSigDis: a manually curated resource for the metabolic
signatures of diseases. Brief Bioinform, 2019. 20(1): p. 203-209.

[82] Cheng L, et al., DincRNA: a comprehensive web-based bioinformatics toolkit
for exploring disease associations and ncRNA function. Bioinformatics, 2018.
34(11): p. 1953-1956.

[83] Wang X, et al., The stacking strategy-based hybrid framework for identifying
non-coding RNAs. Brief Bioinform, 2021.

[84] Zulfiqar H et al. Computational identification of N4-methylcytosine sites in
the mouse genome with machine-learning method. Mathematical Biosci Eng
2021;18(4):3348–63.

[85] Dao FY, et al., A computational platform to identify origins of replication sites
in eukaryotes. Briefings in bioinformatics, 2021. 22(2): p. 1940-1950.

[86] Feng PM et al. Naive Bayes classifier with feature selection to identify phage
virion proteins. Comput Math Methods Med 2013;2013:530696.

[87] Zhang Zi-Mei, Wang Jia-Shu, Zulfiqar Hasan, Lv Hao, Dao Fu-Ying, Lin Hao.
Early diagnosis of pancreatic ductal adenocarcinoma by combining relative
expression orderings with machine-learning method. Front Cell Dev Biol
2020;8. https://doi.org/10.3389/fcell.2020.582864.

[88] Schapire, R.E., Explaining adaboost, in Empirical inference. 2013, Springer. p.
37-52.

[89] Sun R et al. A gradient boosting decision tree based GPS signal reception
classification algorithm. Appl Soft Comput 2020;86:105942.

[90] Liu Kewei, Chen Wei, Lin Hao. XG-PseU: an eXtreme Gradient Boosting based
method for identifying pseudouridine sites. Mol Genet Genomics 2020;295
(1):13–21.

[91] Abraham A et al. Machine learning for neuroimaging with scikit-learn. Front
Neuroinf 2014;8:14.

[92] Lv Z, et al., Identification of Sub-Golgi protein localization by use of deep
representation learning features. Bioinformatics (Oxford, England), 2020.

[93] Panja Anindya Sundar, Nag Akash, Bandopadhyay Bidyut, Maiti Smarajit.
Protein Stability Determination (PSD): A tool for proteomics analysis. Curr
Bioinform 2018;14(1):70–7.

[94] Khan Yaser Daanial, Alzahrani Ebraheem, Alghamdi Wajdi, Ullah Malik Zaka.
Sequence-based Identification of Allergen Proteins Developed by Integration
of PseAAC and Statistical Moments via 5-Step Rule. Curr Bioinform 2021;15
(9):1046–55.

[95] Tahir Muhammad, Idris Adnan. MD-LBP: an efficient computational model
for protein subcellular localization from HeLa Cell Lines Using SVM. Curr
Bioinform 2020;15(3):204–11.

[96] Wang Xian-Fang, Gao Peng, Liu Yi-Feng, Li Hong-Fei, Lu Fan. Predicting
thermophilic proteins by machine learning. Curr Bioinform 2020;15
(5):493–502.

[97] Yang Yingjuan, Fan Chunlong, Zhao Qi. Recent advances on the machine
learning methods in identifying phage virion proteins. Curr Bioinform
2020;15(7):657–61.

[98] Liu K, Chen W, iMRM:a platform for simultaneously identifying multiple
kinds of RNA modifications. Bioinformatics, 2020. 36(11): p. 3336-3342.

[99] Basith Shaherin, Manavalan Balachandran, Hwan Shin Tae, Lee Gwang.
Machine intelligence in peptide therapeutics: a next-generation tool for rapid
disease screening. Med Res Rev 2020;40(4):1276–314.

[100] Manavalan Balachandran, Basith Shaherin, Shin Tae Hwan, Wei Leyi, Lee
Gwang. Meta-4mCpred: A Sequence-Based Meta-Predictor for Accurate DNA
4mC site prediction using effective feature representation. Mol Ther Nucleic
Acids 2019;16:733–44.

http://refhub.elsevier.com/S2001-0370(21)00303-2/h0200
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0200
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0200
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0205
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0205
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0205
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0205
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0210
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0210
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0210
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0220
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0220
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0220
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0225
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0225
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0225
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0230
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0230
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0230
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0235
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0235
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0235
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0235
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0240
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0240
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0240
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0240
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0245
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0245
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0245
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0250
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0250
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0260
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0260
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0260
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0275
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0275
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0275
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0290
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0290
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0290
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0295
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0295
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0295
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0300
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0300
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0300
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0300
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0305
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0305
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0305
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0315
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0315
https://doi.org/10.1186/s12918-016-0353-5
https://doi.org/10.1186/s12918-016-0353-5
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0325
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0325
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0325
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0345
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0345
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0350
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0350
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0355
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0355
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0355
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0355
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0360
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0360
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0360
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0365
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0365
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0370
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0370
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0375
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0375
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0375
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0380
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0380
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0385
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0385
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0385
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0420
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0420
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0420
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0430
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0430
https://doi.org/10.3389/fcell.2020.582864
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0445
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0445
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0450
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0450
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0450
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0455
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0455
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0465
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0465
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0465
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0470
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0470
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0470
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0470
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0475
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0475
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0475
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0480
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0480
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0480
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0485
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0485
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0485
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0495
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0495
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0495
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0500
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0500
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0500
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0500


H. Zulfiqar, Shi-Shi Yuan, Qin-Lai Huang et al. Computational and Structural Biotechnology Journal 19 (2021) 4123–4131
[101] Yu Liang, Zhou Dandan, Gao Lin, Zha Yunhong. Prediction of drug response in
multilayer networks based on fusion of multiomics data. Methods (San
Diego, Calif.) 2021;192:85–92.

[102] CharoenkwanPhasit, KanthawongSakawrat, Nantasenamat Chanin,HasanMd
Mehedi, Shoombuatong Watshara. iDPPIV-SCM: a sequence-based predictor
for identifying and analyzing dipeptidyl peptidase IV (DPP-IV) inhibitory
peptides using a scoring card method. J Proteome Res 2020;19(10):4125–36.

[103] Charoenkwan Phasit, Yana Janchai, Nantasenamat Chanin, Hasan Md Mehedi,
Shoombuatong Watshara. iUmami-SCM: a novel sequence-based predictor
for prediction and analysis of umami peptides using a scoring card method
with propensity scores of dipeptides. J Chem Inf Model 2020;60
(12):6666–78.

[104] Wang G, et al., MeDReaders: a database for transcription factors that bind to
methylated DNA. Nucleic Acids Res, 2018. 46(D1): p. D146-D151.

[105] Stephenson Natalie, Shane Emily, Chase Jessica, Rowland Jason, Ries David,
Justice Nicola, et al. Survey of machine learning techniques in drug discovery.
Curr Drug Metab 2019;20(3):185–93.

[106] Cao Renzhi, Freitas Colton, Chan Leong, Sun Miao, Jiang Haiqing, Chen
Zhangxin. Protein function prediction using neural machine translation based
on a recurrent neural network. Molecules 2017;22(10).

[107] Kalita Mridul K, Nandal Umesh K, Pattnaik Ansuman, Sivalingam Anandhan,
Ramasamy Gowthaman, Kumar Manish, et al. CyclinPred: a SVM-based
method for predicting cyclin protein sequences. PLoS ONE 2008;3(7):e2605.

[108] Lv Z, et al., Anticancer peptides prediction with deep representation learning
features. Briefings in bioinformatics, 2021.

[109] Ahmad Fareed, Farooq Amjad, Ghani Khan Muhammad Usman, Shabbir
Muhammad Zubair, Rabbani Masood, Hussain Irshad. Identification of most
relevant features for classification of francisella tularensis using machine
learning. Curr Bioinform 2021;15(10):1197–212.
4131
[110] Amanat Saba, Ashraf Adeel, Hussain Waqar, Rasool Nouman, Khan Yaser D.
Identification of lysine carboxylation sites in proteins by integrating
statistical moments and position relative features via general PseAAC. Curr
Bioinform 2020;15(5):396–407.

[111] Ayachit Garima, Shaikh Inayatullah, Pandya Himanshu, Das Jayashankar.
Salient Features, Data and Algorithms for MicroRNA Screening from Plants: A
Review on the Gains and Pitfalls of Machine Learning Techniques. Curr
Bioinform 2021;15(10):1091–103.

[112] Kong Liang, Zhang Lichao, He Shiqian. Improving multi-type gram-negative
bacterial secreted protein prediction via protein evolutionary information
and feature ranking. Curr Bioinform 2020;15(6):538–46.

[113] Li Hong-Dong, Zhang Wenjing, Luo Yuwen, Wang Jianxin. IsoDetect:
detection of splice isoforms from third generation long reads based on
short feature sequences. Curr Bioinform 2021;15(10):1168–77.

[114] Zhang Ge, Yu Pan, Wang Jianlin, Yan Chaokun. Feature selection algorithm for
high-dimensional biomedical data using information gain and improved
chemical reaction optimization. Curr Bioinform 2021;15(8):912–26.

[115] Zhang Tianjiao, Wang Rongjie, Jiang Qinghua, Wang Yadong. An information
gain-based method for evaluating the classification power of features
towards identifying enhancers. Curr Bioinform 2020;15(6):574–80.

[116] Hasan Md Mehedi, Manavalan Balachandran, Khatun Mst Shamima, Kurata
Hiroyuki. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-
methylcytosine sites in the Rosaceae genome. Int J Biol Macromol
2020;157:752–8.

[117] Hasan MM, et al., Meta-i6mA: an interspecies predictor for identifying DNA
N6-methyladenine sites of plant genomes by exploiting informative features
in an integrative machine-learning framework. Brief Bioinform, 2020.

http://refhub.elsevier.com/S2001-0370(21)00303-2/h0505
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0505
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0505
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0510
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0510
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0510
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0510
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0515
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0515
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0515
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0515
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0515
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0525
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0525
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0525
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0530
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0530
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0530
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0535
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0535
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0535
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0545
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0545
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0545
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0545
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0550
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0550
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0550
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0550
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0555
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0555
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0555
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0555
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0560
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0560
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0560
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0565
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0565
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0565
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0570
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0570
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0570
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0575
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0575
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0575
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0580
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0580
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0580
http://refhub.elsevier.com/S2001-0370(21)00303-2/h0580

	Identification of cyclin protein using gradient boost decision tree algorithm
	1 Introduction
	2 Materials and methods
	2.1 Feature descriptors
	2.1.1 Amino acid composition descriptor (AAC)
	2.1.2 Composition of k-spaced amino acid pairs descriptor (CKSAAP)
	2.1.3 Pseudo amino acid composition descriptor (PseAAC)
	2.1.4 Tri-peptide composition descriptor (TPC)
	2.1.5 Composition\transition\distribution descriptor (C/T/D)
	2.1.6 Geary descriptor (GD)
	2.1.7 Normalized moreau-broto autocorrelation descriptor (NMBroto)

	2.2 Feature selection
	2.2.1 ANOVA
	2.2.2 mRMR with IFS

	2.3 Machine learning classifiers
	2.4 Evaluation metrics

	3 Results and discussion
	3.1 Performance evaluation
	3.2 Performance evaluation of different ML algorithms
	3.3 Comparison with existing models

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


