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Enantioselective benzylic C–H arylation via
photoredox and nickel dual catalysis
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The asymmetric cross-coupling reaction is developed as a straightforward strategy toward

1,1-diaryl alkanes, which are a key skeleton in a series of natural products and bioactive

molecules in recent years. Here we report an enantioselective benzylic C(sp3)−H bond

arylation via photoredox/nickel dual catalysis. Sterically hindered chiral biimidazoline ligands

are designed for this asymmetric cross-coupling reaction. Readily available alkyl benzenes

and aryl bromides with various functional groups tolerance can be easily and directly

transferred to useful chiral 1,1-diaryl alkanes including pharmaceutical intermediates and

bioactive molecules. This reaction proceeds smoothly under mild conditions without the use

of external redox reagents.
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Enantioenriched 1,1-diaryl alkanes are a key skeleton in a
series of natural products and bio-active molecules, such as
sertraline1, tolterodine2,3, podophyllotoxins4, etc5–8. Due to

the broad application of 1,1-diaryl alkanes in pharmaceutical
industry, their asymmetric synthesis has attracted intensive
interests in organic chemistry community and multiple strategies
have been developed9–17. As a highly efficient and direct metho-
dology for generating stereogenic centers in target molecules,
transition-metal-catalyzed enantioselective cross-coupling reac-
tions of electrophiles with organometallic reagents have been
developed by Fu and colleagues18, and Molander and
colleagues19,20 to furnish 1,1-diaryl alkanes using chiral biox-
azolines (BiOX) as ligands. In addition, stereospecific cross-
coupling reactions could also deliver this class of compounds21–25.
Recently, nickel-catalyzed asymmetric reductive cross-coupling
strategies of racemic benzylic electrophiles with aryl halides were
reported by Weix and colleagues26, Reisman and colleagues27,
Sigman and Doyle28 to provide an alternative strategy using chiral
BiOXs as ligands and stoichiometric reductive transition metals
(Fig. 1a). Compared with the well-established methologies with
alkenes or electrophiles, using alkane as a substrate, the direct
C–H arylation is considered a preferable step- and atom-economic
method for the construction of C(sp3)–C(sp2) bonds29–38. During
the preparation of this manuscript, the Cu/BOX-catalyzed radical
relay strategy was used by Liu and colleagues39 to realize an ele-
gant enantioselective arylation of C–H bonds on a methylene
group adjacent to a naphthalene moiety40. By the merge of pho-
tocatalysis and transition-metal catalysis20,41–56, the milestone of
C–H arylation reactions via hydrogen atom transfer (HAT) pro-
cess has been recently marked by Molander and colleagues57,
Shields and Doyle58, MacMillan and colleagues59, and Martin and
colleagues60 (Fig. 1b) to provide an alternative for the direct
construction of 1,1-diaryl alkanes with readily available starting
materials in a mild reaction condition. However, by lack of
development of ligands able to differentiate between competing

diastereomeric transition states, asymmetric cross-coupling reac-
tion via this photocatalytic HAT process is quite challenging. So
far, the best enantioselectivity of C–H arylation via photoredox/
nickel dual catalysis is 77:23 enantiometric ratio (er)60. Our
researches focus on asymmetric earth-abundant transition metal
catalysis via chiral ligand design61–66. It is noted that the oxazoline
derivated chiral ligands (BOX or BiOX), which have been well
established in the cross-coupling strategies toward 1,1-diaryl
alkanes, performed unsatisfactorily in controlling enantioselec-
tivity in the visible-light-induced C–H arylation methology60.
Thus, an effective chiral ligand is to be discovered for the enan-
tioselective construction of 1,1-diaryl alkanes under photoredox/
nickel dual catalysis.

Here we report the enantioselective benzylic C–H arylation of
readily available alkyl benzene with commercially available aryl
bromides by using our designed chiral biimidazoline (BiIM)
ligand (Fig. 1c). In addition, this protocol is redox neutral without
using any additional single-electron oxidant or reductant.

Results
Reaction optimization. At the beginning of our study, the
reaction of ethyl benzene 1a with methyl 4-bromobenzoate 2a
using iridium photocatalyst with bis(4-methoxyphenyl)metha-
none (DMBP) as a co-photocatalyst57 promoting the yield of 3aa
(see Supplementary Table 3) under the irradiation of blue LEDs,
and nickel dichloride-dimethoxyethane complex and chiral ligand
as the cross-coupling catalyst in the presence of K2HPO4 as a base
in a solution of dioxane/ethyl benzene was chosen as a model
reaction (Table 1). Inspired by previous reports on nickel-
catalyzed asymmetric cross-coupling reactions using chiral BiOX
ligand, we were so excited to find that the chiral BiOX ligands LS1
could accelerate the reaction to deliver 3aa in 79% yield, however,
with a moderate enantiomeric ratio (69:31 er) (Table 1, entry 1).
The more electron-rich chiral BiIM ligands67 were then applied as
an alternative for the improvement of enantioselectivity due to
the easy modification of electronic and steric effects. The reaction
using N-isopropyl protected N-iPrBiIM (LS2) as a ligand afforded
3aa in 33% yield and 62.5:37.5 er (Table 1, entry 2). To our
delight, when the N-aryl BiIM ligand L1a was used as a ligand,
the reaction afforded the products 3aa in 44% yield with 92.5:7.5
er (Table 1, entry 3). The steric hindrance and possible π–π effect
of the phenyl group on nitrogen atom increased the inflexibility
of the BiIM, which might improve the enantioselectivity65,66. The
homocoupling product from ethylbenzene was also observed,
which illustrated that the reaction might undergo radical path-
way. After screening various substitution effects on BiIM ligands
(Table 1, entries 4–7), the sterically hinder N-3-tBuPh-iPrBiIM
ligand (L1e) was designed as the best ligand that delivered 3aa in
44% yield and 95:5 er. When the reaction time was extended to
34 h, the reaction afforded 3aa in 62% yield with 94.5:5.5 er,
which was established as standard conditions A (Table 1, entry 8).
The reaction using 4.0 equivalent of ethyl benzene for 96 h
afforded 3aa in 62% yield with a slightly lower er (92.5:7.5), which
was established as standard conditions B (Table 1, entry 9).
Control experiments (see Supplementary Table 3, entries 1–3)
indicated that the iridium photocatalyst, nickel complex, and light
was essential. Reactions were demonstrated to occur successfully
with a lower yield in the absence of DMBP. In addition, the mixed
solvent of dioxane and ethylbenzene is proved effective by inhi-
biting homocoupling of ethylbenzne (see Supplementary Table 3,
entry 7)

Substrate scope. With optimized conditions in hands, we
explored the substrate scope of the reaction with both aryl bro-
mides and alkanes. As shown in Fig. 2, under standard
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Fig. 1 Strategies for nickel-catalyzed asymmetric arylation of benzylic
position or C–H bond reactions. a Asymmetric reductive cross-coupling
strategies toward 1,1-diaryl alkanes with BiOX ligands. b Achiral C(sp3)−H
arylation via photo/nickel dual catalysis and example for the asymmetric
form. c The enantioselective benzylic C(sp3)−H arylation based on
designed biimidazoline ligand
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conditions, the visible-light-induced asymmetric C−H arylation
of ethyl benzene underwent smoothly with various coupling
partners. Aryl bromides with either electron-donating (3ab–3ad)
or electron-withdrawing functional groups (3ae–3ag) at the para-
position were suitable in this reaction, delivering the corre-
sponding chiral 1,1-diaryl ethanes in 45–84% yields with 93:7 to
95.5:4.5 ers (3ab–3ag). The reaction of aryl bromides with meta-
substituents such as methyl and isopropyl groups gave 3ah and
3ai in 82% and 87% yields with 95.5:4.5 and 94:6 er. It is worth
noting that 1° or 3° benzylic C(sp3)−H bonds could be differ-
entiated, as only secondary benzylic C(sp3)−H bonds were
directly activated under these conditions68. Various functional
groups, such as methoxyl, trifluoromethyl, cyano, ester, thio
ether, aceto, hydroxy, and Boc-protected amino groups, were well
tolerated (3aj–3aq). The polycyclic rings and heterocycles such as
2-naphenyl, 5-benzothiophyl, 5-benzofuranyl, 5-indyl, 6-quinolyl,
and 1,3-benzodioxole substrates could be delivered to corre-
sponding products (3ar–3aw) in 48–79% yields with up to
95.5:4.5 er. The coupling of ethyl benzene and 3,4-dimethyl
benzyl bromide could give 3ax in 68% yield with 96:4 er.

For the substituted benzenes, ethyl benzene with methoxyl,
flouro, alkyl groups, and 2-ethylnaphthalene also serve as effective
substrates in asymmetric benzylic C(sp3)−H arylation under
standard conditions B to convert to 3ba–3ca in moderate yields
with 86:14 to 89:11 ers. It should be noted that the chemoselective
benzylic C–H arylation of the ethyl group rather than the isobutyl
group on 1-ethyl-4-isobutylbenzene (1d) proceeded to deliver
3da in 35% yield and 94.5:5.5 er. The propyl and butyl benzenes
were also used to give the corresponding arylation products (3fa,
3fd) in moderate yields with 90:10 er. The 1,2-diphenylethane,
1,3-diphenylpropane, and 1,4-diphenylbutane were mono-acti-
vated, providing 1,1,x (x= 2,3,4) triaryl alkanes in 42–46% yields
with 92:8 to 94.5:5.5 ers. The asymmetric arylation of cyclic
substrate 1j performed smoothly to afford 3ja in 37% yield with
90:10 er. Although low yields were observed in some cases under

standard conditions B, the mass balances of alkyl benzenes were
mostly quantitative.

The application of this protocol was also investigated by using
readily available alkyl benzenes. A Menthol-derived substrate
could be utilized to deliver 4 in 61% yield with good er. This
strategy was also available in the synthesis of pharmaceutical
active molecules such as compound 5, which was reported as a
N1L protein (potent vaccinia and variola (smallpox) virulence
factor) antagonists8.

Mechanistic studies. Several experiments were designed to figure
out the reaction process. The observation of homocoupling
byproduct is consistent with the existence of benzylic radical. The
reaction of 1-(cyclopropylmethyl)-4-methoxybenzene 6 as a
radical clock afforded 7 in 20% yield and 100% mass balance
vs. 2a through a radical-ring-opening process followed by a
irreversible capture by nickel species27, which strengthened the
possibility on radical pathway (Fig. 3a). Yet, we cannot exclude
the possibility of a β-carbon elimination pathway to afford
the same product. The phenyl methyl ethyne 8 was used as a
bromine atom-trapping agent under the standard conditions to
afford a mixture of bromo-substituted alkenes 9 in 24% yield and
100% mass balance vs. 2a, which illustrated the existence of
bromine free radical and aryl-nickel bromide species (Fig. 3b).
The halide additive studies (Fig. 3c, also see Supplementary
Table 3) with aryl chloride 2a-Cl or aryl iodide 2a-I could not
afford 3aa under standard conditions A. 1.0 equivalent of KBr
was added in the reaction of 2a-Cl to initiate nickel bromide by
halide exchange affording 3aa with 58% yield. This is also an
evidence for the bromine radical initiating HAT of benzylic C−H
bond. The deuterium experiment (Fig. 3d) using a 1:1 mixture of
1e and D-1e was carried out and kinetic isotope effect (KIE) was
2.47, which indicated that H-atom abstraction might be the
turnover limiting step. Kinetic experiments of ethylbenzene and

Table 1 Selected chiral ligand screening resultsa

Entry Ln Yield of 3aa (%) er

1 LS1 79 69:31
2 LS2 33 62.5:37.5
3 L1a 44 92.5:7.5
4 L1b 62 86:14
5 L1c 35 92:8
6 L1d 44 92.5:7.5
7 L1e 44 95:5
8b L1e 62 94.5:5.5
9c L1e 62 92.5:7.5

aGeneral reaction conditions: 1a (1.0 mL), 2a (0.2 mmol), Ir(dFCF3ppy)2(dtbbpy)Cl (2.2 mol%), NiCl2•DME (20mol%), Ln (20mol%), DMBP (25 mol%), and K2HPO4 (2.0 equiv.) in dioxane (3 mL)
under the irradiation of 8W blue LEDs for 24 h. Yields determined by 1H-NMR using TMSPh as an internal standard. Enantiometric ratio (er) determined by chiral HPLC. bRun for 34 h. cUsing 1a (0.8
mmol) for 96 h
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4-tBu-phenyl bromide (see Supplementary Figs. 145-147) illu-
strated zero order on the concentration of aryl bromide and first
order on the concentration of ethyl benzene, which were alter-
native evidences of turnover-limiting HAT process.

Based on mechanistic studies (also see Supplementary Discus-
sion section in Supplementary Information) and previously
reported literatures56–60, the proposed mechanism was shown
in Fig. 4. The in-situ generated Ni(0) complex A could undergo
oxidative addition with aryl bromide to generate aryl Ni(II)
bromide species B, which could undergo visible-light-induced

single-electron oxidation to give aryl Ni(II) species C and active
bromine atom.

Simultaneously, the photoexcited iridium complex was reduced
to iridium(II) species. Yet, we cannot rule out the mechanism
of ET process in the initiation of bromine-free radical from
nickel-aryl adduct. The HAT process occurred between bromine-
free radical (BDE (Bond Dissociation Energies) of H−Br is
366 kJ/mol)69 and alkyl benzene (BDE of benzylic C−H bond of
ethylbenzene is 357 kJ/mol)69 rather than between bromine and
dioxane (BDE of the C−H bond of dioxane is 406 kJ/mol)70 using
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Fig. 2 Substrate scope. Standard conditions A: 1 (1.0 mL), 2 (0.2 mmol), Ir(dFCF3ppy)2(dtbbpy)Cl (2.2 mol%), NiCl2·DME (20mol%), L1e (20mol%),
DMBP (25mol%), and K2HPO4 (2.0 eq.) in dioxane (3 mL) under the irradiation of 8W blue LEDs for 34 h. Standard conditions B: 1 (0.8 mmol), 2
(0.2 mmol), Ir(dFCF3ppy)2(dtbbpy)Cl (2.2 mol%), NiCl2·DME (20mol%), L1e (20mol%), DMBP (25mol%), and K2HPO4 (2.0 eq.) in dioxane (3 mL)
under the irradiation of 8W blue LEDs for 96 h. Isolated yield, the er was determined by HPLC. aFor 48 h. bNMR yield using TMSPh as an internal standard
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DMBP as co-catalyst to deliver benzylic radical which was
trapped by aryl Ni(II) species C to afford Ni(III) complex D. The
reductive elimination of Ni(III) complex D could afford the chiral
1,1-diaryl alkanes and produce Ni(I) complex E, which could
undergo single-electron reduction by iridium(II) species to
regenerate Ni(0) species A and photocatalyst iridium(III)
complex.

Conclusion. A direct enantioselective benzylic C−H arylation
under photoredox/nickel dual catalysis was reported with a broad
substrate scope and good level of enantioselectivity. This protocol
provides an effective method for the asymmetric synthesis of 1,1-
diaryl alkanes with preferable step- and atom economy. In
addition, this protocol is redox neutral without using any addi-
tional single-electron oxidant or reductant. Furthermore, this
method could be applied for the synthesis of pharmaceutical
molecules and modification of complex compounds. A primary

mechanism was proposed based on the previously reported lit-
eratures and mechanistic studies. Further studies on enantiose-
lective C−H functionalization with photocatalysis are undergoing
in our laboratory.

Methods
Materials. For NMR spectra of compounds in this manuscript, see Supplementary
Figs. 1–107. For HPLC spectra of compounds in this manuscript, see Supple-
mentary Figures 108-144. For the optimization of reaction conditions, see Sup-
plementary Tables 1, 2. For control experiments, see Supplementary Table 3. For
kinetic experiments, see Supplementary Figs. 145–147 and Supplementary Tables 4,
5. For radical-clock experiment, bromine radical-trapping experiment, KIE
experiment, and catalytic active species experiment, see Supplementary Figs. 148–
155. For the experimental procedures and analytic data of compounds synthesized,
see Supplementary Methods.

Standard conditions A for chiral 1,1-diaryl alkanes. To a 20 mL vial with a stir
bar was added L1e (0.04 mmol), NiCl2•DME (0.04 mmol) and 1 mL of dioxane in a
N2-filled glovebox. The reaction was stirred at 50 °C for 30 min before cooling to
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room temperature. Dioxane (2 mL), 1 (1 mL), benzyl bromide 2 (0.2 mmol), Ir
(dFCF3ppy)2(dtbbpy)Cl (0.0044 mmol), DMBP (0.05 mmol), and K2HPO4 (0.4
mmol) was added consistently. The vial was sealed with a Teflon cap and then
allowed to remove from the glovebox. The reaction was stirred at 600 r.p.m. under
the irradiation of 8W blue LEDs in a distance of 5 cm at room temperature (25 °C)
for 34 h. The reaction was quenched by adding Et2O, filtered through a short pad of
silica, and eluted with Et2O. The solution was concentrated under reduced pressure
to afford the crude residue, which was purified by flash column chromatography.

Standard conditions B for chiral 1,1-diaryl alkanes. To a 20 mL vial with a stir
bar was added L1e (0.04 mmol), NiCl2•DME (0.04 mmol), and 1 mL of dioxane in
a N2-filled glovebox. The reaction was stirred at 50 °C for 30 min before cooled to
room temperature. Dioxane (3 mL), 1 (0.8 mmol), benzyl bromide 2 (0.2 mmol), Ir
(dFCF3ppy)2(dtbbpy)Cl (0.0044 mmol), DMBP (0.05 mmol), and K2HPO4 (0.4
mmol) was added consistently. The vial was sealed with a Teflon cap and then
allowed to remove from the glovebox. The reaction was stirred at 600 r.p.m. under
the irradiation of 8W blue LEDs in a distance of 5 cm at room temperature (25 °C)
for 96 h. The reaction was quenched by adding Et2O, filtered through a short pad of
silica, and eluted with Et2O. The solution was concentrated under reduced pressure
to afford the crude residue, which was purified by flash column chromatography.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information file, and from the corresponding
authors upon reasonable request. The experimental procedures and characterization of
all new compounds are provided in the Supplementary Information.
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