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Abstract: The virus–host interaction requires a complex interplay between the phage strategy of
reprogramming the host machinery to produce and release progeny virions, and the host defense
against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve
the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host.
Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and
most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding
lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA,
a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant;
this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems
that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild
type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or
upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur
metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development
is enhanced in the dksA mutant due to several improvements, including replication and virion
assembly, as well as a less efficient lysis.

Keywords: P1vir bacteriophage; DksA; RNA-seq analysis; phage development; host-virus interac-
tion; transcriptomics

1. Introduction

Infection of the cell by a virus triggers a sequence of events that may lead to the
virus development, multiplication, and release from the host. The bacterial viruses, bac-
teriophages, serve as a safe model to study the virus-host interactions. The most studied
bacteriophages include P1, lambda, and T4. The wide knowledge of the life strategies,
genetics as well as its complete genome [1] placed the P1 phage among the best-known
models of prokaryotic viruses. The P1 phage can infect many bacterial species from Enter-
obacteriaceae, however, the deepest knowledge of its development was obtained from the
studies on Escherichia coli.

Upon infection, P1 chooses one of the two life cycles: lysis, leading to phage particle
multiplication and propagation, or lysogeny when the P1 genome becomes an integral part
of a bacterium in a form of a circular plasmid. The organization of the P1 genome, as is
typical for viruses, strictly affects its functionality. The immunity regions: immC, immI, and
immT play a crucial role in the choice of the phage life strategy, as the main repressor, C1,
and its inactivator, Coi are encoded there [2,3]. Moreover, an additional C1 anti-repressor
function is achieved via the action of the Ant protein, whose expression is in turn regulated
by C1 and other products of the imm region, namely the C4 antisense RNA and Icd [4,5].
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The Icd protein also facilitates phage development by blocking bacterial cell division. The
lytic cycle involves phage DNA replication initiated from the oriL region (while oriR serves
as an origin to maintain lysogenic P1 plasmid replication) by the RepL initiatory protein.
The host cell division is also blocked by the kilA gene product, encoded in the same operon
with repL [6], ensuring that cellular resources are redirected to phage development.

While the above-mentioned early genes are mainly responsible for regulatory pro-
cesses and phage DNA replication, expression of the late genes is required for assem-
bly of phage particles and subsequent host cell lysis; their expression is dependent on
phage-encoded factor Lpa, which modulates transcriptional activity of the host RNA poly-
merase [7]. Phage lysozyme, controlled by a holin–antiholin system, ensures the timely
and effective lysis of bacterial cells [1].

Transcription of the phage early genes is typically completed after 20 min of infection
and the late genes are expressed without intermediate stages by 40 min, followed by cell
lysis [1]. As is typical for intracellular parasites, P1 bacteriophage development depends
on the host proteins in addition to phage-encoded regulatory and enzymatic apparatus.
For example, P1 does not encode its own RNA polymerase [8]. Instead, it employs the
host enzyme and directs bacterial transcription machinery, assisted by phage regulators (to
express phage genes e.g., c1, lpa). In addition, the host-encoded SspA protein is required for
transcription of the P1 late genes [9]. Thus, overall it can be assumed that modifications of
host proteins involved in gene expression would directly affect bacteriophage development.

Among bacterial transcription factors that bind to RNA polymerase is DksA, which
was first identified in E. coli as a multicopy suppressor of a temperature sensitivity pheno-
type due to mutations in chaperone-encoding genes, dnaK and dnaJ [10]. Some years later,
this protein attracted more attention due to its function in transcription regulation. DksA
was reported to act as a cofactor for the stringent response alarmone, (p)ppGpp, resulting
in amplification of its negative or positive regulatory effects on transcription, depending
on the specificity of a given promoter [11,12]. However, several lines of evidence indicate
that DksA and (p)ppGpp actions could be independent or even antagonistic [13–16]. DksA
is involved in the regulation of transcription initiating from σ70-dependent promoters, as
well as in σ54-driven transcription [17]. DksA is defined as a global transcription regulator,
interacting with the RNA polymerase via its secondary channel [18]. The role of DksA in
some Gram-negative bacteria has been described and the presence of dksA homologs has
been reported in many proteobacteria [19,20]. Mutants lacking dksA exhibit pleiotropic
defects, e.g., in cell growth and division, stringent and stress response, quorum sensing,
and DNA repair [19,21–23], indicating its important role in numerous cellular processes. A
thorough transcription analysis aiming at DksA function was performed e.g., using mi-
croarrays to compare (p)ppGpp and DksA-deficiency in E. coli [14], transcriptomic analysis
in Pseudomonas aeruginosa [24], Borrelia burgdorferi [25], or Haemophilus ducreyi [26].

The virus–host interaction requires a complex interplay between two opposite targets:
phage strategy of reprogramming the host machinery to serve its purposes of propagation,
and host cell defense against the infection [27]. Thus, at the molecular level, a complicated
arrangement of gene expression alterations takes place, the process that can be studied
employing various methods, e.g., computational approaches or Raman tweezers [28,29]. In
this work, we attempted to resolve the phenomenon of improved lytic development of P1
phage in the DksA-deficient E. coli host by using a high-throughput approach to obtain a
general view on the phage–host interaction.

Here, we present the second part of our scientific story which is still getting curiouser
and curiouser, which makes the reader amazed and brings to mind “Alice’s Adventures
in Wonderland” by Lewis Carroll. We would like to encourage the reader to follow the
beginning of this story in our accompanying paper: Virus-Host Interaction Gets Curiouser
and Curiouser. PART I: Phage P1vir Enhanced Development in an E. coli DksA-Deficient Cell [30].
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2. Results and Discussion
2.1. General Overview of the Virus–Host Transcriptome

To obtain a widespread and holistic overview of the virus–host interactions, we
analyzed the transcriptome of both, the P1vir phage and the dksA and wild-type hosts
undergoing P1 infection. Total RNA sequencing was performed to assess the changes
in gene expression pattern at 0, 10, and 30 min post P1vir infection. The choice of time
points was based on the course of P1 lytic development—after 20 min, transcription of the
early genes should be completed, the late genes are expressed up to 40 min, and then cell
lysis occurs [1].

The heatmap plot based on the expression of all detected genes of all sequenced
samples is presented in Figure 1, panel A. As the sequenced samples for each time point
and host were done in triplicate, a negative control was also included in the experiments–
both hosts’ and the phage gene expression levels are well represented.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 20 
 

 

Wonderland” by Lewis Carroll. We would like to encourage the reader to follow the begin-
ning of this story in our accompanying paper: Virus-Host Interaction Gets Curiouser and 
Curiouser. PART I: Phage P1vir Enhanced Development in an E. coli DksA-Deficient Cell [30]. 

2. Results and Discussion 
2.1. General Overview of the Virus–Host Transcriptome  

To obtain a widespread and holistic overview of the virus–host interactions, we ana-
lyzed the transcriptome of both, the P1vir phage and the dksA and wild-type hosts under-
going P1 infection. Total RNA sequencing was performed to assess the changes in gene 
expression pattern at 0, 10, and 30 min post P1vir infection. The choice of time points was 
based on the course of P1 lytic development—after 20 min, transcription of the early genes 
should be completed, the late genes are expressed up to 40 min, and then cell lysis occurs 
[1].  

The heatmap plot based on the expression of all detected genes of all sequenced sam-
ples is presented in Figure 1, panel A. As the sequenced samples for each time point and 
host were done in triplicate, a negative control was also included in the experiments–both 
hosts' and the phage gene expression levels are well represented. 

 
Figure 1. Changes in global gene expression in the course of the virus-host interactions. The wild 
type and the dksA mutant cultures were infected with the P1vir phage at the beginning of the loga-
rithmic phase of growth. Total RNA sequencing (RNA-seq) was performed for three post-infection 
time-points: 0 min (no-phage control), 10 min (early gene expression), and 30 min (late gene ex-
pression). Panel (A) presents the heatmap plot of all analyzed RNA-seq samples based on the ex-
pression of all detected genes of both hosts (wild type and dksA mutant) and the P1vir virus. Sam-
ple replicates (three for each condition) are listed below the heatmap. Gene expression data are 
presented as Z-score transformed, scaled in rows values. Panel (B) shows the number of P1vir 
phage genes which have been expressed at 10 and 30 min of infection. The Venn diagram below 
panel B shows the number of P1vir genes upregulated in the wild type and dksA mutant cells. 

2.2. The Virus Transcriptome Upon Infection 
General overview of P1 phage gene expression. Figure 1, panel B, shows the number of 

P1vir genes which have been expressed at 10 min and 30 min of infection. Roughly 70–
80% of total phage genes are expressed at 10 min of infection. We found that at 30 min 
post-infection all phage genes are expressed.  

Figure 1. Changes in global gene expression in the course of the virus-host interactions. The wild type and the dksA mutant
cultures were infected with the P1vir phage at the beginning of the logarithmic phase of growth. Total RNA sequencing
(RNA-seq) was performed for three post-infection time-points: 0 min (no-phage control), 10 min (early gene expression),
and 30 min (late gene expression). Panel (A) presents the heatmap plot of all analyzed RNA-seq samples based on the
expression of all detected genes of both hosts (wild type and dksA mutant) and the P1vir virus. Sample replicates (three for
each condition) are listed below the heatmap. Gene expression data are presented as Z-score transformed, scaled in rows
values. Panel (B) shows the number of P1vir phage genes which have been expressed at 10 and 30 min of infection. The
Venn diagram below panel B shows the number of P1vir genes upregulated in the wild type and dksA mutant cells.

2.2. The Virus Transcriptome Upon Infection

General overview of P1 phage gene expression. Figure 1, panel B, shows the number
of P1vir genes which have been expressed at 10 min and 30 min of infection. Roughly
70–80% of total phage genes are expressed at 10 min of infection. We found that at 30 min
post-infection all phage genes are expressed.

In our analysis, we plotted the observed changes onto the P1vir genome map (Figure 2).
This allowed linking the expression level of each gene at each time point and in each
host with several known P1 genetic features, such as the σ70 promoters, Lpa-dependent
promoters, C1 operator sites, or Rho-independent terminators. The level of gene expression
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differs between the time points and the hosts (Figure 2, see rows labeled WT and dksA).
However, we did not find any uniquely expressed phage genes depending on the host.
We also did not find an easy to define pattern in the hosts’ gene expression upon phage
infection. It seems that a much more complex scenario is rolling out here. Even so, we are
still able to pinpoint several factors or events that plausibly lead to the improved P1vir
development in a DksA-deficient host (discussed below).
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The P1 virulence mechanism dilemma. One of the most striking observations regarding
the P1vir transcriptome in the wild type and dksA hosts is the difference in expression
levels of phage genes from the C4-ant1/2 region (Figure 2).

We found that the ant1 gene which co-produces the lytic anti-repressor Ant is highly
expressed in the wild-type host at 30 min post-infection. Moreover, the kilA gene, located
directly downstream from the ant1/2 genes is also highly expressed in the wild-type strain.
These two genes show the highest level of expression among all of the phage’s genes during
infection of the wild-type strain.

High expression of the ant1 gene can be linked to point mutations detected in the
immI region of the P1vir genome that we described in the accompanying paper [30]. This
is because mutations located in the promoter region of the C4 antisense RNA or near the
C4-antisense-RNA binding site may directly affect the ant1 expression; thus, the permanent
or extremely enhanced ant1 expression forces P1vir to enter the lytic pathway.

On the other hand, we must remember that in the wild type strain, although there
is a much lesser expression of ant1 and kilA genes, those genes are still highly expressed
in compering to the general gene expression in the wild type host, (Figure 2, both hosts
in 30 min). As mentioned in the accompanying paper [30], our findings support the
hypothesis that originated in the 1980s claiming that the mutation located somewhere
within the C4-ant1/2 region is a key to the P1vir obligatory virulence [31].

The KilA protein promotes cellular death, so very high levels of kilA gene expres-
sion will promote lytic development. Moreover, KilA has been considered as another
anti-repressor of the lytic functions (prof. M. Łobocka, personal communication). This
hypothesis is even more interesting if we consider the expression of the P1vir ant1/2 and
kilA genes in the dksA− host. Expression of these two genes in the dksA− host is also suffi-
ciently high for the P1vir phage to enter the lytic development, but the overall expression
level of these genes is much lower in comparison to the one in the wild type host. We
hypothesize that lower expression of genes directly responsible for triggering the lytic-only
development may result in a less rapid and more gentle lysis.

The gentle lysis hypothesis. We hypothesize that the lack of DksA protein unlocks a
cascade of events which leads to a situation where cell lysis is less efficient and somehow
less rapid, thus, maturation of more virion particles may be possible. As we have shown
in both, the qPCR (in the accompanying paper [30]) and RNA-seq analysis (this work),
the level of phage lpa mRNA decreases more significantly in the DksA-deficient strain.
The Lpa protein activates the expression of the so-called Lpa-controlled operons and is
required for expression of the P1 late genes, e.g., the lysozyme, structural proteins, and
DNA packaging proteins. With some exceptions, genes involved in the late functions are
expressed from late promotors and are entirely or partially dependent on Lpa [1]. The
level of lyz-specific mRNA is lower when the phage infects the dksA mutant than in the
wild-type bacteria. Moreover, we have observed upregulation of the phage lydE and lydB
gene expression in the dksA host (Figure 2); these genes encode antiholins which are lysis
determinants that prevent premature lysis [1]. In contrast, we observed that expression of
the phage lydA gene encoding holin, a protein triggering cell lysis, as well as the kilA gene,
a protein whose overexpression kills the host cell [32], are substantially downregulated in
the dksA mutant in comparison to the wild type host, at 30 min post-infection (Figure 2).
We think that the less efficient expression of genes responsible for the host cell lysis may
give a chance for more efficient phage DNA replication and virion part assembly before
all of cell barriers collapse when cell lysis occurs and progeny virions are released. This
potential shift could explain the improved lytic phage development observed in the dksA−

strain—the longer the bacterial cells are kept in a good condition and the antiholins prevent
premature lysis, the more virus particles will be able to mature in a given time. Additionally,
RNA-seq analysis proves experimental observation of lower c1 gene expression under
given conditions (the accompanying paper [30]).

P1vir in a dksA− strain—at the brink of lysogeny. Despite the lysis-only development
of P1vir, our analysis of phage transcriptome revealed some changes in the expression of
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genes involved in the lysogenic pathway upon infection of the dksA strain. It was claimed
previously that the P1vir phage is unable to enter the lysogenic cycle due to a mutation
located in the immunity region immI [31]. We show that in the dksA strain expression of the
ant1 and ant2 genes located in this region is downregulated at both post-infection timepoints
(Figure 2). Moreover, icd, another gene of the immI region, is downregulated in the dksA
strain at 30 min post-infection (Figure 2); expression of this gene causes reversible inhibition
of cell division and apparently is required for ant expression [1,33,34]. Intriguingly, the
c8 gene is upregulated in the dksA strain at both time points of infection. Previously
published data suggested that the c8 gene is probably involved in the establishment of
lysogeny [35,36], thus, its upregulation may be difficult to explain because P1vir can solely
undergo lytic development. We speculate that the enhanced expression of the lysogeny-
related genes even in the lytic-only P1vir phage is leading to a higher phage yield in the
dksA strain.

Minor improvements in the phage development. Although very attractive, gentle lysis of
the host may not be enough on its own to allow the production of more virion particles.
Literally, phages need more parts to build up the virions. First, more copies of phage
genomes would be needed to produce more progeny phages. Indeed, we observed an
enhanced replication of the mini-P1 replicon in the dksA mutant strain (see accompanying
paper [30]). Additionally, transcriptome analysis revealed that the repA gene expression is
increased in the dksA mutant when compared to the wild-type strain. RepA is necessary for
DNA replication initiating at the phage oriR region and it is needed at the early stages of P1
development, as well as during lysogeny. P1 also has another replication origin—oriL, but
the expression of repL, a gene encoding the initiator protein of oriL-driven replication, is not
enhanced in the dksA− strain when comparing to the wild type cells (Figure 2). Phage DNA
from both of these origins is replicating by the theta model, however, in the late stages
of lytic development replication switches to the sigma model. It should not be assumed
that one origin (oriR) is strictly lysogenic and the other (oriL) is strictly lytic; again, the
regulation of P1 replication is complex and shows some flexibility [1]. Nevertheless, we can
assume that stimulation of replication from at least one origin will lead to a higher copy
number of phage genomes that can be used to assemble progeny virions in the dksA host.

Upregulation of genes that are involved in viral particle formation could also explain
the improved phage lytic development observed in the dksA− strain. To produce more
phages, more virion parts would be needed. Indeed, we noticed, that several morpho-
genesis and viral architecture genes are expressed during phage development. In the
DksA-deficient strain, 30 min post-infection, expression of several phage genes whose
functions are linked to capsid development is substantially upregulated (Figure 2); these
include the following genes: 5—encodes the baseplate; 6—encodes tail length determi-
nant; 25—encodes tail stabilizing protein [37]; prt—encodes portal protein; pro—encodes
putative head processing protease and kinase and is required for head morphogenesis [1];
ddrA—encodes viral architecture determinant but its full function is uncertain [38]; U—
encodes the virion protein gpU′ when expressed in (+) orientation; U′—variable gene of tail
fiber operon, encodes tail fiber assembly chaperone when expressed in (−) orientation [1];
R—tail fiber structure or assembly [39].

Overall, the transcriptome analysis of P1vir infection shows that changes in phage
gene expression result from a complex interplay between the phage and the host. This
situation could be explained in the light of P1 phage biology. This phage can develop in
many Enterobacteriaceae hosts, e.g., Shigella dysenteriae, Salmonella typhimurium, Klebsiella
pneumoniae, or Enterobacter aerogenes. It can also adsorb and inject its genetic material
into other Gram-negative bacteria such as Agrobacterium tumefaciens, Alcaligenes faecalis, or
Myxococcus xanthus [40]. Thus, the control of phage development should be multi-level and
highly adaptable. Several of the Lpa-controlled genes have additional σ70 promotors—this
may suggest multiple ways to regulate them, possibly allowing adaptation to alternative
hosts or environmental conditions [1]. Indeed, not all genes of the Lpa-controlled operons
are associated with the expression level of the lpa gene. Moreover, in the dksA strain, there
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are at least several upregulated phage genes, e.g., upl, tciB, pmgN, and iddB (Figure 2) of
unknown function [1].

Summary of this section. Upon P1vir phage infection, most of the phage genes are
expressed in both tested hosts, the wild-type strain and the dksA mutant. It corresponds
to the mechanistic nature of viruses—if the host is fully suitable, the development is
completed. Compared to their hosts, viruses have minimalist genomes, therefore phage
genes often encode proteins with multiple functions. This may be the reason why we did
not observe any “general” genetic switch that would be suppressed in the presence of DksA
and activated in its absence. The whole phage transcriptome appears to be modulated in a
much more subtle way. Analysis of phage gene expression levels upon infection of the wild
type and DksA-deficient hosts enabled us to find some transcription patterns explaining
better development of P1vir in the dksA strain. On one hand, we found a much higher
expression of P1vir genes of the immI region in the wild-type host, most probably leading
to the virulence of this phage. On the other hand, a lower level of expression of these genes
makes the beginning of lysis less efficient in the dksA mutant host. We propose a "gentle"
lysis hypothesis where we claim that the less efficient rupturing of the host cell is one of the
key contributors to a more enhanced development in the DksA-deficient host. It seems that
when developing in the dksA host, P1vir is at the brink of lysogeny but is unable to establish
it and eventually enters the lytic pathway. In this scenario, several minor improvements in
phage development are also essential, such as stimulated DNA replication or enhanced
production of virion parts. However, without further research, it is still difficult to figure
out every mechanism of a possible direct and indirect role that DksA plays in phage gene
expression and phage development. Nevertheless, we are proposing some.

2.3. The Host Transcriptome Upon Infection

Host transcriptomic data for the wild type and dksA strains upon P1vir infection at 0,
10, and 30 min time points were obtained from the same experiment as described above.

General overview of the host transcriptome. The number of downregulated genes of the
wild type and dksA mutant strains is presented in Figure 3A. For both host strains, at 10 min
of infection, we see a much smaller pool of downregulated genes in comparison to 30 min
of infection. A slightly higher number of downregulated genes is noted for the wild-type
strain (381) when comparing to the dksA strain (360) at 30 min post-infection. On the other
hand, at 10 min the number of downregulated host genes of the dksA mutant is twice that
of the wild-type strain. Analysis of the distribution of these genes shows that certain gene
sets overlap between the hosts and time points, while others are uniquely downregulated
solely in the wild type strain or solely in the dksA mutant; this mainly concerns the genes
expressed at 30 min post-infection (Figure 3A, Venn diagram).

We observe a similar situation concerning the number of host genes that are upregu-
lated upon phage infection (Figure 3B). For both tested host strains, at 10 min of infection,
we see a much smaller number of upregulated genes when compared to 30 min post-
infection. A higher number of upregulated genes appears in the wild type strain (409)
when compared to the dksA host (305) at 30 min of infection, however, much more genes
are upregulated in the dksA mutant (83) at the 10 min time point than in the wild type
strain (34). Analysis of the distribution of upregulated genes between the hosts and time
points shows that some upregulated genes overlap, but others are uniquely upregulated in
the wild type of strain (mostly at 30 min) or the dksA mutant (at both, 10 min and 30 min of
infection) (Figure 3B, Venn diagram).

Since the number of genes (in both hosts) that are up- or downregulated is very
large, it is impossible to present them here one-by-one, and thus we decided to discuss
here only the top ten genes with the lowest expression level (downregulated) and the top
ten genes with the highest expression level (upregulated) for each host and each time-
point (Figure 3C,D, respectively). For further details, see Supplementary Materials of the
accompanying paper [30].



Int. J. Mol. Sci. 2021, 22, 6159 8 of 19Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 3. General overview of the host transcriptome upon P1vir infection. Panel (A) shows the number of downregulated 
genes of both, the wild type and dksA mutant hosts at 10 min and 30 min post-P1vir infection. Panel (B) shows the number 
of upregulated genes of both hosts at selected time points upon P1vir infection. Venn diagrams below panels A and B 
show the distribution of up- or downregulated genes. Panel (C) shows the downregulation level of the top ten genes with 
the lowest expression at each time-point and host. Panel (D) shows the upregulation level of the top ten genes with the 
highest expression at each time-point and host. Genes with Fold Change (FC) > 1.5 were selected for further analysis. Gene 
descriptions are in the text and Appendix A, Table A1. 

Figure 3. General overview of the host transcriptome upon P1vir infection. Panel (A) shows the number of downregulated
genes of both, the wild type and dksA mutant hosts at 10 min and 30 min post-P1vir infection. Panel (B) shows the number
of upregulated genes of both hosts at selected time points upon P1vir infection. Venn diagrams below panels A and B
show the distribution of up- or downregulated genes. Panel (C) shows the downregulation level of the top ten genes with
the lowest expression at each time-point and host. Panel (D) shows the upregulation level of the top ten genes with the
highest expression at each time-point and host. Genes with Fold Change (FC) > 1.5 were selected for further analysis. Gene
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Interestingly, we found that the cspA gene encoding the cold shock protein A (CspA)
was the most downregulated gene at each time-point and each host. CspA is the major
cold-shock protein whose mRNA is very unstable at 37 ◦C and its levels rapidly decrease
during growth; its expression levels change in response to temperature fluctuations [41–43].
It was shown that cspA is expressed only during the early-log-phase of growth at 37 ◦C
and during the log phase after a shift from 37 ◦C to 10 ◦C [44,45]. However, cspA is
also expressed at 37 ◦C under nutritional up-shift conditions, before the cells start to
divide [46]. Downregulation of this gene’s expression upon P1vir phage infection is a new
and interesting discovery raising questions of its role in the process of P1vir taking over
the host metabolism [47]. Indeed we did find several cold shock protein-encoding genes
to be downregulated (Figure 3C and Appendix A, Table A1). Response to cold shock is a
kind of a global reprogramming hub allowing bacterial cells to adapt. Turning down this
pathway in the cells seems to provide a metabolic profit for the virus–cold shock regulatory
features became a very useful and versatile tool for taking control of the host. The cspA
gene expression is also shown to be induced by the addition of chloramphenicol [48,49].
Moreover, genes encoding multidrug efflux system transporters, such as mdtI and mdtJ, are
downregulated upon infection (Figure 3C and Appendix A, Table A1). We hypothesize
that besides preserving energy and substrates, one of the P1vir phage strategies is to
alter systems involved in cellular responsiveness to environmental threats. Using global
regulators as multipurpose tools seems to be an effective way for taking control of hosts,
also dampening the responsiveness of cellular alert systems.

We found that the yjiY gene (synonym: btsT) is the most upregulated gene at almost
each time point and in each host (Figure 3D). This gene encodes a high-affinity, pyruvate/H+

symporter which mediates the uptake of pyruvate under nutrient limiting conditions [50].
Expression of btsT is induced at the onset of the stationary phase in media containing
peptides or amino acids as the source of carbon [51,52]. Interestingly, btsT, among other
genes involved in carbon source transport and metabolism, was downregulated in two
MG1655 lysogens carrying closely related Stx2a phages—O104 and PA8 [53]. It seems
that P1vir has an opposite strategy and upregulates this symporter as an energy/carbon
source provider. In the wild-type strain, at 30 min of infection, we found insI1 as one of
the most upregulated genes. In contrast, this gene was not present in any set of genes
upregulated upon infection in the dksA host. The insI1 gene encodes a transposase for the
IS30 insertion sequence. This transposase interacts with the terminal inverted repeats of the
IS30 sequence element, using them as targets for transposition [54,55]. Why DksA-deprived
cells are unable to express this gene remains unclear. We speculate that in the wild-type
cells, phage infection stimulates the excision of this mobile genetic element. Cell lysis, as a
result of phage infection, may be a mechanism of propagation of the IS30 element in the
bacterial population. The lack of DksA, a major global transcriptional regulator, abolishes
this process.

We found an even more interesting situation in the dksA strain at 10 min post-infection.
The pool of the top ten most highly expressed genes is represented mostly by genes
involved in the sulfur metabolism—cysA, cysI, cysH, cysD, cysC, cysN, cysJ, cysW (Figure 3D
and Appendix A, Table A1). These genes are not expressed either at 30 min of infection
in the dksA mutant or the wild-type cells at any time point. Sulfate assimilation proceeds
by consecutive steps of its import (carried out by a protein encoded by cysA [56,57]),
adenylation (encoded by cysD, cysN), and phosphorylation (encoded by cysC), prior to
sulfate reduction to sulfite coupled to its release (encoded by cysH). CysH encodes a 3’-
phospho-adenylylsulfate reductase that releases sulfite and adenosine-3,5-bisphosphate
(PAP). The cysI encodes a subunit of sulfite reductase which is involved in the assimilation
of sulfate and catalyzes the electron transfer from NADPH to sulfite to produce sulfide [58].
Moreover, cysD belongs to a network of genes that facilitate stress-induced mutagenesis
(SIM) in E. coli K-12 [59]. Interestingly, cysD, as well as other genes involved in the sulfur
metabolism, were also significantly upregulated in the MG1655 lysogen carrying the Stx2a
phage PA8 [53].
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Gene Set Annotation—analysis of Gene Ontology terms. Since it is impossible to analyze
all genes one by one in each gene set, we performed a Gene Set Annotation which provided
summarized information about biological processes that were down- and upregulated at
selected time-points and hosts upon P1vir phage infection (Figure 4).

Biological processes regulated in hosts upon phage infection. We found that the host gene
expression changes (both, up- and downregulated pool of genes) are more pronounced at
30 min of infection in comparison to 10 min (Figure 3), and this is also reflected in Gene
Ontology terms analysis. In the wild-type strain, only one biological process—the cation
transmembrane transport—is downregulated at 10 min post-infection (Figure 4A). In the
dksA− strain we have also found only a small set of downregulated biological processes
(Figure 4A). Among upregulated biological processes at 10 min of infection, we found six
GO terms for the wild type and five for the dksA strain (Figure 4B). Changes occur in more
biological processes (up- and downregulated) at 30 min of infection—this applies to both,
the wild type and the dksA mutant strains (Figure 4A, B).

Downregulated biological processes in the host cell. Based on the GO term analysis, we
found many similarities in the downregulation of metabolic processes between both hosts
upon P1vir infection. In both hosts, we found downregulation of amino acid import across
the plasma membrane, cation transmembrane transport, cellular amino acid biosynthetic
process, cellular protein modification process, cellular response to DNA damage stim-
ulus, rRNA modification (Figure 4A). The first response to phage infection is shutting
down biosynthesis of macromolecules (including proteins) and some transmembrane
transporters—it appears that the energy-consuming systems are downregulated and host
metabolism starts to be reprogrammed for phage purposes. That kind of strategy is general
for many viruses, including phages, however, it may differ in details and execution [1,53,60].
On the other hand, another important phage strategy upon infection is the downregulation
of cellular response to DNA damage stimulus which we found in both hosts (Figure 4A)—
this may result from phage DNA maintenance and protection. Those processes also fit well
with the phage proceeding to take over cellular metabolism [1,6,53].

In the wild type. Unique to the wild-type host, we observed downregulation of
siderophore-dependent iron import into the cell, cellular polysaccharide biosynthesis
process, purine nucleotide biosynthesis process, response to cold, and ribosomal large
subunit assembly (Figure 4). In general, we can observe more detailed scenarios for energy
conserving processes, such as reduced synthesis of poly- and oligosaccharides, complex
compounds or their modifications, assembly, or de novo synthesis of basic compounds.

In the dksA− strain. Unique to the dksA host, we observed downregulation of the
peptidoglycan metabolic process, inosine monophosphate (IMP) biosynthetic process,
lipopolysaccharide biosynthetic process, signal transduction, nucleobase metabolic process,
cell wall organization and regulation of cell shape, and proteolysis (Figure 4A). We see that
here the scenario of conserving energy and resources is a little bit different in execution than
in the wild-type host. Downregulation of proteolysis in the dksA mutant cells infected with
P1vir is particularly interesting, as two other bacteriophages—λ and T4—have been also
shown to affect proteolysis in an infected cell by acting on the host-encoded proteases (re-
viewed in [27]). However the phenomenon of increased phage T4 yield in a dksA− mutant
was described only partially—the host transcription was not performed in the analysis [61].
In addition, the fact that we observed the inhibition of expression of genes involved in the
by P1vir only in the dksA− host supports our gentle lysis hypothesis—less efficient protein
degradation in the host cell may support more enhanced phage development.
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Figure 4. Gene Ontology (GO) terms analysis of the host genes upon P1vir infection. Panel (A) shows downregulated
biological processes in the wild-type strain and the dksA mutant. Panel (B) shows upregulated biological processes in both
tested hosts. The horizontal line indicates a border between the host sets of GO terms. Descriptions in gray represent
GO terms that are common to both hosts. Descriptions in black represent biological processes that are uniquely up- or
downregulated in a given host. We used the GSAn algorithm exploiting the semantic of concepts in Gene Ontology which
provided a reduced and synthetic number of GO terms resuming the biological role of the gene set input. The Information
Content (IC) is a score associated with the terms explaining how much they are informative (the bigger the IC is, the
more specific the term is); log(IC) is used for visualization purposes. Term depth (number of GO terms united together
after semantic analysis) and covered genes (the number of genes whose expression has been up- or downregulated) are
also provided.
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Upregulated biological processes in the host cell. Just like for the downregulated pro-
cesses, we found many similarities in the upregulation of metabolic processes between
both hosts upon P1vir infection. In both hosts, we found upregulation of the organic sub-
stance catabolic process, cellular amino acid catabolic process, cellular protein modification
process, peptide transport, protein-containing complex assembly, cellular carbohydrate
metabolic process, lipid metabolic process, nucleotide biosynthetic process, purine ribonu-
cleotide metabolic process, transcription (DNA-templated), response to heat, and the SOS
response (Figure 4B). In general, phage P1vir controls the hosts by upregulating their
protein, sugar, and lipid metabolism, while the hosts try to take action by activating the
SOS response or upregulating their response to heat.

Unique to the wild-type strain, we observed upregulation of inorganic cation trans-
membrane transport, phosphate ion transmembrane transport, phosphate-containing
compound metabolic process, cellular amino acid biosynthetic process, peptide metabolic
process, and general cellular response to stress (Figure 4B).

Unique to the dksA strain, we observed upregulation of amino acid transport, an-
ion transmembrane transport, carbohydrate transport, carboxylic acid transmembrane
transport, proton transmembrane transport. Besides stimulation of the resources-gaining
processes, we also observed upregulation of the monocarboxylic acid catabolic process,
monosaccharide catabolic process, nucleobase-containing compound catabolic process, car-
boxylic acid biosynthetic process, and phosphorelay signal transduction system (Figure 4B).
Moreover, upon P1 infection dksA cells promote the DNA metabolic process, cellular re-
sponse to DNA damage stimulus, and DNA replication (Figure 4B).

Indeed, we observed stimulated DNA replication of the mini-P1 replicon in the dksA
mutant (see accompanying paper [30]). We have found that expression of the repA gene, the
phage oriR replication initiation protein, is increased in the dksA mutant when compared to
the wild-type strain [30]. Thus, if DNA replication is stimulated in the dksA mutant, more
phages can be produced.

Even more interesting and striking is the upregulation of the hydrogen sulfide biosyn-
thetic process that we found unique to the dksA host (Figure 4B). This biological pro-
cess appears in Gene Ontology analysis as a result of the upregulation of many sulfur-
metabolism-linked genes, which were discussed in a previous section. Many prokaryotic
species generate hydrogen sulfide, but the biochemistry and physiological role of this gas
in non-sulfur utilizing bacteria remain largely unknown. However, the inactivation of
key enzymes in sulfur metabolism in Staphylococcus aureus, Bacillus anthracis, Pseudomonas
aeruginosa, and Escherichia coli suppresses H2S production makes certain pathogens highly
sensitive to a multitude of antibiotics [62]. The mechanism of H2S-mediated antibiotic
resistance relies on the modification of oxidative stress imposed by antibiotics [62]. Is
activation of sulfur metabolism a universal mechanism of preparing the cell to cope with
environmental threats? We have previously reported that the H2S metabolism is activated
in the marine bacterium Shewanella baltica upon cold stress [63]. We suggested there that
the cold stress may activate some metabolic preparation pathways for upcoming anaerobic
conditions. In addition, a study by Berger et al. revealed a profound impact of the Stx
phage presence in E. coli on carbon source utilization and sulfur metabolism [53]. The Stx2a
prophage appears to reprogram the carbon metabolism of its bacterial host by turning
down aerobic metabolism in favor of mixed acid fermentation [53]. It was shown that
many sulfur metabolism pathways were upregulated [53]. Here, we also observed such
changes and thus hypothesize that the upregulation of sulfur metabolism may be a general,
non-specific cellular response to various environmental threats.

Summary of this section. After analysis of the hosts’ transcriptomes upon P1vir infection,
we found that intensive cellular reprogramming is held mostly at 30 min of infection.
However, we also observed some important events unique to the dksA mutant at 10 min
of infection, such as the upregulated expression of genes directly involved in the sulfur
metabolism. How exactly P1vir development benefits from this upregulation remains
unclear, however, we speculate that this may be linked to obtaining new energy sources
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or global reprogramming via H2S signaling functions. Moreover, we have discovered
downregulation of cold-shock genes and upregulation of heat shock genes. Since cold
shock and heat shock proteins usually play multiple roles in bacterial cells, by employing
globally-acting factors, the phage can efficiently take over the host metabolism. The
shifting expression of global-acting regulators may be an elegant element of the control-
taking strategy.

By analyzing Gene Ontology terms, we can see how the host cells are reprogramed
by P1vir and how this reprogramming is reflected in cellular metabolism. In general,
there are many similarities between metabolic responses of both hosts to phage infection.
Phage P1vir is taking control of the protein, sugar, lipid, and nucleotide metabolism. We
observed downregulation of nonessential and energy-consuming bacterial processes, e.g.,
some biosynthetic pathways, and transport or response to DNA damage stimulus, and
upregulation of processes essential for phage development, e.g., several catabolic processes
or nucleotide biosynthesis. Both hosts are reacting by activating the SOS response or
upregulating the heat shock proteins.

We can also find interesting differences between the hosts in metabolic response to
phage infection, which may reflect slightly different ways in which the phage executes
its strategy for obtaining energy and resources during development. Upon infection, the
dksA host upregulates transport of different molecules and several catabolic processes,
including hydrogen sulfide biosynthesis, as well as the DNA replication process. Moreover,
downregulated proteolysis in the dksA host in the later stage of infection may also influence
the regulation of phage development. All of these observations fit into the "minor improve-
ments" scenario that results in the enhanced development of P1vir in a DksA-deficient host
when combined.

3. Materials and Methods
3.1. Bacterial Strains and Phages

Bacterial strains used in this work: CF1648—MG1655 wild type [64]; CF9240—MG1655
dksA::Tn10 [23]. Cultures were routinely grown at 37 ◦C in lysogeny broth (LB) supple-
mented with antibiotics as needed (tetracycline 15 µg/mL). Phage P1vir from the collection
of the Department of Bacterial Molecular Genetics, University of Gdańsk, Poland.

3.2. Total RNA Isolation

Bacterial wild-type and dksA strains were cultured in LB broth containing 10 mM
CaCl2 to OD600 = 0.2, at 37 ◦C with shaking. Next, P1vir was added at final MOI = 10. One-
ml samples were immediately withdrawn to previously prepared 1.5 mL tubes containing
250 µL of aqua-phenol (5% phenol in 96% ethanol). Samples were withdrawn at 0, 10, and
30 min after P1vir infection. Next, RNA isolation was performed using the RNeasy Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The elution step
was performed twice using 50 µL of RNase-free water on the same column to increase the
RNA yields. Thus obtained RNA was digested with a DNase using TURBO DNA-free™
Kit (Ambion, Carlsbad, CA, USA), according to the manufacturer’s protocol. Samples were
stored at−80 ◦C. The purity and integrity of RNA were assessed using the Bioanalyzer 2100
(Agilent Technologies, Santa Clara, CA, USA) and Agilent RNA 6000 Nano Kit, according
to the manufacturer’s protocol.

3.3. RNA-Seq Analysis

Total RNA was isolated and evaluated for quality by using the Bioanalyzer 2100
as described above. The sequencing run was conducted on the Illumina NovaSeq6000
platform (Macrogen Inc., Seoul, Korea). The library was prepared using the following kit:
Ribo-Zero rRNA Removal Kit (Bacteria), TruSeq RNA Sample Prep Kit v2 (Macrogen Inc.,
Seoul, Korea) according to the following protocols: Ribo-Zero User Guide, TruSeq RNA
sample prep v2 Guide, Part # 15026495 Rev. F.
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3.4. High Throughput Data Analysis

30 million pair-end reads per sample were assessed with 101 bp read length. Refer-
ence P1 phage genome sequence (NC_005856.1) and annotations were downloaded from
GenBank. Quality and adapter trimming of the short reads was performed using Trimmo-
matic [65]. Short reads matching known rRNA sequences were removed using the HISAT2
aligner [66]. Read quality reports before and after quality filtering were prepared using the
FastQC software v0.11.7 [67]. Filtered reads were aligned to the reference genome using
Burrows-Wheeler Aligner with the selected BWA-MEM algorithm [68]. The Sambamba
software was used for BAM file processing [69]. Read mapping reports were created using
the Qualimap software [70]. RSEM (RNA-Seq by Expectation Maximization) [71] was used
to quantify the expression values of genes. Additionally, Salmon [72] was used to quantify
the expression values of genes (not used in further analysis). Hierarchical clustering of
RNA-seq samples (Pearson correlation metric, centroid linkage) based on the expression
values of all genes was performed using standard R functions (R Core) and variance stabi-
lizing transformation was provided by the DESeq2 package [73]. Differential expression
analysis between designated groups of samples was performed using the voom+limma
pipeline [74]. The false discovery rate (FDR) threshold of 0.01 and a fold change threshold
of 1.5 were used in the analysis. Gene Set Annotation (GSA) was done using GSAn 1.0.5, a
public web server for characterizing gene lists of high-throughput genomics [75]. Glimma
package [76] was used to provide interactive graphics—Interactive HTML Volcano plots,
Interactive HTML MA plots (Suplementary_plots_Volcano_MA.rar). GSA is a tool that uses
semantic similarity and it is based on the IC (Information Content) proposed by Mazandu
and Mulder [77]. Detailed analysis of gene expression and GSA analysis can be found
in Supplementary Materials (Table S1). The RNA-seq data have been deposited at the
NCBI’s Gene Expression Omnibus [78] and are accessible through GEO Series accession
number GSE173614.

4. Conclusions

Here we investigated the virus-host interaction to resolve the phenomenon of im-
proved lytic development of P1vir phage in a DksA-deficient E. coli host. We found that the
P1vir virulence may be linked to the very high expression level of ant1 and kilA genes. How-
ever, downregulated expression of genes directly responsible for triggering the lytic-only
development in the dksA− host may result in less rapid and more gentle lysis. Moreover,
modulation of phage lysozyme and the holin–antiholin system gene expression supports
our hypothesis of gentle lysis as an explanation of the improved phage development in ab-
sence of DksA. We think that the longer the cell lysis is suppressed, the more virus particles
can mature in a given time. In this context, the upregulation of morphogenesis and viral
architecture genes supports the feasibility of other improvements in phage development.

We also found some interesting events taking place in the host cells upon infection.
P1vir is taking control of the cellular protein, sugar, and lipid metabolism in both, the wild
type and dksA mutant hosts. However, several genes involved in the sulfur metabolism
were uniquely upregulated in the dksA mutant strain. It remains unclear if that is associated
with obtaining new energy sources or with global reprogramming via H2S signaling
functions. Generally, the hosts are reacting by activating their SOS response or upregulating
the heat shock proteins. However, we also found downregulation of proteolysis which was
unique for the dksA− strain.

We believe that this extensive and comprehensive study not only finds reasonable
explanations for the improved P1vir development in the dksA− strain but also makes a great
contribution to the field of P1 phage biology. However, we presume that our involvement
in this vast story is quite not finished and we have not reached the bottom of the Rabbit Hole.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ijms22116159/s1, Table S1: Gene Expression Data.xlsx; File archive: Suplementary_plots_Volcano_
MA.rar

https://www.mdpi.com/article/10.3390/ijms22116159/s1
https://www.mdpi.com/article/10.3390/ijms22116159/s1
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Appendix A

Table A1. The most up- and downregulated host genes. The following genes of the wild type or dksA mutant hosts were
found to be the most up- or downregulated hosts genes upon phage infection (regardless the time points). Double plus (++)
represents host genes listed as the top ten most regulated at each time-point (the same as shown in Figure 3C or Figure 3D).
One plus (+) indicates the host genes that were up- or downregulated, but their expression was lower than the top ten
(therefore they were not shown in Figure 3). Minus (−) indicates that a gene was neither up- nor downregulated in the host.
Arrows (↓↑) indicate the direction of regulation.

↓↑ Reg. WT dksA Gene Function

↓ ++ ++ cpxP periplasmic adaptor protein
↓ ++ ++ cspA RNA chaperone and antiterminator, cold-inducible
↓ ++ ++ cspB Qin prophage; cold shock protein
↓ ++ ++ cspG cold shock protein homolog
↓ ++ ++ lpxP palmitoleoyl-acyl carrier protein
↓ ++ ++ mdtI multidrug efflux system transporter
↓ ++ ++ mdtJ multidrug efflux system transporter
↓ ++ ++ nepI putative transporter
↓ ++ ++ yncD putative iron outer membrane transporter
↓ ++ + cspF Qin prophage, cold shock protein
↓ ++ + dtpA dipeptide / tripeptide permease A
↓ ++ − hisD bifunctional histidinal/histidinol dehydrogenase
↓ ++ − hisG ATP phosphoribosyltransfer-ase
↓ ++ − kdpA potassium translocating ATPase
↓ ++ − yccA modu-lator of FtsH protease, inner membrane protein
↓ ++ − ydjN putative transporter
↓ ++ − ydjO uncharacterized protein
↓ ++ − ygbE DUF3561 family inner membrane protein
↓ + ++ bluF anti-repressor for YcgE
↓ + ++ mcbR biofilm gene transcriptional regulator
↓ + ++ ylaB put. membrane cyclic-diGMP phosphodiesterase
↓ − ++ cyoA cyto-chrome o ubiquinol oxidase subunit II



Int. J. Mol. Sci. 2021, 22, 6159 16 of 19

Table A1. Cont.

↓↑ Reg. WT dksA Gene Function

↓ − ++ pdhR pyruvate dehydrogenase complex repressor
↓ − ++ rhlE ATP-dependent RNA helicase
↓ − ++ xseA exonuclease VII
↓ − ++ ydcX DUF2566 family protein
↓ − ++ yjcB putative inner membrane protein

↑ − ++ cdd cytidine/deoxycytidine deaminase
↑ ++ + fxsA suppressor of F exclusion of phage T7
↑ ++ + ibpA heat shock chaperone
↑ ++ + ibpB heat shock chaperone
↑ ++ − insI1 IS30 transposase
↑ ++ − ogrK orphan Ogr protein, positive regulator of P2 growth
↑ ++ ++ pgaA biofilm adhesin polysaccharide PGA secretin
↑ ++ + pgaB outer membrane export lipoprotein

↑ ++ + phoU negative regulator of PhoR/PhoB two-component
regulator

↑ ++ + pstA phosphate ABC transporter permease
↑ ++ + pstS phosphate ABC transporter periplasmic binding protein
↑ ++ + recA DNA recombination and repair protein
↑ ++ − sra stationary-phase-induced ribosome-associated protein
↑ ++ + uspG universal stress protein UP12
↑ ++ + ybeL DUF1451 family protein
↑ ++ − ycaC putative isochorismatase family hydrolase
↑ ++ + ycjX DUF463 family protein, puatative P-loop NTPase
↑ ++ ++ yjiY putative transporter
↑ ++ + hdhA 7-alpha-hydroxysteroid dehydrogenase, NAD-dependent
↑ − ++ cysA sulfate/thiosulfate transporter subunit
↑ − ++ cysC adenosine 5’-phosphosulfate kinase
↑ − ++ cysD sulfate adenylyltransferase, subunit 2
↑ − ++ cysH phosphoadenosine phosphosulfate reductase
↑ − ++ cysI sulfite reductase, beta subunit, NAD(P)-binding
↑ − ++ cysJ sulfite reductase, alpha subunit, flavoprotein
↑ − ++ cysN sulfate adenylyltransferase, subunit 1
↑ − ++ cysW sulfate/thiosulfate ABC transporter permease
↑ − ++ fruA fused fructose-specific PTS enzymes
↑ − ++ gatY D-tagatose 1,6-bisphosphate aldolase 2, catalytic subunit
↑ − ++ gatZ D-tagatose 1,6-bisphosphate aldolase 2, subunit
↑ − ++ gntP fructuronate transporter
↑ − ++ malP maltodextrin phosphorylase
↑ − ++ udp uridine phosphorylase
↑ − ++ yeeE UPF0394 family inner membrane protein
↑ − ++ yhaO putative transporter
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Analysis of Bacteriophage–Host Interaction by Raman Tweezers. Anal. Chem. 2020, 92, 12304–12311. [CrossRef]

30. Cech, G.M.; Kloska, A.; Krause, K.; Potrykus, K.; Cashel, M.; Szalewska-Pałasz, A. Virus–Host Interaction Gets Curiouser and
Curiouser. PART I: Phage P1vir Enhanced Development in an E. coli DksA-Deficient Cell. Int. J. Mol. Sci. 2021, 22, 5890. [CrossRef]

31. Scott, J.R. Immunity and repression in bacteriophages P1 and P7. Curr. Top. Microbiol. Immunol. 1980, 90, 49–65. [CrossRef]
32. Hansen, E.B. Structure and regulation of the lytic replicon of phage P1. J. Mol. Biol. 1989, 207, 135–149. [CrossRef]
33. Heisig, A.; Riedel, H.-D.; Dobrinski, B.; Lurz, R.; Schuster, H. Organization of the immunity region immI of bacteriophage P1 and

synthesis of the P1 antirepressor. J. Mol. Biol. 1989, 209, 525–538. [CrossRef]
34. Riedel, H.-D.; Heinrich, J.; Heisig, A.; Choli, T.; Schuster, H. The antirepressor of phage P1 Isolation and interaction with the C1

repressor of P1 and P7. FEBS Lett. 1993, 334, 165–169. [CrossRef]
35. Scott, J.R.; Kropf, M.; Mendelson, L. Clear plaque mutants of phage P7. Virology 1977, 76, 39–46. [CrossRef]
36. Scott, J.R.; Kropf, M.M. Location of new clear plaque genes on the P1 map. Virology 1977, 82, 362–368. [CrossRef]
37. Walker, J.T.; Walker, D.H. Coliphage P1 morphogenesis: Analysis of mutants by electron microscopy. J. Virol. 1983, 45, 1118–1139.

[CrossRef] [PubMed]
38. Iida, S.; Hiestand-Nauer, R.; Sandmeier, H.; Lehnherr, H.; Arber, W. Accessory Genes in thedarAOperon of Bacteriophage P1

Affect Antirestriction Function, Generalized Transduction, Head Morphogenesis, and Host Cell Lysis. Virology 1998, 251, 49–58.
[CrossRef]

http://doi.org/10.1046/j.1365-2958.2003.03533.x
http://doi.org/10.1128/jb.172.4.2055-2064.1990
http://www.ncbi.nlm.nih.gov/pubmed/2180916
http://doi.org/10.1016/j.cell.2004.07.009
http://www.ncbi.nlm.nih.gov/pubmed/15294157
http://doi.org/10.1073/pnas.0501170102
http://www.ncbi.nlm.nih.gov/pubmed/15899978
http://doi.org/10.1128/JB.00330-07
http://doi.org/10.1128/JB.01410-08
http://www.ncbi.nlm.nih.gov/pubmed/19251846
http://doi.org/10.1093/nar/gkp676
http://doi.org/10.1093/nar/gkw912
http://www.ncbi.nlm.nih.gov/pubmed/27915292
http://doi.org/10.1074/jbc.M807707200
http://www.ncbi.nlm.nih.gov/pubmed/19008221
http://doi.org/10.1016/j.cell.2004.06.030
http://doi.org/10.1146/annurev-micro-090817-062444
http://doi.org/10.1073/pnas.1818361115
http://doi.org/10.1007/s00294-019-00983-x
http://doi.org/10.1128/JB.185.12.3558-3566.2003
http://doi.org/10.1128/JB.184.16.4455-4465.2002
http://www.ncbi.nlm.nih.gov/pubmed/12142416
http://doi.org/10.1074/jbc.RA119.011692
http://doi.org/10.1128/JB.00582-18
http://www.ncbi.nlm.nih.gov/pubmed/30478087
http://doi.org/10.1128/IAI.00692-15
http://www.ncbi.nlm.nih.gov/pubmed/26056381
http://doi.org/10.1111/j.1462-2920.2009.02029.x
http://doi.org/10.1093/femsre/fuv048
http://doi.org/10.1021/acs.analchem.0c01963
http://doi.org/10.3390/ijms22115890
http://doi.org/10.1007/978-3-642-67717-5_3
http://doi.org/10.1016/0022-2836(89)90445-2
http://doi.org/10.1016/0022-2836(89)90591-3
http://doi.org/10.1016/0014-5793(93)81705-5
http://doi.org/10.1016/0042-6822(77)90279-3
http://doi.org/10.1016/0042-6822(77)90011-3
http://doi.org/10.1128/jvi.45.3.1118-1139.1983
http://www.ncbi.nlm.nih.gov/pubmed/6834479
http://doi.org/10.1006/viro.1998.9405


Int. J. Mol. Sci. 2021, 22, 6159 18 of 19

39. Guidolin, A.; Zingg, J.-M.; Arber, W. Organization of the bacteriophage P1 tail-fibre operon. Gene 1989, 76, 239–243. [CrossRef]
40. Yarmolinsky, M.B.; Sternberg, N. Bacteriophage P1. In The Bacteriophages; Calendar, R., Ed.; Springer US: Boston, MA, USA, 1988;

pp. 291–438, ISBN 978-1-4684-5426-0.
41. Tanabe, H.; Goldstein, J.; Yang, M.; Inouye, M. Identification of the promoter region of the Escherichia coli major cold shock gene,

cspA. J. Bacteriol. 1992, 174, 3867–3873. [CrossRef] [PubMed]
42. Brandi, A. Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J. 1999,

18, 1653–1659. [CrossRef]
43. Ivancic, T.; Jamnik, P.; Stopar, D. Cold shock CspA and CspB protein production during periodic temperature cycling in Escherichia

coli. BMC Res. Notes 2013, 6, 248. [CrossRef] [PubMed]
44. Jones, P.G.; VanBogelen, R.A.; Neidhardt, F.C. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol.

1987, 169, 2092–2095. [CrossRef] [PubMed]
45. Goldstein, J.; Pollitt, N.S.; Inouye, M. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 283–287.

[CrossRef]
46. Brandi, A.; Giangrossi, M.; Giuliodori, A.M.; Falconi, M. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate

Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions. Front. Mol. Biosci. 2016, 3, 19.
[CrossRef]

47. Jiang, W.; Fang, L.; Inouye, M. The role of the 5’-end untranslated region of the mRNA for CspA, the major cold-shock protein of
Escherichia coli, in cold-shock adaptation. J. Bacteriol. 1996, 178, 4919–4925. [CrossRef]

48. Jiang, W.; Jones, P.; Inouye, M. Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA.
J. Bacteriol. 1993, 175, 5824–5828. [CrossRef]

49. Etchegaray, J.-P.; Inouye, M. CspA, CspB, and CspG, Major Cold Shock Proteins of Escherichia coli, Are Induced at Low Temperature
under Conditions That Completely Block Protein Synthesis. J. Bacteriol. 1999, 181, 1827–1830. [CrossRef]

50. Kristoficova, I.; Vilhena, C.; Behr, S.; Jung, K. BtsT, a Novel and Specific Pyruvate/H+ Symporter in Escherichia coli. J. Bacteriol.
2017, 200. [CrossRef]

51. Kraxenberger, T.; Fried, L.; Behr, S.; Jung, K. First Insights into the Unexplored Two-Component System YehU/YehT in Escherichia
coli. J. Bacteriol. 2012, 194, 4272–4284. [CrossRef]

52. Behr, S.; Fried, L.; Jung, K. Identification of a Novel Nutrient-Sensing Histidine Kinase/Response Regulator Network in Escherichia
coli. J. Bacteriol. 2014, 196, 2023–2029. [CrossRef] [PubMed]

53. Berger, P.; Kouzel, I.U.; Berger, M.; Haarmann, N.; Dobrindt, U.; Koudelka, G.B.; Mellmann, A. Carriage of Shiga toxin phage
profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics 2019, 20, 504. [CrossRef]
[PubMed]

54. Stalder, R.; Caspers, P.; Olasz, F.; Arber, W. The N-terminal domain of the insertion sequence 30 transposase interacts specifically
with the terminal inverted repeats of the element. J. Biol. Chem. 1990, 265, 3757–3762. [CrossRef]

55. Olasz, F.; Farkas, T.; Kiss, J.; Arini, A.; Arber, W. Terminal inverted repeats of insertion sequence IS30 serve as targets for
transposition. J. Bacteriol. 1997, 179, 7551–7558. [CrossRef]

56. Sirko, A.; Hryniewicz, M.; Hulanicka, D.; Böck, A. Sulfate and thiosulfate transport in Escherichia coli K-12: Nucleotide sequence
and expression of the cysTWAM gene cluster. J. Bacteriol. 1990, 172, 3351–3357. [CrossRef]

57. Linton, K.J.; Higgins, C.F. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol. 2002, 28, 5–13. [CrossRef]
[PubMed]

58. Aquino, P.; Honda, B.; Jaini, S.; Lyubetskaya, A.; Hosur, K.; Chiu, J.G.; Ekladious, I.; Hu, D.; Jin, L.; Sayeg, M.K.; et al. Coordinated
regulation of acid resistance in Escherichia coli. BMC Syst. Biol. 2017, 11, 1. [CrossRef]

59. Al Mamun, A.A.M.; Lombardo, M.-J.; Shee, C.; Lisewski, A.M.; Gonzalez, C.; Lin, D.; Nehring, R.B.; Saint-Ruf, C.; Gibson, J.L.;
Frisch, R.L.; et al. Identity and Function of a Large Gene Network Underlying Mutagenic Repair of DNA Breaks. Science 2012,
338, 1344–1348. [CrossRef] [PubMed]

60. Hyman, P.; Abedon, S.T. Bacteriophage (overview). In Encyclopedia of Microbiology; Schaechter, M., Ed.; Academic Press: Oxford,
UK, 2009; pp. 322–338, ISBN 9780123739445.

61. Patterson-West, J.; Arroyo-Mendoza, M.; Hsieh, M.-L.; Harrison, D.; Walker, M.; Knipling, L.; Hinton, D. The Bacteriophage T4
MotB Protein, a DNA-Binding Protein, Improves Phage Fitness. Viruses 2018, 10, 343. [CrossRef]

62. Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: A universal defense against antibiotics in bacteria. Science 2011, 334,
986–990. [CrossRef]

63. Kloska, A.; Cech, G.M.; Sadowska, M.; Krause, K.; Szalewska-Pałasz, A.; Olszewski, P. Adaptation of the Marine Bacterium
Shewanella baltica to Low Temperature Stress. Int. J. Mol. Sci. 2020, 21, 4338. [CrossRef]

64. Xiao, H.; Kalman, M.; Ikehara, K.; Zemel, S.; Glaser, G.; Cashel, M. Residual guanosine 3’,5’-bispyrophosphate synthetic activity
of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 1991, 266, 5980–5990. [CrossRef]

65. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

66. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [CrossRef] [PubMed]

67. FastQC Software. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 6 February 2018).

http://doi.org/10.1016/0378-1119(89)90164-9
http://doi.org/10.1128/jb.174.12.3867-3873.1992
http://www.ncbi.nlm.nih.gov/pubmed/1597410
http://doi.org/10.1093/emboj/18.6.1653
http://doi.org/10.1186/1756-0500-6-248
http://www.ncbi.nlm.nih.gov/pubmed/23815967
http://doi.org/10.1128/jb.169.5.2092-2095.1987
http://www.ncbi.nlm.nih.gov/pubmed/3553157
http://doi.org/10.1073/pnas.87.1.283
http://doi.org/10.3389/fmolb.2016.00019
http://doi.org/10.1128/jb.178.16.4919-4925.1996
http://doi.org/10.1128/jb.175.18.5824-5828.1993
http://doi.org/10.1128/JB.181.6.1827-1830.1999
http://doi.org/10.1128/JB.00599-17
http://doi.org/10.1128/JB.00409-12
http://doi.org/10.1128/JB.01554-14
http://www.ncbi.nlm.nih.gov/pubmed/24659770
http://doi.org/10.1186/s12864-019-5892-x
http://www.ncbi.nlm.nih.gov/pubmed/31208335
http://doi.org/10.1016/S0021-9258(19)39659-0
http://doi.org/10.1128/jb.179.23.7551-7558.1997
http://doi.org/10.1128/jb.172.6.3351-3357.1990
http://doi.org/10.1046/j.1365-2958.1998.00764.x
http://www.ncbi.nlm.nih.gov/pubmed/9593292
http://doi.org/10.1186/s12918-016-0376-y
http://doi.org/10.1126/science.1226683
http://www.ncbi.nlm.nih.gov/pubmed/23224554
http://doi.org/10.3390/v10070343
http://doi.org/10.1126/science.1209855
http://doi.org/10.3390/ijms21124338
http://doi.org/10.1016/S0021-9258(19)67694-5
http://doi.org/10.1093/bioinformatics/btu170
http://doi.org/10.1038/s41587-019-0201-4
http://www.ncbi.nlm.nih.gov/pubmed/31375807
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Int. J. Mol. Sci. 2021, 22, 6159 19 of 19

68. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

69. Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics
2015, 31, 2032–2034. [CrossRef] [PubMed]

70. Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput
sequencing data. Bioinformatics 2015, 32, btv566. [CrossRef]

71. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome.
BMC Bioinformatics 2011, 12, 323. [CrossRef]

72. Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript
expression. Nat. Methods 2017, 14, 417–419. [CrossRef]

73. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.
2014, 15, 550. [CrossRef]

74. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

75. Ayllon-Benitez, A.; Bourqui, R.; Thébault, P.; Mougin, F. GSAn: An alternative to enrichment analysis for annotating gene sets.
NAR Genomics Bioinforma. 2020, 2, lqaa017. [CrossRef] [PubMed]

76. Su, S.; Ritchie, M.; Law, C. Glimma: Interactive HTML Graphics. R Package Version 1.2.1. Available online: https://github.com/
Shians/Glimma (accessed on 6 February 2018).

77. Mazandu, G.K.; Chimusa, E.R.; Mulder, N.J. Gene Ontology semantic similarity tools: Survey on features and challenges for
biological knowledge discovery. Brief. Bioinform. 2016, 18, bbw067. [CrossRef] [PubMed]

78. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30,
207–210. [CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://doi.org/10.1093/bioinformatics/btv098
http://www.ncbi.nlm.nih.gov/pubmed/25697820
http://doi.org/10.1093/bioinformatics/btv566
http://doi.org/10.1186/1471-2105-12-323
http://doi.org/10.1038/nmeth.4197
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1093/nargab/lqaa017
http://www.ncbi.nlm.nih.gov/pubmed/33575577
https://github.com/Shians/Glimma
https://github.com/Shians/Glimma
http://doi.org/10.1093/bib/bbw067
http://www.ncbi.nlm.nih.gov/pubmed/27473066
http://doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295

	Introduction 
	Results and Discussion 
	General Overview of the Virus–Host Transcriptome 
	The Virus Transcriptome Upon Infection 
	The Host Transcriptome Upon Infection 

	Materials and Methods 
	Bacterial Strains and Phages 
	Total RNA Isolation 
	RNA-Seq Analysis 
	High Throughput Data Analysis 

	Conclusions 
	
	References

