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Abstract
It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent
spike timing between neurons is thought to be one of the key principles for the formation of these networks. This
can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking
is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing
networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple
between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel
approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2)
that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-
transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time
delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an
investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we
show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved
spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real
spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the
prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us
to gain a better understanding of their role in neuronal functioning.
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Significance Statement

Spike timing consistencies in neuronal networks are widely thought to be one of several key principles
behind neuronal functioning. They are challenging to investigate, however, because there is effectively an
infinite number of combinations of neurons and their between-neuron time delays for any given recording.
Many techniques have been developed for their analysis, but they are still limited by the complexity of spike
timing patterns they can reveal. Here, we present a novel approach that can reveal spike timing patterns
with arbitrary combinatorial complexity. This provides a new opportunity for investigating spike timing
networks, which is crucial to gain a better understanding of the role they play in neuronal functioning.
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Introduction
Distributed networks of neurons, or cell assemblies, are

widely assumed to be fundamental to brain functioning
(Hebb, 1949; Treisman, 1996; Singer, 1999; Varela et al.,
2001; Harris, 2005; Buzsáki, 2010). A subset of these
networks is thought to be formed by consistent timing of
action potentials, or spikes, between neurons (Bienen-
stock, 1995; Singer, 1999; Ainsworth et al., 2012; Feld-
man, 2012), a feature of spike recordings across species
(Mainen and Sejnowski, 1995; Salinas and Sejnowski,
2001; VanRullen et al., 2005; Fujisawa et al., 2008; Ratté
et al., 2013). The spiking between neurons of such net-
works can be synchronous or involve time delays (Izhikev-
ich, 2006; Fujisawa et al., 2008; Sakurai et al., 2013),
forming spike sequences when firing in a consistent order
(Lee and Wilson, 2002; Ikegaya et al., 2004; Tiesinga et al.,
2008). Spike sequences can involve the same neurons
and occur within the same time window (Mao et al., 2001;
MacLean et al., 2005; Luczak et al., 2007; Matsumoto
et al., 2013; Miller et al., 2014). Although there is still much
debate about how important spike timing is in comparison
to alternatives such as rate-based coding schemes (Ku-
mar et al., 2010; Rolls and Treves, 2011; Ainsworth et al.,
2012), the investigation of spike timing networks and their
spike sequences remains necessary to further our under-
standing of basic neuronal operations.

Finding networks defined by their sequences of consis-
tent time-shifted spikes between neurons, denoted in the
following as spike timing networks, is a tremendous chal-
lenge due to their possible complexity, as neurons can
participate in multiple spike sequences at a continuum of
between-spike time delays. The past decades have seen
the arrival of many methods that can characterize spike
timing networks (Abeles and Gerstein, 1988; Chapin and
Nicolelis, 1999; Nádasdy et al., 1999; Tetko and Villa,
2001; Grün et al., 2002; Lee and Wilson, 2002; Schnitzer
and Meister, 2003; Ikegaya et al., 2004; Okatan et al.,
2005; Schneider et al., 2006; Nikolı́c, 2007; Pipa et al.,
2008; Schrader et al., 2008; Berger et al., 2010; Eldawlatly
et al., 2010; Louis et al., 2010; Peyrache et al., 2010;
Humphries, 2011; Lopes-dos-Santos et al., 2011; Gansel
and Singer, 2012; Torre et al., 2016). Their application has
led to important insights, yet they have several limitations,
especially when it comes to their application on large
scale neuronal recordings (Buzsáki, 2004). Namely, either:
(1) the complexity of the identified networks is limited due

to combinatorial explosion with increasing network size
(e.g., template searching); (2) the networks are described
only by the association of their member neurons without
describing spike sequences; (3) between-spike time de-
lays �0 are either discarded or not recovered; (4) tempo-
ral binning of spike times leads to reduced temporal
precision; (5) networks with overlapping member neurons
are not separated; or (6) a combination of the above.
Although not important for every investigation of interac-
tions in spiking networks (e.g., for higher order interac-
tions see, Nakahara and Amari, 2002; Yu et al., 2009;
Eldawlatly et al., 2010; Staude et al., 2010; Balaguer-
Ballester et al., 2011; Shimazaki et al., 2012), they are
essential for the exact identification of neurons and their
spike sequences, and investigating their occurrence as a
function of experimental variables.

We present a novel approach for revealing spike timing
networks that does not suffer from the above problems.
The key features of our approach, are that (1) it can find
networks regardless of the complexity of their spiking
sequences, and that (2) it describes these sequences with
sub-millisecond precision by a time coefficient per neuron
(per sequence, see Fig. 1). This is achieved by applying a
method developed for electrophysiological recordings (in-
tended for revealing phase-coupled oscillatory networks,
such as traveling waves; van der Meij et al., 2015), on the
spectral covariance (or cross spectra) obtained from a
spectral analysis of discrete neuronal spiking time series.
In these cross spectra, consistent between-neuron spike
time delays are described by linearly increasing phase
differences over frequencies. The method finds networks
and their spike sequences by their unique patterns of
between-neuron phase differences over frequencies and
trials (epochs). In the following, we first show that our
approach is capable of recovering simulated spike timing
networks and their sequences under various noise con-
ditions, and then provide a proof-of-concept by showing
networks extracted from rat hippocampus and medial
prefrontal cortex (Fujisawa et al., 2008, 2015), which re-
flected peak cross-correlogram time delays with high ac-
curacy. Together, this demonstrates that our approach is
a robust method for revealing and characterizing spike
timing networks in neuronal recordings.

Materials and Methods
Extracting spiking timing networks from neuronal
spike recordings

Spike timing consistency between neurons is thought
to be a key feature of neuronal spike recordings. In the
following, we describe how a novel application of a recent
technique, SPACE (van der Meij et al., 2015, 2016), can be
used to find sequences of consistent time-shifted spikes
between neurons, denoted in the following as spike timing
networks, in large scale neuronal spike recordings, with-
out a priori information about the involved neurons and
their timing. Below, we illustrate the procedure for extract-
ing spike timing networks (with details in respective sec-
tions) and how to interpret their characterization.

We start with any kind of multielectrode neuronal re-
cording over time t of which neurons J and their spikes
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Figure 1. Schematic of extracting spike timing networks. Neuronal spiking time series can contain consistent spike timing between
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have been identified (using, e.g., Rossant et al., 2016).
Suppose our recording contains two groups of three neu-
rons that have consistent between-neuron spike timing
(i.e., spike timing networks; Fig. 1A, blue/green, B), em-
bedded in other spiking activity. The blue network has a
spiking sequence of neuron 3-4-5 with a timeline of 0–1–2
ms, leading to consistent spike time delays of 1 ms for
pairs 3-4 and 4-5, and a 2 ms delay for pair 3-5. The green
network has the same pattern but for neurons 5, 6, and 7.
If cross-correlograms were computed from the neuronal
spike recordings (Fig. 1B), they would have peaks at 1 ms
for neuron pairs 3-4, 4-5, 5-6, and 6-7, at -1 ms for pairs
4-3, 5-4, 6-5, and 7-6, at 2 ms for pairs 3-5 and 5-7, and
at -2 ms for pairs 5-3 and 7-5. How often the sequences
of the blue and green networks occur depends on two
experimental conditions. The blue networks occur once
per trial of condition A and twice for those of B (Fig. 1C),
the green network vice versa.

To extract a parsimonious description of the above
networks, we arrange the detected spikes in neuron-by-
time (J � t) binary matrices Sl (1 � spike, 0 � no spike;
Fig. 1C), per trial l of the experiment (or any other mean-
ingful temporal segmentation; throughout the text, J re-
fers to neurons, K to frequencies, L to trials). Then, we
obtain “cross spectra” from these trial-specific matrices.
To achieve this, we first convolve the matrices Sl with
complex exponentials (Fig. 1, step 1) at multiple frequen-
cies k, resulting in frequency-specific and trial-specific
complex-valued neuron-by-time (J � t) matrices Zkl. Sub-
sequently, we compute the cross products ZklZkl

* of these
matrices over time (Fig. 1, step 2; * � complex conjugate
transpose), resulting in complex-valued frequency-
specific and trial-specific neuron-by-neuron (J � J) matri-
ces Xkl: the cross spectra (Fig. 1D). The choice of complex
exponentials determines key aspects of the spike timing
networks and their extraction (for details, see below, Ob-
taining cross spectra that are optimal for extracting spike
timing networks). Having obtained the cross spectra, we
should apply a neuron-wise and/or trial-wise normaliza-
tion (Fig. 1, step 3; see below, Normalizations of the cross
spectra). After normalization, we then extract spike timing

networks using SPACE (Fig. 1E, step 4; which involves
estimating the number of networks to extract, see below,
SPACE describes time consistency-induced phase cou-
pling in cross spectra).

Spike timing networks, when defined by their discrete
spiking sequences characterized as time-shifted copies
of spikes between neurons, can be extracted from the
cross spectra, because the phases of the off-diagonal
elements of the cross spectra contain the consistent time
delays between time-shifted copies of spikes. The crucial
principle here, is that the time difference between two
binary spikes in the time domain translates to phase
differences in the frequency domain, linearly increasing
with frequency. That is, a 1 ms time delay equals 1/20th of
a cycle at 50 Hz, 1/10th at 100 Hz, 1/5th at 200 Hz, etc.
(for types of spiking interactions other than time-shifted
copies of spikes, see Lindemann et al., 2001). The extrac-
tion technique uses this property to find the time delays
between time-shifted copies of neuronal spikes that ex-
plains the most variance in the cross spectra.

SPACE describes the cross spectra by multiple net-
works, each network consisting of three parameter vec-
tors (Fig. 1E): the neuron profile (1 � J), the time profile
(1 � J), and the trial profile (1 � L). The neuron profile
describes how strongly each neuron is part of the net-
work, by a single number per neuron. The neuron profile
of the blue network has high values for neurons 3, 4, and
5 and low values for all other neurons. That is, only
neurons 3-5 are part of this network. Due to their similar
weighting, neurons 3-5 likely have similar firing rates, and
similar number of spike sequence’ spikes. If another neu-
ron would have half the weighting, it will likely have either
twice as many total spikes, or only fires in half of the
network’s spike sequences (e.g., a sequence of neuron
3-4-5 in half of the trials and 3-4 in the rest). Note, it is
possible for the neuron profile to have non-zero loadings
for only one neuron (for a discussion, see below, Normal-
izations of the cross spectra). The time profile describes
the spike sequence of the network, by a single time
coefficient per neuron. Because the neuron profile of the
blue network only strongly involves neurons 3-5, only

continued
neurons, forming spike sequences. A, Schematic of two spike timing networks, with their neurons (circles) and sequence spikes
(vertical lines) colored blue and green. The dashed lines reflect the between-neuron consistent spike time relationships resulting from
the spike sequences. The blue network’s sequence goes from neuron 3–4–5 (dark dashed lines), with 1 ms time delays, resulting in
a 2 ms delay from 3 to 5 (light dashed line). The green network’s sequence is the same but from neuron 5–6 to 7. B, The spike time
consistencies in A can also be visualized as cross-correlograms between all neuron pairs, at lags ranging from -10 to 10 ms with 1
ms bins. C, The networks in A, B but shown as spike trains per trial of two experimental conditions. The blue network trials’ have one
sequence in condition A and two sequences in condition B, vice versa for the green network. To extract these two networks, we
arrange spike trains of all neurons in a neuron-by-time binary matrix. These spike trains are then convolved with complex exponentials
(or wavelets) of equal length at different frequencies, resulting in a complex-valued neuron-by-time matrix per frequency per trial.
D, The cross products are then computed along the time dimension, resulting in a neuron-by-neuron cross-product matrix per
frequency per trial: the cross spectrum. The between-neuron phase differences of the cross spectra over frequencies, reflect the
consistent between-neuron spike time delays. E, Using a recent technique denoted as SPACE, the structure in the cross spectra over
frequencies can be extracted, and described as separate spike timing networks. The blue and green networks are each described by
a neuron profile, describing network membership by a single weight per neuron, a time profile, describing the spike sequence by a
time coefficient per neuron, and a trial profile, having a single weight per trial, indicating how strongly the network was present. For
details, see Materials and Methods, sections Extracting spiking timing networks from neuronal spike recordings, SPACE describes
time consistency-induced phase coupling in cross spectra, and Obtaining cross spectra that are optimal for extracting spike timing
networks.
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these coefficients of the time profile are meaningful. The
time profile of neurons 3-5 directly reflects the timeline of
the spike sequence, 0–1–2 ms. A crucial observation
here, is that all the temporal relationships at the level of
neuron pairs are described at the level of individual neu-
rons by the network’s neuron profile (relationship
strength) and time profile (spike sequence timing). The
above is the same for the green network. Importantly, if
the blue and green spike sequences occur at random
intervals between them, the blue and green networks can
be separated, as there are no consistent relationships
between neurons 3 and 4 and neurons 6 and 7. If the blue
and green spike sequences occurred at consistent inter-
vals, they would both be captured by one network. This is
not surprising, as the above means there is, in fact, only
one spike sequence. In the schematic of Figure 1, there is
also a difference in how often a sequence of each network
occurs in each condition, which can be reflected by the
trial profiles. Here, the weights for trials of the blue net-
work reflect the ratio of spike sequences in each trial of
the two conditions, i.e., a trial loading that is twice as large
for B as it is for A. Importantly, the trial profile can provide
a convenient way to investigate differences in spike time
consistency at the level of networks, instead of the level of
neuron pairs. For example, the difference between two
conditions can be investigated by comparing the means
of the condition-specific trial profile weights, or variations
of trial profile weights can be related to other variables
(e.g., reaction times, parametric stimulus manipulations,
etc.). Although in principle possible, the trial profile can be
noise sensitive (see Results, Discussion). Additionally, the
absence of an extracted network is not evidence of a
network’s absence (in the recording), various reasons can
prohibit a network to not be found (e.g., noise; see Re-
sults, Discussion). Finally, see below, SPACE describes
time consistency-induced phase coupling in cross spec-
tra, on how to compare values between and within the
above profiles.

When interpreting the network profiles, it is crucial to
keep in mind that they are estimated to maximally explain
the cross spectra (see below, SPACE describes time
consistency-induced phase coupling in cross spectra). As
such, anything that affects the phase coupling patterns in
the cross spectra, affects the profiles accordingly. For
example, in case a neuron spikes in a spike sequence of
a network in some trials, but not in others, then the phase
coupling strength between this neuron and the others of
the network will be weaker (or zero) in the cross spectra
for the latter trials compared to the former. Consequently,
the neuron profile of this network will have a lower weight
for this neuron than for the others, and the trial profile will
have lower weights for those trials in which it did not
spike.

SPACE describes time consistency-induced phase
coupling in cross spectra

SPACE is a decomposition technique that describes
the structure of phase coupling in cross spectra by time
delays between neurons (or electrodes/sensors/sites).
The technique was developed for finding oscillatory phase

coupling structure (e.g., traveling waves) in electrophysi-
ological recordings (van der Meij et al., 2015, 2016), a type
of data of which the frequency content itself is of primary
interest. This contrasts with the application we present
here, for which this is not the case. The frequencies of the
used spectral transform are artificial and are chosen only
such that they provide an accurate description, via the
networks SPACE extracts, of the temporal structure in
discrete neural spike timing time series (see below, Ob-
taining cross spectra that are optimal for extracting spike
timing networks). Apart from the manner of constructing
the cross spectra, the usage of the method in the current
approach is identical to that in the original publication
(referred to as SPACE-time therein). The algorithm behind
the method is extensively treated in its original publication
(van der Meij et al., 2015; but for an alternate presentation,
see van der Meij et al., 2016), and only elements essential
to its current use will be mentioned here. Briefly, the
technique consists of an alternating least squares (ALS)
algorithm to find the least squares estimates of its decom-
position model. The element-wise formulation of this
model for the cross spectra can be expressed as:

Xj1j2kl � �
f�1

F

�aj1f · aj2f� · exp�i2��k��j1f � �j2f�� · bkf
2 · clf

2

� 	j1j2kl

The complex-valued cross spectrum (Xj1j2kl) of neuron
pair j1 and j2 (indexed over all neurons) at frequency k and
trial l is described as the product of network parameters,
summed over networks F, plus an error term 	j1j2kl. The
phase of the network-specific product is given by the
difference in the time profiles (�j1f��j2f) of neuron j1 and j2
multiplied by the frequency �k in Hz, multiplied by 2�. This
phase is then weighted by the product of the two neurons’
neuron profile aj1f·aj2f, the (squared) frequency profile b2 at
frequency k, and the (squared) trial profile c2 at trial l. As is
observed here, the technique also produces a frequency
profile per network, describing how important each fre-
quency is for a network. For the purpose of spike timing
networks, we will ignore this, as it does not provide ad-
ditional information. It is, however, an essential element of
its original application on electrophysiological recordings,
describing frequency band-specific phase-coupled oscil-
latory networks, such as traveling waves.

Compared to the reference publications, the above
equation squares the trial and frequency profile. The rea-
son for this, is that spike timing networks are more con-
veniently thought of, analyzed at, and simulated in, the
description level of cross spectra. This is not the case for
the original target of the technique, phase-coupled oscil-
latory networks, which are more conveniently thought of
as time-varying oscillations over electrodes described by
Fourier coefficients (of which the cross products over time
produce the cross spectra). Due to this, the technique
provides trial and frequency profiles that are not squared,
and squaring becomes a necessary step before investi-
gating the extracted networks.
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The extracted networks are unique up to trivial inde-
terminacies without requiring constraints such as or-
thogonality or statistical independence. Uniqueness is
discussed in more detail in the reference publications (van
der Meij et al., 2015, 2016). The indeterminacies are easily
resolved by normalizations. Here, we briefly highlight
those normalizations that pertain to the current applica-
tion of the technique. The neuron and trial profiles, per
network, have undetermined multiplicative scaling, and
are normalized to have a vector L2 norm of 1. The con-
sequence is that the absolute values of neurons and trials
only have meaning with respect to the other neurons and
trials of the same network. Crucially, the ratios between
neurons and trials are unaffected by this normalization
and can be compared freely across networks. Addition-
ally, their sign is also undetermined, and restricted to have
a positive average per network (neuron profile) or to be
fully positive (trial profile). The indeterminacy of the time
profile is more complicated. Because the time profile
describes circular phases over multiple frequencies, the
time profile is circular as well. In short, we normalize it
such that the strongest neuron (of the neuron profile) has
a time profile value of 0 s. Due to the above normaliza-
tions, a network-specific multiplicative scaling parameter
is also extracted, but it does not play a role in the inter-
pretation of the individual network parameters.

Two practical points need to be made for using the
technique to extract networks. The first is that its algo-
rithm is initialized from random starting values. to avoid
unfortunate starting values that lead to a local minimum of
its least squares loss function, the algorithm needs to be
initialized multiple times. When identical networks are
found in those initializations with the highest explained
variance, it can be assumed that the global minimum is
reached. How many initializations are required to achieve
this depends on the particular dataset. In our experience,
it is extremely rare to find a different “best” solution to the
loss function when increasing the number of random
initializations beyond 50. The second practical point is
that, like related decomposition techniques, the number
of networks to extract needs to be determined. One ap-
proach is to estimate the number of reliable networks. For
this, we extract N networks from the full recording, and
also from two splits of the recording, the first containing
the odd numbered spikes of each neuron, the second the
even numbered spikes. If the networks from the full re-
cording reasonably match those extracted from of both
splits, N is increased, and the process is repeated until
they no longer match. The networks extracted from the
full data are kept, and those of the splits discarded. Other
scenarios are also feasible, such as an odd-even trial split,
or a k-split approach, in which networks are extracted
from k subsets of the recording and compared to those
extracted from the full recording. The number of splits,
and the manner of splitting, will determine the sensitivity
of the approach. It is useful here to make a technical
statement regarding the splitting of individual networks
into two or more smaller networks, which would compli-
cate the above. to avoid such splitting, network interac-
tion terms in the decomposition model are forced to be

zero (interaction terms are not visible in the element-wise
model above; for optimization details, see van der Meij
et al., 2015, 2016). A practical consequence is that spike
timing networks that are nearly perfectly correlated (share
spike sequence timing) will likely be extracted as a single
combined network (for simulations investigating network
correlation, see van der Meij et al., 2016). Finally, regard-
ing the maximum number of networks that can be uniquely
extracted, although nontrivial to estimate (Comon et al.,
2009), it likely is greater than the number of neurons. Impor-
tantly, any kind of reliability procedure such as the above
will prevent exceeding any maximum, as nonunique net-
works will, by definition, not be reliable over splits. In our
experience, the number of reliable networks is often much
lower than the number of recorded neurons.

To determine whether two networks are similar, such as
in the above split-reliability approach, a coefficient can be
computed for the three parameters of the networks. For
the neuron and the trial profiles, this is simply the inner
product between the L2-normalized profiles of two net-
works, and ranges from 0 to 1 (identical profiles). For the
time profile, a coefficient is the following:

time profile similarity:
�A1 · exp�i2���1�, A2 · exp�i2���2��


Time profile similarity is computed as the absolute value


 of the inner-product �, � over neurons J of the time
profiles � of two networks (superscript 1 and 2, ¯ denotes
complex conjugate), weighted by the normalized neuron
profiles A of each network (· denotes the element-wise
product). Here, � stands for the greatest common divisor
of the frequencies used to extract the networks, in Hz,
which determines the “cycle length” of the circular time
profile (van der Meij et al., 2015). This similarity coefficient
also ranges from 0 to 1 (identical profiles). Allowing for
some differences in the profiles due to noise, we consid-
ered networks similar enough when coefficients for the
neuron, time, and trial, profiles are all equal to, or greater
than, 0.7.

Software and code accessibility
The technique is freely available in a public GitHub

repository termed nwaydecomp (www.github.com/ro-
emervandermeij/nwaydecomp), together with tutorials on
its use. The toolbox also contains software to deal with
the practical points above. The code is also available as
Extended Data Figure 1.

Obtaining cross spectra that are optimal for
extracting spike timing networks

To be able to extract spike timing networks we com-
pute cross spectra from binary spike trains, by convolving
the spike trains with complex exponentials (“wavelets”)
and computing their cross products over time (Fig. 1, step
1–2). Doing so transforms the time delays between spikes
of different neurons, into phase differences at multiple
frequencies. The length of the complex exponentials, and
their frequency, determines how sensitive the cross spec-
tra are to consistent versus nonconsistent time delays,
and is described in the following. Here, it is important to
keep in mind that the cross spectrum between two neu-
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rons, is exactly the complex-valued sum, of the phase
differences between spikes of neuron 1 and spikes of
neuron 2 that are overlapping after the convolution,
weighted by their amount of temporal overlap. Due to the
latter, long time delays necessarily have lower weighting
in the cross spectra than short time delays.

Obtaining the cross spectra can be expressed as fol-
lows:

Xj1j2kl � Zj1klZj2kl
�

Zjkl � Sjl � exp�iT2��k�

That is, the cross spectrum between neuron neurons j1
and j2 at frequency k and trial l is obtained as the cross
product, over time, of vectors Zj1klZj2kl

* (* � complex con-
jugate transpose). The vector Zjkl for neuron j is obtained
by the convolution � of the binary spike train vector Sjl

with a complex exponential (untapered wavelet, i is the
imaginary unit) at frequency �k. Here, T is a vector of time
points from � t/2 to t/2, with t being the time domain
length of the complex exponential, and both Sjl and T are
sampled at the maximum achievable sampling rate. Note,
the edges of Zjkl, for which the complex exponential was
not fully immersed in Sjl, are kept.

The time domain length t of the complex exponentials
determines which between-spike time delays can contrib-
ute to the cross spectra, and it should be chosen based
on the expected range of time delays. Here, we aim to be
sensitive to time delays of 0�10 ms, a range that captures
commonly occurring consistent spike timing (Nelson
et al., 1992; Fujisawa et al., 2008; Sakurai et al., 2013).
The optimal time domain length for this range is a trade-
off. The longer the length, the lower the sensitivity will be
to the expected time delays, as the cross spectra will
reflect a sum of more spike pairs. The shorter the length,
the bigger the ratio between the weighting (samples over-
lap) of the shortest and the longest expected time delay,
and thus the stronger the bias in sensitivity toward the
former. As a compromise between the two, we choose a
time domain length of twice of the maximum time delay
we wish to be sensitive for 20 ms. This results in an
overlap of 50% of the complex exponentials’ samples for
spikes at a delay of �10 ms, having an acceptable sen-
sitivity bias ratio of 0 ms (shortest; 100% overlap) to �10
ms of 2:1 (compared to 400:1 for 0�20 ms at a sampling
rate of 20 kHz). When there is no a priori expectation
regarding the length of the time delays, the time domain
length t can be based on, e.g., an investigating of the peak
of the between-neuron cross correlograms. In general, it
is preferable to choose a length t that is too long rather
than too short, as the sensitivity cost due to additional
spike pairs in the cross spectrum is much less than that of
(1) a more skewed sensitivity bias ratio and (2) the exper-
imental cost of spike time consistency at longer delays
being invisible. to further reduce the bias of short time
delays to long time delays, the complex exponentials
should have constant magnitude, and not be tapered
using a particular windowing function (such as a Hanning
window).

The frequencies � of the complex exponentials greatly
determine the sensitivity of the cross spectra to noncon-
sistent time delays. to be maximally sensitive to consis-
tent time delays, the contribution to the cross spectrum of
all other time delays should be as small as possible. In the
terms of phase differences in the cross spectra, this is
achieved when the average of the complex-valued phase
differences of the nonconsistent time delays approaches
a magnitude of 0. This is the case for any frequency
whose cycle length is an integer multiple of the time
domain length chosen above (for 20 ms, 50, 100, 150 Hz,
etc.), under the assumption that nonconsistent spike pairs
are equally likely at any time delay. To arrive here, it is
crucial to appreciate the fact that phase differences for
large time delays are weighted lower than those for small
time delays. For phase differences originating from time
delays between 0 ms and the time domain length (20 ms
above) to have an average magnitude of 0, the weighting
coefficients for phase differences between �/2 and ��/2, the
left side/quadrant 2 and 3 of the unit circle, need to have
the same sum as those for � �/2 to �/2, the right side/
quadrant 1 and 4 of the unit circle. Crucially, for the
frequency whose cycle length equals the maximum time
delay, the 25% smallest time delays fall in quadrant 1, the
middle 50% of time delays fall in quadrant 2 and 3, and
the 25% largest time delays fall in quadrant 4. Equally
crucial, the weighting is a linear function of the time
delays. As for any linear function, the sum of the first 25%
and the last 25% of a subset of its values is equal to the
sum of its middle 50%, the frequency with a cycle length
equaling the largest time delay will have phase differences
from nonconsistent time delays that approach an average
magnitude of 0. This also holds for any integer multiple N
of this frequency, as the above will be the case for N equal
splits of the time delay range. Note that to obtain an
average magnitude of 0, it is also required that the sum of
weighting coefficients for quadrant 1 and 2 (top of unit
circle) is equal to that of quadrant 3 and 4 (bottom of unit
circle). This symmetry is easily achieved however, as the
weighting coefficients for -20 to 0 ms progress along the
unit circle in opposite direction than those for �20 to 0
ms. As a last note, the frequencies of the complex expo-
nentials also determine the robustness to jitter around a
consistent time delay. The lower the frequency, the closer
the phases of jittered but consistent time delays, the
higher their average magnitude, and thus, the more robust
to jitter.

Concluding, we compute cross spectra by convolving
spike trains with complex exponentials of 20 ms in length,
constant magnitude, and at 20 frequencies from 50 to
1000 Hz in steps of 50 Hz. When investigating longer
time-scale neuronal dynamics, an analogous set would
be, e.g., 1 s length, at 1–20 Hz in steps of 1 Hz. The
number of frequencies to use is somewhat arbitrary. Initial
simulations showed no noticeable difference beyond 20
frequencies (and 1000 Hz is already very sensitive to
jitter), and simulated networks were reliably recovered
from simulations as little as five frequencies.
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Normalizations of the cross spectra
The neuron profiles of spike timing networks describe

the off-diagonal elements of each cross spectrum, reflect-
ing between-neuron spike pairs, and the diagonal ele-
ments, i.e., power, reflecting the total number of spikes of
neurons. In realistic data, the firing rates of neurons can
differ greatly, resulting in large differences in power. Be-
cause the power of each cross spectrum is typically much
larger than its off-diagonal elements, this can lead to
spike timing networks whose neuron profiles are driven
more by firing rates of individual neurons, rather than
consistent spike timing between neurons. An extreme
example is a neuron profile with a non-zero weighting for
only a single neuron. Such a “network” only describes the
diagonal element (i.e., firing rate) of the cross spectra of
the respective neuron, and should be considered as an
artefactual network. To increase sensitivity to consistent
spike timing, to avoid the above, power differences be-
tween neurons can be normalized (Fig. 1, step 3). Normal-
izing power such that it is equal to an Nth root, summed
over frequencies and trials, is one such normalization:

neuron-wise normalization:

Xkl � W
1

2XklW
1

2

W �

�
K

�
L

�Xkl
diag�

1

N

�
K

�
L

�Xkl
diag�

Here, Xdiag is a diagonal matrix containing only the
diagonal elements of X. By increasing N, the power dif-
ferences between neurons decrease. Ideally, the power of
every neuron becomes equal, i.e., the cross spectra be-
come coherency spectra, as this will have the highest
sensitivity to spike time consistency. However, this can
have the unintended consequence of interfering with the
split reliability procedure for estimating how many net-
works to extract. Briefly, when extracting fewer than the
total number of networks, which networks are extracted
strongly depends on their explained variance; those with
the most, tend to be extracted first (as the networks are
found by a randomly initialized least squares algorithm).
When the differences in explained variance between net-
works decrease, the order in which they are extracted
becomes more variable, which can prematurely stop the
split reliability procedure. Increasing neuron-wise normal-
ization strength can result in decreasing differences in
explained variance. As such, while neuron-wise normal-
ization increases the usefulness of the networks, it can
also result in finding less split-reliable networks. Practi-
cally, an optimal normalization strength can be found as
follows. First, a split reliability procedure is run with nor-
malization strength N � 1 (no normalization). If this results
in (1) split-reliable networks and (2) networks that are
unlikely to reflect spike time consistency (neuron profiles
that have strong weighting for only one neuron), the nor-
malization strength N is doubled and the split reliability
procedure repeated. This is repeated until sufficient reli-
able networks are found that reflect spike consistency. A

convenient quantification of when networks are unlikely to
reflect spike time consistency is to compute the ratio of
the strongest and second strongest weights of the neuron
profile; the higher this ratio, the more likely the second
strongest weight reflects noise and that the network does
not reflect spike time consistency. Then, in the above
procedure, a cutoff ratio of 5-to-1 can be used as a
conservative criterion (see also Results, Spike timing net-
works extracted from real recordings reflect between-
neuron spike timing relationships). Crucially, the above
only affects the probability of uncovering those spike
timing networks that already exist in the recording, the
phase coupling structure in the cross spectra induced by
the networks remains unaffected.

The firing rate of neurons can also differ greatly be-
tween trials. Because the trial profile reflects variations in
the cross spectra over trials in its weights, it reflects both
the trial-specific firing rate of the involved neurons as well
as their trial-specific amount of spike timing consistency.
Similar to the above, normalizing the cross spectra over
trials can reduce the impact of firing rate on the trial
profile. Normalizing cross spectral power such that it is
equal across trials is one such normalization:

trial-wise normalization:
Xkl � Wkl

1

2 XklWkl

1

2

Wkl �
1

Xkl
diag �

L

Xkl
diag

As above, Xdiag is a diagonal matrix containing only the
diagonal elements of X. Importantly, in the common
case of a neuron not spiking in a particular trial, its
elements of the cross spectra (X) will be zero, leading to
division-by-zero errors during the above normalization.
This is avoided by adding random noise of trivial
strength (close to the used numerical precision) to the
respective elements of the cross spectra before nor-
malization. Trial-wise normalization is achieved by first
normalizing frequency- and trial-specific cross spectral
power to 1 (by division by itself), and then multiplying it
with the frequency-specific summed power over trials
� �

L
Xkl

diag; computed before normalization�. Trial-wise nor-

malization is independent of the above neuron-wise nor-
malization, both normalizations can be applied jointly. The
normalization above is extreme, as it removes all cross
spectral power variability over trials. However, because
normalization occurs via a diagonal matrix (as is the case
with neuron-wise normalization), the off-diagonal ele-
ments of the cross spectra only undergo a scaling pro-
portional to their diagonal elements; their magnitudes still
reflect the (relative) amount of spike timing consistency
between their involved neurons. As such, the remaining
trial-by-trial variations in cross spectral magnitudes max-
imally reflects trial-by-trial variations in the amount of
spike timing consistency. Similar to the neuron-wise nor-
malization, the trial-wise normalization can make it harder
to uncover networks that are present in the recording.
This can be dealt with more conveniently however. First,
networks are extracted using a split reliability procedure
as discussed above, without trial-normalizing cross spec-
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tra. Once reliable networks are obtained, the trial profiles
are re-estimated in one final decomposition using cross
spectra that are additionally trial normalized, in which the
neuron and time profiles are kept constant. Although the
above two-step approach is advised, in the case of our
simulations the differences were negligible, and for sim-
plicity the results that are presented were extracted from
trial-wise normalized cross spectra in one step.

Simulating and extracting noisy spike timing
networks

To investigate the effects of various kinds of noise on
spike timing network extraction, we simulated spike re-
cordings of 15 neurons at 100 trials of 1 s containing four
spike timing networks. Network spiking sequences had a
fixed temporal structure that was repeated between zero
and three times (predetermined) per trial (1.2 Hz average
spike sequence rate for each network). Within each trial,
each spike sequence could occur anywhere with uniform
probability, with a 25 ms offset from trial boundaries. On
trials where spike sequences of multiple networks were
present their order was randomized, and with a minimum
of 25 ms between sequences. Three kinds of noise were
simulated. First, all neurons of a single simulation had a
noise spiking rate of 0, 5, 10, 20, or 100 Hz, as Poisson
spiking superimposed on the network spike sequences.
Second, each spike of each spike sequence could have
an individual random jitter (uniformly distributed) at a max-
imum of 0, �0.25, �0.5, �1, or �2 ms. Third, each spike
in each spike sequence occurrence had an individual
deletion probability of 0%, 10%, 20%, 40%, 80%, result-
ing in partial spike sequences. Cross spectra of each
simulation run were obtained as described above, using a
time-window length of 20 ms and frequencies from 50 to
1000 Hz in steps of 50 Hz. The four networks were
extracted using 10 random initializations of the extraction
algorithm. Note that the purpose of these simulations is to
show how well spike sequences can be extracted under
noisy conditions, and not how such a pattern can be
generated physiologically, nor whether such a pattern is
physiologically meaningful. As such, we simulated data
from the perspective of spikes, instead of model neurons
generating spikes, which also provides a convenient
ground truth for calculating recovery.

Quantifying recovery of simulated spike timing
networks

To quantify the recovery of the extracted neuron profile,
time profile, and the trial profile, they were compared to
their simulated equivalents. The simulated neuron profiles
were constructed as a binary 1 � J vector per network, its
values indicating network membership of each neuron.
Similarly, simulated trial profiles were constructed as
1 � L vector, its values reflecting the number of sequence
repeats (linear modulation of network activity over trials).
Finally, simulated time profiles were constructed as a
1 � J vector, its values describing the temporal sequence
of spikes in seconds (nonmember neurons set arbitrarily
to 0). For display purposes these simulated parameters
were normalized in the same manner as the extracted
network parameters. to compute recovery, extracted net-

works were paired to the simulated networks using the
similarity coefficients described above, by first determin-
ing the most similar pair, then the next most similar in the
remainder, etc. Recovery of neuron and trial profiles was
determined using a Pearson correlation coefficient. Time
profile recovery was judged by the following coefficient:

time profile recovery:
	�

J

exp�i2���e� · exp�i2���s� · As	
�

J

As

Time profile recovery is computed as the absolute value


 of the weighted sum over neurons J of the complex-
valued difference of the circular time profiles � of the
extracted and simulated networks (superscript e and s,
respectively; ¯ denotes complex conjugate), weighted by
the simulated neuron profile A (· denotes the element-wise
product). Similar to the similarity coefficient described
above, � is the greatest common divisor of the frequen-
cies used for extraction (i.e., 50 Hz), and is used to deal
with the circularity of the time profile. This coefficient
ranges from 0 to 1 (perfect recovery).

Extracting spike timing networks from recordings of
rat medial prefrontal cortex and hippocampus

As a proof of principle, we extracted spike timing net-
works from real spiking recordings, obtained from a da-
taset publicly available at http://crcns.org/ (Fujisawa et al.,
2008, 2015). This dataset contains identified neurons and
theirs spikes from recordings obtained from rat medial
prefrontal cortex and area CA1 of the hippocampus, while
the rat performed an odor-based delayed matching-to-
sample task, requiring it to run through either the left or
right arm of a maze to obtain its reward. Animal recording
protocols were approved by the Institutional Animal Care
and Use Committee of Rutgers University, Newark, NJ.
The recording used (rat GG.069) came from eight and four
electrode shanks (200 �m shank separation) in medial
prefrontal cortex and CA1, respectively, each shank con-
taining eight contacts (20 �m contact separation; 160
�m2 contact surface). The recording was sampled at 20
kHz, and offline spike sorting was performed (after band-
passing between 0.5 and 5 kHz) using KlustaKwik (for
spike sorting details, see Fujisawa et al., 2008, 2015). A
total of 63 neurons were identified on nine shanks. The
dataset contained 20 left and 20 right trials, having an
average duration of 8.04 s (SD � 1.73 s). Only neurons
with average spiking rates of 1 Hz and above were se-
lected. To extract networks, we first obtained cross spec-
tra as described above (Obtaining cross spectra that are
optimal for extracting spike timing networks), using a time
window of 20 ms and frequencies from 50 to 1000 Hz in
steps of 50 Hz, dividing each cross spectra by its trials’
duration. Subsequently, cross spectra were neuron-wise
normalized as described above. A normalization such that
cross spectral power was equal to its 32nd root normal-
ization was chosen as an optimal normalization, because
64th root normalization resulted in no split reliable net-
works (likely due to varying network order mentioned
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above (Normalizations of the cross spectra), and 16th root
normalization resulted in many networks mostly consist-
ing of single neurons (i.e., the bias toward power differ-
ences between neurons was too strong to overcome). The
number of networks to extract was determined using
odd-even spike split reliability procedure described above
(SPACE describes time consistency-induced phase cou-
pling in cross spectra). With a similarity coefficient cutoff
of 0.7, 50 random initializations were used at each step.
This resulted in four networks being extracted. Continu-
ous cross-correlograms were obtained at time lags of
�20 ms at 0.05 ms steps by summation of the (lagged)
binary spike trains after they were convolved with a
Gaussian with full-width at half-maximum of 0.5 ms (max-
imum � 1).

Results
Spike timing networks consist of multiple neurons that

have consistent time delays between their spikes, forming
a spike sequence. Here, we validate a novel approach for
finding and characterizing these networks in neuronal
spike recordings. First, we evaluate its robustness to
various noise conditions. We show how the recovery of
simulated spike timing networks is affected by spike jitter
in the network spike sequences and variability of neuron
participation in the network, under increasing spiking
noise of all simulated neurons. Then, we show how vari-
able firing rates of neurons affects recovery, and what
actions can be taken to reduce negative effects. Finally,
we provide a proof-of-principle by showing networks ex-
tracted from rat hippocampus and medial prefrontal cor-
tex (Fujisawa et al., 2008, 2015), and compare the
extracted spike timing relations to cross-correlograms of
the involved neurons.

Simulated spike recordings from spike timing
networks

To investigate the robustness of spike-timing network
extraction to various kinds of noise, we simulated spike
recordings of 15 neurons over 100 trials of 1 s containing
four networks (for simulation details, see Materials and
Methods, Simulating and extracting noisy spike timing
networks). A network was defined as a group of neurons
that spike in sequence, with between-spike time delays
ranging from 0 (synchronous) to 2.5 ms. The spike se-
quence timelines were 0–0–1–1.5–2.5–3–4.5–6.5 ms for
network 1, 0–1–2–3–4 ms for network 2, 0–0–0–0 ms for
network 3 (all synchronous), and 0–2.5–7.5 ms for net-
work 4. Each network’s spike sequence was repeated
zero to three times in groups of trials to simulate linear
modulations of network activity across the task. Some of
the networks had neurons that were involved in other
networks’ spike sequences: all of the neurons of the spike
sequence of network 2 were also part of network 1, and
one neuron was shared between network 1 and 3, and
network 3 and 4. In Figure 2A–C we show the networks’
neuron profiles (Fig. 2A), time profiles (Fig. 2B), and trial
profiles (Fig. 2C). The simulated recordings of the 15
neurons result in many pair-wise spike time relationships
between neurons, which we show schematically in Figure
2D. These pair-wise relationships can also be visualized

as cross-correlograms for all neurons, which we show in
Figure 2E.

The profiles in Figure 2A–C are directly comparable to
the three profiles of spike timing networks extracted using
our approach (for how to interpret the profiles, see Mate-
rials and Methods, Extracting spiking timing networks
from neuronal spike recordings), and are used below
(Recovery of simulated spike timing networks with spiking
jitter when surrounded by spiking noise, Recovery of sim-
ulated spike timing networks with partial spiking when
surrounded by spiking noise, and Cross spectra normal-
ization diminishes effects of differential firing rates of units
and trials, for judging recovery of the simulated networks
by the extracted spike timing networks). Note, the abso-
lute values of the neuron and trial profiles are not mean-
ingful, only the within-network ratios are (see Materials
and Methods, SPACE describes time consistency-
induced phase coupling in cross spectra). As such, it is
not the spike sequence repeats per trial that is described
by the trial profile (i.e., 0, 1, 2, 3; Fig. 2C), but rather the
ratio between them (e.g., a trial with three sequences
having a weight three time that of a one-sequence trial).

To investigate when the recovery of the simulated net-
works fails, we varied the strength of three kinds of noise
(see Materials and Methods, Simulating and extracting
noisy spike timing networks). These were: (1) spiking
noise, or non-network spikes, superimposed on the spike
sequences (Fig. 2F); (2) jitter of each spike in a spike
sequence occurrence; and (3) partiality of network spike
sequences (random spikes missing from the sequence).
The range of each of the noise levels was chosen to
provide an intuition for when an expected network can still
be recovered, and to progressively result in failure to
recover the simulated networks. As such, the higher levels
are not necessarily physiologically reasonable. The simu-
lated networks were also different in size, spike sequence
timing, spatial overlap, and trial overlap, to increase the
likelihood that any related weaknesses of the technique
would be revealed.

Recovery of simulated spike timing networks with
spiking jitter when surrounded by spiking noise

Neurons can be noisy, and any spike sequence of a
spike timing network is likely embedded in other spikes of
the same neurons. Furthermore, precise spike times de-
pend on the fluctuating membrane potential of the neuron
and other factors, potentially adding temporal jitter. To
investigate how these two factors influence network char-
acterization, we simulated spike timing networks with
different levels of background spiking noise and with
different levels of jitter of each spike in the spike se-
quences. Networks were simulated 50 times for each
combination of the noise factors. We computed recovery
of simulated networks and show the result in Figure 3.
Recovery of the neuron and trial profiles was computed as
the Pearson correlation between the recovered and sim-
ulated profiles. For the trial profiles, the correlation also
directly reflects the recovery of the linear modulation of
network activity across the task (perfect recovery is 1).
Recovery of the time profiles was computed using a
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Figure 2. Simulated spike timing networks. To investigate the robustness of network extraction to various kinds of noise, we simulated
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recovery coefficient that ranges from 0 to 1 (perfect re-
covery; see Materials and Methods, SPACE describes
time consistency-induced phase coupling in cross spec-
tra).

Firstly, we observe that with reasonable jitter (i.e.,
�0.25 ms compared to 0 to 2.5 ms spike sequence
delays) and spiking noise (e.g., 20 vs 1.2 Hz average
network spiking rate) the neuron and time profiles were
recovered with reasonable accuracy, with the trial profile
being the most affected. At 20 Hz spiking noise and �0.25
ms jitter the linear modulation of network activity was still
visible but weakened [Fig. 3, bottom: mean (SEM) over
simulations of Pearson’s correlations for network 1-4:
0.78 (0.02), 0.29 (0.02), 0.62 (0.01), and 0.44 (0.01)].
Shown in the examples (Fig. 3, bottom), the effect of noise
on the trial profile can be observed as a shrinking of the
ratios between loadings of trials with a different number of
simulated network sequences and an increase in the trial
profiles “baseline”; the loadings of those trials which had
zero network sequences. The latter is important in prac-
tice, because under the assumption that a network is not
active in all trials, the lowest trial loadings with respect to
the higher trial loadings can be used as an indication of
the reliability of network parameters. Secondly, we ob-
serve that, except from the largest jitter case (�2 ms),
network spike jitter had a similar effect on recovery of
network parameters as spiking noise, as evidenced by the
similarity between the 10 Hz/0 ms and the 5 Hz/�0.25 ms
cases, and the 20 Hz/0 ms and the 5 Hz/�0.5 ms cases.
Thirdly, we observe that, under strong noise conditions
(�20 Hz spiking noise and ��1 ms jitter), the linear
modulation of network activity became very weak to
largely invisible (maximum mean Pearson’s correlation
over simulations of 0.11, 0.04, 0.23, and 0.08 for network
1-4). Regarding network specific recovery, although there
was some variation in recovery, apart from the above, the
differences were minimal and did not highlight a sensitiv-
ity to a particular aspect of the simulated networks.

Recovery of simulated spike timing networks with
partial spiking when surrounded by spiking noise

To investigate how partial spiking in spike timing net-
works, i.e., not all member neurons joining in each spike
sequence, affects characterization of the full spike se-

quences, we simulated networks where each spike of a
sequence had a chance to be deleted. Similar to the
above, we did so 50 times for each level of spike deletion
probability, and of spiking noise. The results are shown in
Figure 4. We observe that (1) as the chance of spike
deletion increased, recovery accuracy was decreased; (2)
as with spiking jitter/noise, the trial profile was more af-
fected by noise than the neuron profile; (3) as with spiking
jitter/noise, the effects of spike deletion on recovery were
similar to those of spiking noise; (4) the full spike se-
quences in the time profile were accurately extracted
under reasonable noise (20 Hz) with 40% probability of
spike deletion, although the majority of individual spike
sequences were incomplete; and (5) under the same noise
conditions the linear modulation of network activity was
weak but detectable for networks 1 and 3, and nearly
invisible for networks 2 and 4 [mean (SEM) Pearson’s
correlation over simulations of 0.39 (0.02), 0.06 (0.02),
0.29 (0.02), and 0.08 (0.02) for networks 1-4]. These dif-
ferences possibly stem from network overlap (network 2
shares all its neurons with network 1) and network size
(network 3 is the smallest).

Cross spectra normalization diminishes effects of
differential firing rates of units and trials

The spike timing networks simulated above were ex-
tracted under noise related firing rates that were identical
over neurons and over trials. This was chosen to show the
overall effect of spiking noise but is atypical for real
recordings. Here, we show the effect on network recovery
of firing rate differences between neurons and trials, while
keeping the number of spike sequences constant.

We first show the recovery of simulated networks when
the firing rate differs over neurons (Fig. 5). We simulated
networks 50 times, with neuron 5 (a member in networks
1 and 2) and neuron 12 (member in networks 3 and 4)
having 100 Hz spiking noise, the other neurons 5 Hz (Fig.
5A). Network spiking jitter was �0.25 ms. The recovery of
the networks (Fig. 5B, compare to Fig. 2) was distorted: (1)
the neuron profiles of the networks for neurons 5 and 12
were strongly increased/decreased; (2) the noise of neu-
ron 5 led to a strong loading for network 3, of which it was
not a member; (3) network 4 was dominated by neuron 12;
(4) the trial profiles showed decreased recovery (com-

continued
spike recordings from 15 neurons containing four spike timing networks across 100 trials. A–C, Description of simulated networks in
same format as extracted networks. A, The neuron profile of each network describes nonmember neurons by 0 s and member
neurons by 1 s. Because absolute magnitudes of the neuron and trial profiles of networks are not meaningful, they are L2 normalized
by convention (leading to the visible arbitrary between-network amplitude differences); the between-neuron/trial ratios are meaningful.
B, The spiking sequence of each network, shown as their time profiles (only member neurons are shown). C, The trial profile. Each
network spiking sequence was repeated zero to three times in each trial, shown per trial in the first row. The second row of C shows
an alternative visualization of the trial profile, which is convenient for visualizing recovery (Figs. 3–6). Here, normalized trial profile
weights (y-axis) are shown as their mean (SD), per simulated number of spike sequence repeats (x-axis). D, Schematic of all consistent
spike timing relationships resulting from the simulated spike sequences. Each circle is a neuron, each dashed line reflects a spike
timing relationship. For visibility, the first-order relationships are dark colored, all others are light colored. Numbers indicate the
first-order within-sequence spike time delays. E, Cross-correlograms computed for all neuron pairs from a simulation run with 20 Hz
spiking noise, at lags ranging from -10 to 10 ms with 1 ms bins. F, Raster plots of example spike trains as a function of spiking noise
levels used in the simulations. Each vertical dash is a single spike. Each row consists of five concatenated trials, separated by a
vertical line. Network spiking sequences are shown by their color as in A–D. See Materials and Methods, Simulating and extracting
noisy spike timing networks.
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Figure 3. Recovery of simulated spike timing networks with spiking jitter and spiking noise. Networks were simulated 50 times at five
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pared to Fig. 2); and (5) although the time profile of
networks 1, 2, and 4 were not (noticeably) distorted,
network 3’s is. Overall, the differential firing rate can be
said to have pulled the estimated network parameters
toward those neurons with more spiking. This effect how-
ever, can be substantially reduced by normalizing cross
spectra before network extraction. Here, we show the
effect of normalizing cross spectra such their power is
equal to their Nth root (see Materials and Methods, Nor-
malizations of the cross spectra), reducing differences in
firing rates. We show its effects progressively by using
N � 2, 4, 8, 16, 32 (Fig. 5C), and ending with N � 64 (Fig.
5D). We observe that (1) the recovery of the neuron pro-
files was improved, with network 1 showing the most
remaining distortion at neuron 5; (2) the trial profiles were
similar to the case with 5 Hz spiking noise for all neurons
(Fig. 2); and (3) the recovery of the time profile of network
3 was improved such that the distortion is minimal.

To investigate the effect of differential spiking rate over
trials, we simulated networks with 5 Hz spiking noise,
except for trials 21–60, which had 10 Hz spiking noise
(Fig. 6A). Network spiking jitter was set at �0.25 ms
spiking jitter, and networks were simulated 50 times. The
trials with additional spiking noise were chosen such that
they both involved 100% of trials of sequence repeats (1�
and 2� for network 1, 1� for network 2, 1� for network 4)
and a partial set of sequence repeats (50% of 1� and 2�
for network 3, 50% of 0� for network 2). The recovery
without normalization is shown in Figure 6B. We observe
that (1) the recovery of the neuron profiles and time pro-
files was similar to the case of 5 Hz noise and �0.25 ms
spiking jitter (Fig. 2), and as such, they were minimally
affected by the differential noise over trials; (2) the linear
modulation of network activity was recoverable, but
weakened, for all networks [especially network 3; mean
(SEM) Pearson’s correlation over simulations of 0.93
(�0.01), 0.67 (0.01), 0.76 (�0.01), 0.36 (0.01) for network
1-4] compared to without trial variations of firing rate [0.98
(�0.01), 0.94 (�0.01), 0.89 (�0.01), 0.77 (0.01); Fig. 3];
and (3) the trial profile loadings for those trials affected by
increased spiking noise were distorted such that the ra-
tios of loadings no longer reflected the correct order of the
number of sequence repeats (i.e., 1� � 2� trials for
network 2 and 4). Although the linear modulation was

moderately recoverable, the latter means an investigation
of the network activities in specific trials of network 2 and
4 (supported by, e.g., an independent samples t test)
would have resulted in the incorrect conclusion of more
network activity being present in 1� compared to 2�
trials. As was the case for differential noise over neurons,
normalization of the affected dimension can improve re-
covery. Here, we normalized the cross spectra such that
their power for every trial is equal to their power summed
over trials (see Materials and Methods, Normalizations of
the cross spectra). Crucially, this does not affect the ratio
of the off-diagonal elements to the diagonal (power). As
such, trials that have many spike sequences (strong off-
diagonal elements compared to power) are still distin-
guishable from trials with few spike sequences (weak
off-diagonal elements compared to power). Note, as well,
that this trial-wise normalization is unrelated to the
neuron-wise normalization in the above, and they can be
applied jointly. We show the result of the trial-wise nor-
malization in Figure 6C. We observe that (1) the trial profile
recovery was improved such that the order of their load-
ings again reflected the order of the number of sequence
repeats; (2) recovery of the linear modulation of network
activity was greatly improved [mean (SEM) Pearson’s cor-
relation over simulations of 0.96 (�0.01), 0.96 (�0.01),
0.82 (�0.01), 0.89 (�0.01)]; and (3) although improved,
the trial profiles’ recovery was poorer than those at equal
noise levels for all trials (Fig. 3). We additionally observe
that the normalization also affected the trial profile load-
ings of trials that did not have increased noise. This was
most noticeable in the loadings for those trials of network
4 that had zero and two sequence repeats (trials 1–20 and
61–100): the ratio of the loading of zero 0 repeats to that
of two repeats was much higher without normalization
(Fig. 6B), than with normalization (Fig. 6C). As trials with
zero repeats should ideally have a loading of 0, the higher
this ratio the better. Interestingly, although the trial profile
showed worse recovery overall, the recovery of the linear
modulation of network activity after trial-wise normaliza-
tion was better than the recovery at equal noise levels
across trials without normalization, especially for network
4 [mean (SEM) correlation of 0.89 (�0.01) and 0.77 (0.01),
respectively]. This was likely caused by the trial profiles of
the former showing less variability than those of the latter

continued
levels of spiking jitter and five levels of spiking noise. Recovery of the neuron and trial profiles are shown as Pearson correlations
between the extracted and simulated networks (ranged from -1 to 1, visualized from 0 to 1; averaged over simulations; shading �
SEM). The recovery of the time profile is shown by a recovery coefficient ranging from 0 to 1 (perfect recovery; averaged over
simulations; shading � SEM). Networks are colored as in Figure 2. Bottom panels visualize extracted networks as in Figure 2 at
several example jitter and noise levels. Neuron profiles are shown as means over simulations (shading � SD), with that of individual
simulations as thin lines. Time profiles are displayed as average over simulations (error bar � SD; aligned using average difference
between simulated and recovered networks). Trial profiles show means over trial weights per number of simulated sequence repeats,
averaged over simulations (error bar � SD). The simulated trial profiles and time profiles are indicated in gray for reference. Note that
(1) when spiking noise and jitter increased, the trial profiles baseline (weights of noncontributing trials that should be 0) gradually
increased; (2) spiking noise had a stronger effect on the trial profiles of networks with fewer neurons; and (3) the time profiles were
more robust to noise than the neuron profiles and trial profiles, with accurate recovery even when spike jitter was a multiple of the
between-neuron time delays. Also note in the examples that as noise increased, matching of simulated networks to extracted
networks became troublesome, leading to differences between network-specific recovery becoming less meaningful. See Materials
and Methods, sections Simulating and extracting noisy spike timing networks and Quantifying recovery of simulated spike timing
networks.
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(i.e., the coefficient of variation of the trial profile of net-
work 4, averaged over simulations, was 14.1% and
27.9%, respectively).

Spike timing networks extracted from real
recordings reflect between-neuron spike timing
relationships

To provide a proof-of-principle we extracted spike tim-
ing networks extracted from spike recordings from medial
prefrontal cortex and hippocampus of a rat performing an
odor-based delayed matching-to-sample task (Fig. 7; see
Materials and Methods, Extracting spike timing networks
from recordings of rat medial prefrontal cortex and hip-
pocampus). After odor presentation, the rat had to run
through the left or right arm of a figure-eight T-maze to

obtain its reward. Networks were extracted similarly to the
simulations above, using a neuron-wise 32nd root power
normalization, and a split-half reliability approach to de-
termine the number of networks (see Materials and Meth-
ods, SPACE describes time consistency-induced phase
coupling in cross spectra). This resulted in four extracted
networks.

We show neuron profiles, time profiles, and trial profiles
for each extracted spike timing network in Figure 7. To
provide a ground-truth estimate of whether the between-
neuron spike times from the networks reflect real spike
timing relationships in the recordings, we also show for
each network continuous cross-correlograms (computed
post-hoc; see Materials and Methods, Extracting spike
timing networks from recordings of rat medial prefrontal

Figure 4. Recovery of simulated spike timing networks with partial network spiking and spiking noise. Networks were simulated 50
times at five probability levels of spike deletion, and five levels of spiking noise. Probability is the chance for each individual (non-noise)
spike to be deleted. Recovery and examples are displayed identically to Figure 3. Note that (1) the effect of spike deletion affected
the neuron profiles, time profiles, and trial profiles similarly to that of spike jitter and spiking noise; and (2) even when the spiking
sequences of the networks were highly variable (80% chance of each spike’s absence) the networks could still be identified in the
examples at 5 Hz spiking noise. See Materials and Methods, sections Simulating and extracting noisy spike timing networks and
Quantifying recovery of simulated spike timing networks.

Methods/New Tools 15 of 21

May/June 2018, 5(3) e0379-17.2018 eNeuro.org



cortex and hippocampus) of the neurons mostly strongly
contributing to each network. Importantly, in each of
these cross-correlograms we indicate when the cross-
correlation is expected to be highest, based on the time
profile of the networks.

For network 1, neuron pairs 1-2, 1-3, and 2-3 had peaks
in their cross-correlograms that matched the time profile’s
spike timing relationships within 0.03, 0.03, and 0.06 ms,
respectively. Neuron 4 does not appear to have consis-
tent spike timing relationship with the first three, which is
unsurprising given that its weight in the neuron profile is
much weaker (suggesting its weight reflects, at least
mostly, noise). Although there appears to be a difference
in network activity between left and right trials, this likely
due to firing rate differences between conditions, as trial
profiles calculated on trial-wise normalized cross spectra
showed no statistically significant difference (see Materi-
als and Methods. Normalizations of the cross spectra; this
should be interpreted with caution however, as the pro-
file’s lowest weights suggested they remained noisy). For
network 2, neuron pairs 1-2, 1-3, and 1-4 had cross-
correlogram peaks that matched the time profile within
0.09, 0.07, and 0.19 ms, respectively. Neuron pair 2-3 and
pair 3-4 did not have single cross-correlogram peak (al-
though their center peaks matched within 0.17 and 0.12
ms, respectively), and neuron pair 2-4 appears inhibitory.
These observations could indicate that the spike se-
quence did not involve all four neurons in a subset of
trials. It is useful to reiterate here, that the extracted spike
sequence should be considered only at the level of the full
recording (i.e., cross spectra of all trials). That is, the
extracted spike sequence should be considered as a
description of the N-way relationship between N neurons,
i.e., the largest possible spike sequence for the network,
and serve as a starting point for targeted analyses. Net-
work 3 show a similar pattern as network 1 and 2 accord-
ing the cross-correlograms, with the peaks of neuron
pairs 1-2, 1-3, 1-4, and 2-3, matching the time profile
within 0.10, 0.09, 0.05, and 0.19 ms, respectively. Net-
work 4 likely reflects consistent spike timing only between

A

B

C

D

Figure 5. Cross spectra normalization diminishes effects of dif-

Figure 5. continued
ferential neuron firing rates. In realistic neuron recordings, the
firing rate of neurons typically differ. To show the effect of
differential firing rates on network recovery, we simulated spike
timing networks (spiking jitter � �0.25 ms; spike deletion �
10%) 50 times with two neurons having 100 Hz spiking noise, the
other neurons 5 Hz. To improve network recovery, the cross
spectra can be normalized. One method is to normalize them
such that the power of the cross spectra becomes equal to their
Nth root. A, Spiking noise as a function of neurons, with the
simulated neuron profiles in the background. B, Network recov-
ery without normalization. Although the networks are recogniz-
able, recovery was clearly affected. Networks are displayed
identically to examples in Figure 3. C, The effect of square, 4th,
8th, 16th, and 32nd root power normalization on recovered
networks, culminating in (D) recovered networks after 64th root
power normalization. See Materials and Methods, sections Nor-
malizations of the cross spectra and Simulating and extracting
noisy spike timing networks.
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the strongest two neurons (matching within 0.08 ms), as
the neuron profile has few neurons with strong loadings.

Discussion
Identifying and investigating cell-assemblies with spike

timing consistency between neurons is key to gain a
further understanding of their role in neuronal coding
(Bienenstock, 1995; Singer, 1999; Tiesinga et al., 2008;
Panzeri et al., 2010), but finding them is a tremendous
challenge due to the possible complexity of patterns of
between-neuron spike time delays. Here, we introduced
and validated, in simulated and real data, a novel approach
for extracting networks defined by their between-neuron
spike timing consistency, when forming sequences of time-
shifted spikes, from neuronal spike recordings (for other
types of interactions, see Lindemann et al., 2001). The key
features of this approach are that (1) networks and their
spike sequences can be extracted regardless of their
complexity in size and spike timing patterns, and (2) the
spike sequences of the networks are specified with high
temporal precision. Networks consist of three profiles,
describing (1) which neurons are involved in which net-
works, (2) with which spike timing pattern, and (3) in which
trials or conditions. The latter can in principle be used as

an index for network activity. Together, these profiles form
a parsimonious description of the spike timing patterns in
the recording and can used as a basis for subsequent
spike train analyses of experimentally relevant variations
in network subsets. Using simulations, we showed how
the extracted networks were affected by spiking jitter,
variability in network participation by its member neurons,
and non-network related spiking activity. Networks were
recoverable under reasonable noise conditions, with the
time profile being especially robust to the simulated noise.
Although the trial profiles were strongly influenced by
noise, they still tracked simulated network activity to a
degree. Using neuronal spike recordings from rats, we
showed we were able to extract networks from real re-
cordings, of which the time profile reflected between-
neuron spike timing consistency that matched cross-
correlograms with high accuracy. Together, this shows
that our approach can be useful for the investigation of
spike timing networks.

The extracted networks can be of arbitrary complexity
in size and time delays. This is a consequence of the fact
that the underlying method finds networks not in the
neuron-by-time time series, but in the neuron-by-neuron

A

B C

Figure 6. Trial-wise cross spectra normalization diminishes effects of differential trial firing rates. In realistic recordings, the firing rate
of neurons can differ over trials. To show its effect on network recovery, we simulated spike timing networks (spiking jitter � �0.25
ms; spike deletion � 10%) 50 times with 40 trials having 10 Hz spiking noise (for all neurons), the other trials 5 Hz. To improve network
recovery, the cross spectra can be normalized in a similar way as for differential neuron firing rates. Here, we normalize the cross
spectra of each trial such that their power is equal to that summed over trials. A, Spiking noise as a function of trials, with the simulated
trial profiles in the background. B, Recovered networks with trial-wise normalization. Networks are displayed identically to examples
in Figure 3. The trial profiles of the recovered networks were strongly affected. C, Like B but for networks recovered after trial-wise
normalization. While the trial profiles still deviated from the simulated networks, the ratios of their weights w.r.t. the number of
simulated sequence repeats were partially restored. See Materials and Methods, sections Normalizations of the cross spectra and
Simulating and extracting noisy spike timing networks.
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Figure 7. Example spike timing networks extracted from rat medial prefrontal cortex and hippocampus. We extracted four spike
timing networks from recordings in which a rat either had to take the left or right arm of a figure-eight T-maze. The number of networks
to extract was estimated using a split-half approach. The first row of each network shows the neuron profile, the time profile, and the
trial profile. The time profile only shows the strongest five neurons of the trial profile (as given by the neuron profile). Several of the
strongest neurons are highlighted in each neuron profile. To show that the networks reflect spike timing consistencies in the data, we
also show cross-correlograms in the second and third row. The cross-correlograms of each pair of the highlighted neurons are shown
as spike densities, the y-axis limit roughly reflects spike counts. The dashed gray line is the time delay between the neurons as given
by the time profile of the network. We observe the following. For network 1, neuron pairs 1-2, 1-3, and 2-3, the extracted time delays
are close to the cross-correlogram. Although the 4th neuron has a higher weight than the nonhighlighted neurons in the neuron profile,
the cross-correlograms are not as strongly peaked as for the other pairs. For network 2, the extracted time delays of pairs 1-2, 1-3,
and 1-4 are closest to their cross-correlograms. Although for network 3 the cross-correlograms show weaker spike timing consistency
(higher baseline spike density), the extracted time delays of pair 1-2, 1-3, 1-4, and 2-3 are close to their peaks. Network 4 involves
few strong neurons, as indicated by the neuron profile; only the neuron pair 1-2 is close to its peak. See Materials and Methods,
Extracting spike timing networks from recordings of rat medial prefrontal cortex and hippocampus.
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cross spectra. These cross spectra contain all of the spike
timing consistencies of the spike sequences, condensed
into between-neuron phase coupling. Networks can be
separated when their spike sequences have different
between-neuron phase coupling patterns, and differences
in phase coupling patterns over trials (or epochs) in-
creases their separability. Networks are extracted by find-
ing those neuron, time, and trial profiles whose phase
coupling patterns explain the most variance in the cross
spectra. Because the estimated profiles have the same
size for each network, larger networks only differ from
smaller networks by their different distribution of weight
magnitudes. As a larger network does not involve estimat-
ing a larger number of weights, there is no combinatorial
explosion with increasing network size. In fact, higher
complexity networks are likely easier to find than lower
complexity networks, as they will typically explain more
variance in the cross spectra. The above is different from
techniques that search for template spike sequences in
their original neuron-by-time representations (Abeles and
Gerstein, 1988; Nádasdy et al., 1999; Tetko and Villa,
2001; Lee and Wilson, 2002; Schnitzer and Meister, 2003;
Ikegaya et al., 2004; Gansel and Singer, 2012). As these
search for exact spiking templates, they have to do so
within some restricted space to avoid a combinatorial
explosion. Although finding high complexity networks is
impractical with such approaches, they have the advan-
tage of being able to find spike sequences that repeat
very few times in the course of a recording. Because our
approach is most sensitive to those networks that explain
the most variance in the cross spectra, it is not well suited
for finding sequences with very few repeats, as they
typically explain very little variance in the cross spectra.
As such, our approach trades sensitivity to such se-
quences for sensitivity to sequences with arbitrarily high
complexity but that are more prominent.

An important aspect of the method behind our ap-
proach is that it is a decomposition of between-neuron
cross spectra over frequencies and trials into sets of
network profiles. Because this decomposition attempts to
find profiles that parsimoniously explain all of the variance
in the cross spectra, its profiles need to not only describe
between-neuron spike pairs, but also their total number of
spikes. Importantly, the latter typically outnumber the for-
mer to a strong degree (Gochin et al., 1991; Nelson et al.,
1992; Kreiter and Singer, 1996; Brosch and Schreiner,
1999). This impacts the interpretation of the neuron profile
weights. For any two neurons, their weights in the neuron
profile need to describe four magnitudes of the cross
spectra: their total number of spikes in the magnitude of
their cross spectral power, and their spike timing consis-
tency in the magnitude of their off-diagonal elements. In
the case these magnitudes differ, the neuron profile
weights become a compromise, and are drawn to those
magnitudes that explain the most variance. These weights
should therefore be interpreted with caution and should
be considered more as an indication of network member-
ship when sufficiently away from 0, than as a straightfor-
ward index into the strength of their spike timing
consistency. This is also the reason why a neuron-wise

normalization of the cross spectra is advisable, as it will
reduce the effect of firing rate differences. In fact, in our
experience, when the cross spectra are not neuron-wise
normalized, few extracted networks will consist of more
than one neuron (i.e., artefactual networks that are not
based on spike timing). If it is also the case that the total
number of spikes of neurons differs more over trials than
the number of their spike pairs do, then the trial profile
weights will be drawn toward the former, as they will
explain more variance in the cross spectra. This was likely
the case for the networks we extracted from rat hip-
pocampus and medial prefrontal cortex (Fig. 7, network
1), and is also likely the reason why the trial profile was
strongly impacted by simulated spiking noise. A trial-wise
normalization for this was introduced, that in the specific
case of our simulations, improved recovery of the linear
modulation of network activity. Nonetheless, the trial pro-
file remained sensitive to noise and, as such, should be
used with caution, ideally with complementary analyses
(such as a targeted search, see below). The above con-
trasts with a previous application on human electrophys-
iological recordings, where the trial profile was less
sensitive to noise (likely caused by more spatially ex-
tended networks; van der Meij et al., 2015, 2016).

Our approach describes the structure of spike timing
consistencies in the cross spectra of the entire recording.
This means that the spike sequences represented by each
network’s time profile describe the spike timing consis-
tencies of the involved neurons over the entire recording.
As such, the time profile reflects an aggregate spike
sequence, one that does not necessarily exactly repeat in
each of the involved trials. For example, some trials might
only contain a part of the sequence. This property can
also be considered beneficial, and it is something we
explicitly tested in our simulations with partial spike se-
quences. In the case of strong variability in the exact spike
sequence of every trial, the “main” sequence could still be
identified.

The aggregate nature of our spike sequences contrasts
with those of approaches that search for exactly repeating
spike sequences (Abeles and Gerstein, 1988; Nádasdy
et al., 1999; Tetko and Villa, 2001; Lee and Wilson, 2002;
Schnitzer and Meister, 2003; Ikegaya et al., 2004; Gansel
and Singer, 2012). These approaches typically also incor-
porate some form of statistical testing of the identified
spike sequences, which is necessary to obtain more cer-
tainty that the found sequences are not an accidental
consequence of statistical properties of the firing rates (for
a discussion of surrogate data for this purpose, see Grün,
2009). Importantly, we consider our approach not as an
alternative to the above, but as complementary. That is,
our spike timing network profiles can be used to construct
a network-specific spiking template with between-spike
time delays at high temporal resolution, that can be used
in approaches like the above to locate discrete occur-
rences of the network’s spike sequences. This would
allow for subsequent investigations into, e.g., spike time
variability within sequences, variable occurrence of se-
quences over conditions, and spike sequence complete-
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ness, of network spike sequences with a complexity that
would otherwise be prohibitive.

Arguably the approaches closest to ours are those that
also depend on neuron-by-neuron representations to in-
vestigate spike timing consistency. Of these approaches,
some start from a principal component analysis (PCA) on
the between-neuron cross-correlations (Chapin and Ni-
colelis, 1999; Peyrache et al., 2010; Lopes-dos-Santos
et al., 2011). These approaches result in a neuron profile
per component, describing correlated and anti-correlated
neurons, and a temporal profile, providing a component
activity time course of some form that can be matched to
the original neuronal spiking time series. The biggest
difference to our approach, is that, in those methods,
between-neuron timing information is lost when trans-
forming the neuronal spiking time series to cross-
correlation matrices. Apart from losing the specification of
the order and timing of the network spiking sequence, this
also makes it more difficult to distinguish between those
networks that involve the same neurons, but at different
between-neuron spike times. This adds unto the rota-
tional ambiguity of PCA that influences network identifi-
cation and separation, although Lopes-dos-Santos et al.
(2011) made significant advances with respect to the
latter. In comparison, the method behind our approach
(van der Meij et al., 2015), and related methods (Harsh-
man and Lundy, 1994; Bro, 1998; Kiers et al., 1999;
Sidiropoulos et al., 2000; Mørup et al., 2008), extracts
networks that are unique without rotational ambiguity,
and separates them on the basis of their different struc-
ture across neurons, frequencies, and trials. Several other
approaches use cross-correlation matrices in way that did
allow for an investigation of between-neuron spiking
at time delays (Schneider et al., 2006; Nikolı́c, 2007;
Humphries, 2011), but these approaches were not tar-
geted at identifying and separating networks and their
spiking sequences.

In summary, we have presented an approach that can
extract networks defined by their between-neuron spike
timing consistency, with arbitrary network size and high
temporal precision of the identified spike sequences. Es-
pecially the latter is important considering the growing
number of neurons that can be recorded simultaneously,
and the complexity of spike sequences that can thus be
measured. Ultimately, the usefulness of our approach and
those related to it, lies in whether spike timing plays a
crucial role in large, distributed, neuronal networks. Being
able to search for these networks with increased sensi-
tivity is essential to the investigation of their existence and
function.
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