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Abstract

The largest migraine genome-wide association study identified 38 candidate loci. In this study

we assessed whether these results replicate on a gene level in our European cohort and

whether effects are altered by lifetime depression. We tested SNPs of the loci and their vicinity

with or without interaction with depression in regression models. Advanced analysis methods

such as Bayesian relevance analysis and a neural network based classifier were used to con-

firm findings. Main effects were found for rs2455107 of PRDM16 (OR = 1.304, p = 0.007) and

five intergenic polymorphisms in 1p31.1 region: two of them showed risk effect (OR = 1.277, p

= 0.003 for both rs11209657 and rs6686879), while the other three variants were protective

factors (OR = 0.4956, p = 0.006 for both rs12090642 and rs72948266; OR = 0.4756, p = 0.005

for rs77864828). Additionally, 26 polymorphisms within ADGRL2, 2 in REST, 1 in HPSE2 and

33 mostly intergenic SNPs from 1p31.1 showed interaction effects. Among clumped results

representing these significant regions, only rs11163394 of ADGRL2 showed a protective effect

(OR = 0.607, p = 0.002), all other variants were risk factors (rs1043215 of REST with the stron-

gest effect: OR = 6.596, p = 0.003). Bayesian relevance analysis confirmed the relevance of

intergenic rs6660757 and rs12128399 (p31.1), rs1043215 (REST), rs1889974 (HPSE2) and

rs11163394 (ADGRL2) from depression interaction results, and the moderate relevance of

rs77864828 and rs2455107 of PRDM16 from main effect analysis. Both main and interaction

effect SNPs could enhance predictive power with the neural network based classifier. In sum-

mary, we replicated p31.1, PRDM16, REST, HPSE2 and ADGRL2 genes with classic genetic

and advanced analysis methods. While the p31.1 region and PRDM16 are worthy of further

investigations in migraine in general, REST, HPSE2 and ADGRL2 may be prime candidates

behind migraine pathophysiology in patients with comorbid depression.
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Introduction

Migraine is a serious neurological disorder characterized by recurrent headache, typically with

unilateral pulsating pain aggravated by physical activity, nausea, photo- and/or phonophobia.

Worldwide on average 11% of adults are affected, with women three times more often [1].

Migraineurs suffer severe interference with daily activities due to the disease that also mani-

fests in high direct (e.g. healthcare service utilization) and indirect (including reduced produc-

tivity) costs [2–4]. Estimated annual expenses of migraine in Europe are around €27 billion [5]

and the disease is responsible for 25 million lost school- and working days in the UK alone [1].

All these data motivate investigations of the pathomechanisms of the disease, which are still

not fully understood.

The pathophysiology of common migraine involves multiple factors including genetic ele-

ments. Genetic heritability of the disease is around 40–50% [6] and several hypothesis-driven

candidate gene studies reported associations, e.g. with polymorphisms of HTR1A, HTR1B,

HTR2A, MAOA, SLC6A4, COMT, and CNR1 genes, though their etiological roles are not cer-

tain [7–10]. Since migraine is polygenic in nature, genome-wide association studies (GWAS)

that investigate polymorphisms associated with the disease along the entire genome, can point

to novel candidates for further testing. A recent, seminal GWAS meta-analysis identified 38

loci associated with migraine [11]. After initial identification of such variants replication stud-

ies are necessary to verify and refine findings.

In addition to genetic risk, comorbid conditions may also play a role in the pathophysiology

of migraine including psychiatric disorders, like depression [6, 12–15]. A recent study on

117,392 subjects from the UK Biobank cohort further supported a comorbid relationship

between depression and migraine [16]. Depression also has a polygenic background and

genetic association and twin studies suggest shared genetic risk factors between migraine and

depression [17–20]. Based on GWAS results the genetic correlation (rG) between migraine and

depression is between 0.25–0.32 [18, 21], however, migraine with and without comorbid

depression might also develop on partially different genetic background [6] and a causal rela-

tionship is also possible [17]. Investigating monozygotic twins discordant for depression

showed that only the twin suffering from depression has increased risk for migraine, indicating

similar conclusions [17].

All these findings indicate that migraine has complex relationships involving several factors.

Standard methods, however, are often inadequate to explore complex relationships such as

nonlinear interactions. Advanced analysis tools utilizing machine learning methods may reveal

additional aspects of variables and relationships. One such aspect is their relevance with

respect to the disease. More precisely, which variables are strongly relevant, i.e. belong to the

minimal Markov blanket of the target variable, which is migraine in this case. These variables

represent the sufficient set of variables to uniquely define the value of the target variable in a

graph representing dependencies [22]. We applied a method to determine strong relevance,

the so called Bayesian network based Bayesian multilevel analysis of relevance, or Bayesian rel-

evance analysis in short. This method was recently applied to analyze relevance of comorbidi-

ties, environmental factors and genetic variants [16, 23, 24].

The other important property of a variable is its predictive power. That is, how accurately a

given variable predicts the target variable. Predictive power can be measured by using the vari-

ables as features in a classifier, such as a neural network, whose prediction accuracy is then

assessed. Based on the above, both methods can complement traditional methods, such as lin-

ear or logistic regressions.

In light of the above, the aim of the present study was threefold: 1) to replicate the results of

the largest migraine GWAS [11] by conducting a candidate gene study involving all
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polymorphisms within the 10.000 base pair (bp) vicinity of proposed genes/loci based on our

independent samples from Budapest and Manchester using logistic regression models; 2) to

investigate whether polymorphisms within the already proposed relevant genes/loci show

interactions with lifetime depression with regression models; 3) to validate the identified single

nucleotide polymorphisms (SNPs) with two machine learning algorithms, a Bayesian rele-

vance analysis and a neural network based classifier to confirm the relevance, and the predic-

tive power of the identified factors, respectively.

In summary, analyses presented in this paper validate polymorphisms in p31.1 region of

chromosome 1, PRDM16, ADGRL2, REST and HPSE2 genes in migraine. Furthermore, results

allowed the separation of variants that play a role in migraine accompanied by depression, like

ADGRL2, REST and HPSE2, from those that play a general role in migraine, like PRDM16.

Finally, we also show, how different machine learning methods can be applied to analyze and

evaluate effects of genetic polymorphisms interacting with non-genetic factors.

Materials and methods

To achieve our objectives, first we conducted standard genetic association analyses of poly-

morphisms within the genes/loci identified by Gormley et al. [11] and their 10.000 base pair

(bp) vicinity in two European population genetic samples (from Budapest and Manchester)

and their combination. Subsequently, we performed interaction analyses with lifetime depres-

sion using the same samples. We used a less stringent significance criterion (p<0.05 in all

three samples, for a justification see below), however we also applied two machine learning

algorithms, a Bayesian relevance analysis method and a neural network classifier to confirm

findings.

Subjects

Around 2700 participants (aged between 18–60) were recruited through advertisements and

general practices from Greater Manchester, United Kingdom and Budapest, Hungary. Ethics

Committees in both cities approved the study (Scientific and Research Ethics Committee of

the Medical Research Council, Budapest, Hungary, ad.225/KO/2005.; ad.323-60/2005-

1018EKU and ad.226/KO/2005.; ad.323-61/2005-1018 EKU; North Manchester Local

Research Ethics Committee, Manchester, UK REC reference number: 05/Q1406/26), and all

our procedures were in accordance with the Declaration of Helsinki. Written informed con-

sent was provided by all participants. We included subjects of European white origin (based

on self-reported data) who provided DNA sample. Our total subject number was n = 1815 (in

Budapest: n = 839; in Manchester: n = 975) after screening for available data on sex, age, eth-

nicity, migraine and lifetime depression status. For exact subject numbers used in each analy-

sis, see S3–S8 Tables. Recruitment strategies and response rates were specified earlier [25].

Phenotype

English and Hungarian versions of brief standard questionnaires were used in the study. Our

validated background questionnaire [26] collected data about sex, age, ethnicity, sociodemo-

graphic status, personal and family psychiatric history. Information about lifetime depression

(DEPR) also originated from this questionnaire. Lifetime depression was defined as a positive

answer to reported lifetime depression in the personal psychiatric history of the background

questionnaire. Furthermore, this was validated in a smaller subset of the original sample plus

an independent sample by face-to-face diagnostic interviews as described previously [26].

The ID-Migraine questionnaire, a validated migraine-screening tool [27] was used to mea-

sure migraine. This questionnaire consists of 3 items measuring main symptoms of migraine
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in the last 3 months: photophobia, nausea and disability. Migraine (ID_MIGR) was defined as

2 or 3 YES answers to the questions about symptoms, and was validated earlier [27].

Genotyping, quality control and imputation

A genetic saliva sample kit was used to collect DNA data–extracted from buccal mucosa cells

[25]. Genotyping was implemented using Illumina’s CoreExom PsychChip yielding 573,141

variants with genomic position according to the Genome Reference Consortium Human 37

build (GRCh37/hg19). Details of quality control and imputation were published earlier [28]

and were based on an established protocol [29]. Briefly, after restricting the measured variants

to biallelic and autosomal polymorphisms, imputation was made using SHAPEIT (https://

mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html) and IMPUTE2 (http://

mathgen.stats.ox.ac.uk/impute/impute_v2.html) softwares from the reference data. Quality

control (QC) was performed for the different populations (Budapest, Manchester and total

sample) separately and started with exclusion of multiallelic variants and variants with an

‘info’ and ‘certainty’ score of less than 0.5 and 0.7, respectively. Afterwards, the following

thresholds were used for filtering: a minor allele frequency (MAF) of 0.01; iteratively 0.1, 0.05,

and 0.01 missingness; a Hardy-Weinberg equilibrium test p-value� 1x10-5; 0.2 of the squared

correlation coefficient (R2) value for LD pruning; and an identical-by-descent (π^)

value� 0.1875. Principal components were also calculated to control for genetic heterogene-

ity. Individuals with uncertain gender (discrepancy between chromosome composition and

questionnaire data), or outliers by heterozygosity were also excluded. SNPs were then filtered

for the candidate genes/loci reported by Gormley et al. [11] and their 10,000 bp vicinity yield-

ing 36579 candidate polymorphisms in 1815 individuals as a final dataset for subsequent anal-

ysis. Further details about quality control steps can be seen in S1 Appendix.

Statistical analyses

Plink analysis. We used PLINK v1.07 analysis program (https://zzz.bwh.harvard.edu/

plink/), the standard in genetic testing, to calculate Hardy-Weinberg equilibrium for individ-

ual SNPs (not on genome-wide level), and to run logistic regression analysis. SNPs yielding a

Hardy-Weinberg p-value of less than 0.05 were excluded. In all regression analyses two-tailed

tests were used.

ID_MIGR was our categorical outcome variable. The following covariates were added to

every regression analysis: age, sex and the calculated first 10 principal components of the

whole genetic dataset to control for population substructure (i.e. hidden subgroups as defined

by their genetic compositions). First, we tested the main effects of the selected single nucleotide

polymorphisms on migraine. After main effects analysis DEPR was added as an interacting

variable to test SNP x DEPR interaction on migraine, representing the biological phenomenon

that a SNP acts on migraine differently in those individuals who reported lifetime depression

than in those who did not. We performed our analyses in our subsamples (Budapest and Man-

chester separately) and in the total sample (see S1 and S2 Tables for population descriptors).

In case of multiple genetic association tests, Bonferroni correction is often used to control

multiple hypothesis testing [30–32]. In our study, however, we applied a more permissive sig-

nificance criterion. The reasons were the followings: 1) Bonferroni correction is often criti-

cized for its stringency on the field of genomics [33, 34] 2) most corrections assume

independent tests, however, this is not the case in our analysis due to substantial linkage

between polymorphisms (e.g. 1p31.1 region is a large haploblock (see Gormley et al. [11], sup-

plementary materials)); 3) in contrast to exploratory, hypothesis-free GWASs, we wanted to

confirm and extend robust findings proven by Gormley et al. [11], which allows for less
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stringent thresholds [35]; 4) recent modelling demonstrated that application of more permis-

sive p-value thresholds could enhance the detection of true positive signals, which is more

important in our replication study [36]; 5) it is well-known that both common migraine and

depression are polygenic disorders with very small expected effect sizes for individual SNPs.

Therefore, we used permissive thresholds for p-values and SNPs were considered statisti-

cally significant according to the following criteria: 1) significant effect in both subsamples

with p<0.05 and 2) replication of these results in the total sample with the same effect allele

and effect direction, p<0.05. For comparison, if we only applied the criterion of a 0.05 signifi-

cance in the total sample, altogether 1286 polymorphisms were significant. By restricting these

SNPs to those showing a significant effect in both subsamples and also in the total sample we

obtained only six (see Results). Note, however, that none of the SNPs remained significant

using Bonferroni correction either in the main or interaction effect analyses (see also

Limitations).

We also tested, whether any of the polymorphisms that were found significant with respect

to migraine in main effect or interaction analyses, have an effect on lifetime depression. Logis-

tic regression analysis was performed with the same covariates as for migraine, in the total

sample. The significance threshold was the same as above.

For genotype and phenotype frequencies see S1 and S2 Tables. Standard methods like logis-

tic/linear regression, however, are often inadequate to explore complex relationships such as

nonlinear interactions. Advanced analysis tools utilizing machine learning methods may

enable a more detailed analysis of relationships, especially in a multivariate case. Previously,

we applied Bayesian relevance analysis in order to create a Bayesian direct multimorbidity

map of depression and its comorbidities, investigating the direct and non-direct relationships

of depression [16]; to characterize the relevance of relationships between depression and sev-

eral environmental and lifestyle factors [23].

Another aspect of variables in addition to their relevance is their predictive power, which

measures how accurately do individual or multiple variables in a model predict a target vari-

able. In the present scenario this can be stated as: how accurately do genetic variables (SNPs)

and the presence (or absence) of depression (as a comorbid disease) predict the migraine status

of patients. For this purpose, we utilize a neural network classifier which is a universal approxi-

mator, capable of learning multivariate nonlinear relationships given adequate sample size.

The application of such methods for the analysis of genetic associations is not as frequent as

the presence of complex relationships. One of the goals of this study is to show that a detailed

analysis requires additional tools besides the standard methods.

Bayesian relevance analysis. As a post-hoc test, we applied a Bayesian systems-based

method called Bayesian relevance analysis [22], which relies on Bayesian model averaging [37].

The method considers possible variable dependency models fitting the data using a Markov

chain Monte Carlo method to perform a random walk in the space of possible dependency

models that are directed acyclic graphs [38], and assesses the probability of models and model

properties [39]. The number of ‘burn-in’ steps were 1,000,000 followed by 2,000,000 additional

steps starting from a randomly initialized structure, using 4 chains. The structure prior was set

to uniform, and a Cooper-Herskovits prior (of the Bayesian Dirichlet prior family) was utilized

as the parameter prior. Possible directed acyclic graph structures were limited such that each

node could have at most 5 incoming edges (parents).

Variables that are directly connected to a selected target variable or those that form an inter-

action pattern with the target variable (please, note, this is not the same interaction, like the

DEPR x SNP interaction parameter used above) in the majority of possible dependency mod-

els, can be considered strongly relevant [40].
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We have to note that the Bayesian relevance analysis method tests all the SNPs jointly in a

multivariate model and automatically corrects for multiple hypothesis testing, however, the

method cannot correct automatically for a strong correlation of SNPs. Therefore, we used

PLINK’s built-in clumping method to select important variants from relevant blocks in high

LD. For clumping, the only relevant criterion was that from each block with an R2 higher than

0.6 only one SNP can be selected (for clumping results see S9 Table). Please, note, that

throughout the manuscript relevance values represent relevance of the given variant with

respect to migraine.

For additional information on Bayesian relevance analysis and strong relevance, see S2

Appendix.

Analysis of predictive power. We also utilized a neural network based classifier to assess

the predictive power of relevant SNPs as a multivariate model. We created a neural network in

the Tensorflow framework [41] which consisted of a fully connected input layer and a hidden

layer using the most commonly used rectified linear unit (relu) activation function, and an

output layer. Based on multiple experiments with various architectures, we found that more

than 10 neurons per layer did not improve classification results. Therefore, we opted to use 10

neurons in both the input and hidden layers. Weights and biases were randomly initialized

according to the uniform distribution. Since the target variable was binary, we utilized binary-

cross entropy as a loss function. The ADAM method [42] was used as an optimizer with a

batch size of 20 samples, and 50 as the number of learning epochs.

Predictive power was determined according to a weighted accuracy score involving sensi-

tivity and specificity measures taking into account the case-control ratio. All measures were

computed using a cross-validation framework of k = 10 partitions and n = 10 repetitions, i.e.

the data was split into k = 10 partitions and for each classifier learning phase 9 partitions were

used as training data and 1 partition as testing data, cycling through all possible combinations.

This process starting with a partitioning was repeated n = 10 times. In other words, the average

of each measure computed n x k (i.e. 100) times was used for the final evaluation. The same

clumping method was used to filter SNPs prior to predictive power analysis as in the case of

relevance analysis.

Functional prediction

Functional characterization of the significant SNPs was performed with Functional Prediction

tool, FuncPred (https://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html) and with SNPnexus

(https://www.snp-nexus.org/v4/). SNPnexus provided an opportunity to get a more detailed

description of functionally relevant SNPs.

Results

Logistic regression results for main effect analysis

Among the 36579 polymorphisms only 6 showed significant (p<0.05) main effects for

migraine that replicated in both subsamples (Budapest, Manchester) and in the total sample.

From the six polymorphisms 5 (rs11209657, rs6686879, rs77864828, rs12090642, rs72948266)

were located in the intergenic regions on the short arm of the first chromosome (1p31.1).

Among them, based on the odds ratios (ORs) of the individual polymorphisms, 3 (rs77864828,

rs12090642, rs72948266) represented protective factors (OR<1) and 2 (rs11209657,

rs6686879) could be considered as risk factors for migraine (OR>1). The only polymorphism

that could be associated with a gene was rs2455107 in the intronic region of PRDM16 showing

an OR higher than 1. For detailed results, see Table 1 and S3–S5 Tables. None of the above

mentioned polymorphisms showed main effects with respect to lifetime depression.
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Logistic regression results for interaction effect analysis

51 polymorphisms showed a replicated (p<0.05 in both subsamples and total sample) effect in

interaction with lifetime depression for migraine, from which 26 could be associated with

ADGRL2 (also known as LPHN2) on chromosome 1, with rs7412827 being a downstream

gene variant, while the others were intron variants. Only 2 of them (rs11163394, rs3790895)

could be considered protective. We also identified 22 intergenic risk polymorphisms on chro-

mosome 1 in interaction with lifetime depression. One variant (rs1043215) in the 3’ untrans-

lated region and another downstream variant (rs143167654) of REST (also known as NRSF)

showed surprisingly high ORs for migraine in the interaction analyses [total sample OR: 6.596

(95% CI: 1.90–22.86), Manchester OR: 5.769 (95%: 1.07–31.04), Budapest OR: 10.5 (95% CI:

1.37–80.38) for both SNPs]. Rs1889974 of HPSE2, also showed significant effects. Clumped

results representing the regions were collected in Table 2, for full results see S6–S8 Tables.

None of the polymorphisms showed main effects for lifetime depression.

Table 1. Significant genetic polymorphisms in main effects logistic regression analysis for migraine in the subsamples (Budapest, Manchester) and the total

sample.

Variant

name

Function prediction based

on UCSC

Chromosome Reference

allele

Effect

Allele

Associated gene /

localization

Results of logistic regression models in main

effect analyses

Budapest Manchester Total sample

p-value OR p-value OR p-value OR

rs2455107 intron variant 1 A C PRDM16 0.0442 1.384 0.0463 1.288 0.0072 1.304

rs11209657 intergenic 1 G A chr1.p31.1 0.0477 1.298 0.0342 1.255 0.003 1.277

rs6686879 intergenic 1 G A chr1.p31.1 0.0477 1.298 0.0342 1.255 0.003 1.277

rs77864828 intergenic 1 C T chr1.p31.1 0.0295 0.3546 0.0478 0.526 0.0048 0.4756

rs12090642 intergenic 1 T C chr1.p31.1 0.0499 0.4215 0.0394 0.5128 0.0064 0.4956

rs72948266 intergenic 1 A G chr1.p31.1 0.0499 0.4215 0.0394 0.5128 0.0064 0.4956

Table 1 shows significant polymorphisms, their respective functions based on the UCSC Genome Browser, chromosome localization, reference and effect allele, their

associated gene or more exact genomic region, and the p-values and odds ratios (ORs) from the main effects logistic regression with age, sex, and 10 principal

components as covariates. Note, that only one polymorphism could be associated with a gene, namely, PRDM16 and all other variants are intergenic from a large LD

block (p31.1) on the first chromosome. From the 38 investigated loci only these replicated according to our criteria.

https://doi.org/10.1371/journal.pone.0261477.t001

Table 2. Clumped results representing significant regions showing interaction with lifetime depression for migraine by logistic regression analysis.

Variant

name

Function prediction

based on UCSC

Chromosome Reference

allele

Effect

allele

Associated gene /

localization

Results of logistic regression models in interaction

effect analyses

Budapest Manchester Total sample

p-value OR p-value OR p-value OR

rs11163394 intron variant 1 G A ADGRL2 0.0491 0.5598 0.0015 0.4946 0.002 0.6079

rs6598982 intergenic 1 T C chr1.p31.1 0.0194 1.998 0.0024 2 0.0002 1.837

rs12128399 intergenic 1 G T chr1.p31.1 0.0116 2.268 0.0045 2.159 0.0004 1.923

rs12129408 intergenic 1 A G chr1.p31.1 0.0313 1.899 0.0274 1.67 0.02093 1.462

rs6660757 intergenic 1 A C chr1.p31.1 0.019 1.919 0.01 1.767 0.0001841 1.833

rs1043215 3’ UTR variant 4 G A REST 0.0235 10.5 0.0412 5.769 0.002939 6.596

rs1889974 intron variant 10 G A HPSE2 0.019 1.985 0.0265 1.647 0.002424 1.635

Table 2 shows significant polymorphisms, their respective functions based on UCSC Genome Browser, chromosome localization, reference and effect allele, their

associated gene or more exact genomic region, and the p-values and odds ratios (ORs) in interaction with lifetime depression for migraine using logistic regression with

age, sex, and 10 principal components as covariates.

https://doi.org/10.1371/journal.pone.0261477.t002
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Bayesian relevance analysis

To determine which of the identified polymorphisms are the most relevant for migraine we

also ran a Bayesian relevance analysis investigating multivariate dependency structures on our

total sample including sex, age, and a population descriptor (Budapest or Manchester). Signifi-

cant SNPs from main effect analyses were checked for linkage and only the most representative

SNPs were included in the Bayesian analysis (rs2455107, rs77864828, and rs11209657). Results

for representative SNPs with main effects are presented in Table 3.

To distinguish between SNPs that showed significant effects in an interaction model, we

performed Bayesian relevance analysis separately in depressed and non-depressed subjects on

a clumped SNP set and calculated differences between relevance scores (i.e. posterior probabil-

ities) (see Table 4). Four out of these polymorphisms showed at least a magnitude larger proba-

bility of relevance in depressed subjects than in non-depressed subjects and with the exception

of rs11163394 all had an OR larger than 1 in regression models. The largest difference in rele-

vance was found in the case of intergenic rs12128399 from the 1p31.1 region with low proba-

bility of relevance in non-depressed and high probability of relevance in depressed subjects on

migraine. Rs12128399 was followed by rs6660757 in the p31.1 region, rs1889974 in HPSE2,

rs1043215 in REST and rs11163394 in ADGRL2 sorted by the relevance difference between

depressed and non-depressed individuals.

Table 3. Posterior probability of relevance with respect to migraine for SNPs with main effects.

Variant name Relevance Chromosome Associated gene

rs77864828 0.421 1 intergenic

rs2455107 0.191 1 PRDM16
rs11209657 0.138 1 intergenic

Table 3 shows posterior probabilities of main effect SNPs using a Bayesian relevance analysis. A higher posterior probability indicates higher relevance with respect to

migraine and thus, serves as a post-hoc test for the already significant polymorphisms identified by regression models. Interestingly, the intergenic polymorphism

rs77864828 shows a larger posterior probability, than the only gene-associated polymorphism rs2455107, PRDM16. Note that this method investigates possible

multivariate models, i.e. it tests the SNPs jointly.

https://doi.org/10.1371/journal.pone.0261477.t003

Table 4. Posterior probability of relevance of SNPs with respect to migraine in interaction with lifetime depression.

Variant

name

Relevance in non-depressed

subjects

Relevance in depressed

subjects

Difference in relevance between depressed and non-

depressed subjects

Chromosome Associated

gene

rs12128399 0.025 0.929 0.904 1 Intergenic

rs6660757 0.210 0.997 0.787 1 Intergenic

rs1889974 0.047 0.704 0.657 10 HPSE2
rs1043215 0.290 0.907 0.617 4 REST

rs11163394 0.014 0.311 0.298 1 ADGRL2
rs6598982 0.013 0.059 0.047 1 Intergenic

rs12129408 0.0056 0.0062 0.0006 1 Intergenic

In Table 4, a higher posterior probability value indicates higher relevance with respect to migraine, shown separately for non-depressed and depressed subjects. A

difference between relevance values of a SNP indicates that the SNP plays different roles in non-depressed and depressed subjects and, thus, confirms gene-disease

interaction. With the exception of the intergenic rs12129408 where the difference is negligible, all of the polymorphisms show larger relevance in depressed individuals,

suggesting that these polymorphisms are more likely to contribute to migraine in depressed subjects. Please, note that the model tests all SNPs at the same time. The low

performance of rs12129408 is a result of multivariant effects discussed in the Limitations section.

https://doi.org/10.1371/journal.pone.0261477.t004
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Predictive power analysis

We also investigated the predictive performance of three multivariate models related to either

the main effects or the interactions of SNPs with respect to migraine (see Table 5). All models

were compared to a baseline model (M0) consisting of age, sex and population. In this analysis,

the population variable was selected instead of the 10 principal components for two reasons: 1)

previously, we found that the first principal component is congruous with the population vari-

able, and the addition of further principal components to the analysis does not change signifi-

cantly the lambda-value of genomic inflation factor [43]; 2) this way, the results of the two

machine learning algorithms are more comparable since the Bayesian relevance analysis can

only handle categorical variables. The first model (M1) contained M0 and the SNPs with main

effects with respect to migraine, the second model (M2) M0 and lifetime depression, and the

third model (M3) those SNPs that were found relevant with respect to migraine in interaction

with lifetime depression and can be considered as representative SNPs of their respective

locality.

Main effect SNPs could enhance predictive power by 17.56% when compared to the M0

model. Inclusion of lifetime depression enhanced the predictive power by 25.45% when com-

pared to M0. Inclusion of the representative interaction SNPs in addition to lifetime depres-

sion, slightly improved predictions, resulting in a better score by 35.76% than that of M0 (and

a 10.31% better score if compared to M2).

To confirm results of the predictive power analysis, we have investigated logistic regression

models with the same terms used in models M0-M3 described in the predictive power analysis

section; migraine served as the target variable. Specifically, M0: sex, age, population; M1: M0

+ rs2455107, rs11209657, rs77864828; M2: M0 + DEPR; M3: M2 + rs12129408, rs6598982,

rs11163394, rs12128399, rs1889974, rs1043215, rs6660757. Note that in case of M3 the interac-

tion terms (formed between a SNP and depression) are modelled explicitly, e.g. DEPR:

rs12129408.

Results are shown in S13 Table. In the case of M1, all 3 SNPs showing a main effect can be

considered as significant terms of the logistic regression model. Furthermore, the depression

descriptor variable in model M2 is highly significant (p-value: 1.39E-12), which further con-

firms that depression can be considered a relevant factor in the etiology of migraine. Model

Table 5. Predictive power of multivariate models compared to a baseline containing age, sex and population

variables.

Models Accuracy

Score Difference

M0 Age, sex, population 0.565 n/a

M1 Age, sex, population, rs2455107, rs11209657, rs77864828 0.664 17.56%

M2 Age, sex, population, lifetime depression 0.709 25.45%

M3 Age, sex, population, lifetime depression, rs11163394, rs6598982, rs12128399, rs12129408,

rs6660757, rs1043215, rs1889974

0.767 35.76%

Table 5 shows the predictive score calculated by a neural network based classifier and the relative difference from the

base model using only age, sex and population to predict migraine. The predictive score is a weighted average of

sensitivity and specificity measures computed using the total sample. All scores are compared to the score of the

baseline model M0. In the M1 model, the significant main effect polymorphisms could enhance predictive power,

nevertheless, the addition of the lifetime depression variable without any genetic variants (M2) achieved better

performance. The further addition of the interaction polymorphisms to M2 (M3) yielded somewhat better results,

showing that lifetime depression in itself is one of the best predictors of migraine, and probably reflecting the large

effect size difference between lifetime depression and genetic variants.

https://doi.org/10.1371/journal.pone.0261477.t005
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M3 contains the main effects and interactions terms of SNP found significant in interaction

with depression. Among the 7 interaction terms only 3 are significant (DEPR:rs6660757, p-

value: 6.75E-05; DEPR:rs1043215, p-value: 0.00275; rs1889974, p-value: 0.0096).

Due to the nature of the multivariate model, it is possible that given the effect of the most

significant terms, other terms might appear insignificant. Therefore, we investigated each SNP

individually in the sense that we formed variations of the M3 model such that only a single

SNP (main effect and interaction with depression) was admitted to the model besides age, sex,

population and depression. S14 Table shows the significance of interaction terms of such mod-

els. Results indicate that in each case the interaction term is significant to some extent even for

those SNPs whose interaction term was not significant in the complex M3 model.

In addition, we compared the performance of the models using the Akaike information cri-

terion (AIC). S15 Table shows the AIC score for each of the models. AIC is an estimator of pre-

diction error, a lower value is considered better, furthermore it includes a penalty term for

model complexity. Results confirm the outcome of predictive power analysis. M0 has the high-

est score (AIC: 2033.7) outperformed by M1 (AIC:2017.5) containing additional SNPs with

main effects with respect to migraine. Model M2 containing the depression descriptor (AIC:

1984.9) is even better than M1 due to the significant effect of depression and the decreased

complexity with respect to M1 (i.e. there are fewer variables in the model). Finally, M3 has to

lowest score (AIC: 1954.3), indicating that the interaction of depression and the selected SNPs

may play an important role in predicting migraine susceptibility.

Functional prediction results

Functional prediction results can be seen in S10–S12 Tables. Among the significant polymor-

phisms of the main effect analysis, several showed indicative scores for functional effect. For

example, rs6686879 showed high score based on gene annotation, while rs12090642 could

have an effect as a transcription start site or as an eQTL variant (both SNPs are situated in the

1p31.1 region). Among the hits of interaction analysis, all variants showed scores suggesting

functional effect, especially rs1043215 from REST gene.

Discussion

Our analyses confirmed main effects of PRDM16 and 1p31.1 SNPs on migraine in two inde-

pendent European cohorts. Furthermore, this study also provides evidence that SNPs of the

previously identified migraine risk genes REST, ADGRL2, HPSE2 and 1p31.1 show lifetime

depression-dependent associations with the disease. The neural network-based classifier

proved the predictive value of both main and interaction effect SNPs on migraine, while Bayes-

ian relevance analysis showed large relevance difference of the interaction SNPs between

depressed and non-depressed migraineurs.

Main effects

In 2016 Gormley and colleagues identified 38 credible sets of SNPs that may have a genetic

impact on migraine [11]. To replicate the findings, we extracted 36579 polymorphisms (from

them 25161 belonged to 1p31.1, a single, huge LD-block according to Gormley and colleagues

[11]) that were in the vicinity of these loci. Our main effect analysis for migraine demonstrated

only 6 nominally significant SNPs, and among them only one could be associated with a gene,

the intron region of PRDM16: rs2455107. This polymorphism showed previously no associa-

tions, whatsoever, with migraine or any other diseases. At the same time, different variants of

PRDM16 associated with migraine in several earlier studies [11].
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Rs2651899 of PRDM16 showed associations in the Women’s Genome Health Study

(WGHS) with migraine compared to non-migraineurs and also with migraine compared to

non-migraine type headache [44]. A replication study on a Chinese population supported a

role for rs2651899 as a risk factor in migraine without aura regardless of gender [45] and its

role was also demonstrated in two North Indian, a Chinese Han, a Spanish, a Swedish, and a

Pakistani population [46–51]. A recent meta-analysis also demonstrated an association

between rs2651899 and migraine risk [52]. Risk allele carriers at rs2651899 also associated

with larger response to serotonin 1B/1D receptor agonist antimigraine medications [53]. In

contrast, Gormley et al. [11] suggested that rs10218452 and rs12135062 of PRDM16 are

responsible for main effects with respect to migraine.

Yet, we know little about the gene itself. PRDM16 is implicated in brown adipose tissue dif-

ferentiation that is a major contributor to thermoregulation and is capable for heat production

[54, 55] (also according to the Kyoto Encyclopedia of Genes and Genomes (KEGG): https://

www.kegg.jp/kegg-bin/search_pathway_text?map=&keyword=PRDM16&mode=

1&viewImage=true). A case study reported association between body temperature and head-

ache intensity in migraineurs with aura [56] and a hypothesis by Horvath suggests a causal role

for altered thermoregulation in migraine [57]. From another perspective, PRDM16 was shown

to be necessary for adult neurogenesis (also see the AmiGO 2 database (Gene Ontology): http://

amigo.geneontology.org/amigo/gene_product/UniProtKB:Q9HAZ2) and ependymal cell dif-

ferentiation in the adult mouse brain after deletion of PRDM16 with the Nestin-Cre method. In

the latter study, the few remaining ciliated ependymal cells were abnormal and could not secure

the proper flow of the cerebrospinal fluid (CSF) [58]. In chronic migraine, concentrations of

several biomarkers are altered in CSF, e.g. glutamate or calcitonin-gene related peptide to name

a few [59] that may connect altered ependymal cell function with the disease.

However, these links remain strongly hypothetic. Nonetheless, previous and current results

indicate that polymorphisms of PRDM16 may be consistent and relevant candidates for

migraine susceptibility. The redundancy of the polymorphisms on the gene level, or allelic het-

erogeneity, suggests that altered gene functions or expression may be more important than

individual variants within PRDM16.

Main effects—Bayesian relevance analysis and analysis of predictive power. Our post-

hoc Bayesian relevance analysis showed the following order of relevance: 1) rs77864828 of

1p31.1 region; 2) rs2455107 of PRDM16 and 3) rs11209657 of 1p31.1 region. Furthermore,

inclusion of these 3 representative SNPs in the neural network classifier enhanced predictive

power by 17.56% which is large considering that individual genetic variants have usually very

small effects and the inclusion of lifetime depression could enhance predictive power within

the same magnitude (25.45%). Gormley et al. [11] identified the 1p31.1 region as a risk locus

and we can confirm these findings. Recent studies show that intronic and intergenic regions

are responsible for harboring vast numbers of non-coding RNAs modulating gene transcrip-

tion [60, 61]. These results point out that the fine modulation of transcription might be

responsible for common migraine instead of large impact mutations.

In summary, main effect analyses including regression models and neural network based

predictive power calculations indicated that rs2455107 of PRDM16 and intergenic rs11209657,

rs77864828 of 1p31.1 are potential candidate polymorphisms behind migraine. Other loci pro-

posed by Gormley et al. [11] could not be replicated in our sample.

Interaction effects

Interestingly, none of the polymorphisms that were significant in interaction effect analysis

with lifetime depression showed significance in main effect results. Previous studies already
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suggested a substantial difference between migraine with and without depression [6, 17]. A

twin study demonstrated that migraine and anxious depression may be in a causal relation-

ship, though the direction of such causality remained undetermined [17]. The authors implied

that migraine with and without depression can be regarded as different phenotypes and

refuted the idea of a shared etiology [17]. In further support, according to polygenic risk

scores, migraine with depression showed higher resemblance to depression than to migraine

[6]. Our study adds further evidence for a substantial difference since there were candidate

SNPs elevating the risk of migraine with comorbid lifetime depression that were not involved

in mediating migraine in general. These results implicate that migraine with and without life-

time depression may develop on different genetic background, and that large GWASs might

find SNPs relevant in specific subgroups of the disorder. In the future, these SNPs can be used

for personalized risk/phenotype prediction (like in [62, 63]). The regression analysis identified

51 SNPs from three genes. We discuss them in the context of the results from the two machine

learning methods.

Interaction effects—Bayesian relevance analysis and analysis of predictive power.

Post-hoc analysis showed that among the identified SNPs the two most relevant ones were

rs12128399 and rs6660757 of p31.1, both are intergenic and their exact role is at present

unknown.

The third polymorphism, rs1889974, based on relevance difference between depressed and

non-depressed migraineurs, is located in the intron of HPSE2, encoding the heparanase-2

(Hpa2) enzyme [64]. Hpa2 was identified as a novel member of the heparanase family [64].

Heparanases are endoglycosidases cleaving the heparan sulfate (HS), which leads to the

remodelling of the extracelullar matrix [64], and is connected to tumor metastasis, angiogene-

sis and inflammation, but Hpa2 does not exhibit this HS-degrading activity and is not a subject

of proteolytic processing [65]. Its wild type (Hpa2c) has an inhibitory effect on heparanase

enzymatic activity, likely through Hpa2c’s high affinity to HS and heparin [65]. Our result

with HPSE2 might support the vascular theory of migraine. A prothrombotic tendency has

been suggested in migraine pathogenesis by the connection between migraine and cardio- and

cerebrovascular ischemic events, although related studies show conflicting data [66–68] and

the literature of anticoagulants’ efficacy in migraine patients also shows mixed results [66].

Depression has been connected to cardiovascular diseases too [69, 70] and the ‘vascular

depression’ hypothesis also links cerebrovascular disease to geriatric depressive syndromes

[71, 72]. In addition, HPSE2 associated with the depression-related trait, neuroticism [73].

These results may represent a lead connecting the gene with migraine and depression.

The fourth largest relevance difference was found in case of rs1043215, which is located

within the REST gene, an important regulator of gene expression with the ability to bind RE1

(also known as NRSF) in the promoter region of more than 2000 genes [74–76]. In non-neuro-

nal cells REST is responsible for the suppression of neuron specific gene expression during

embryogenesis [77]. In adult neuronal cells REST is expressed at low levels and is induced by

different types of neuronal activation [78]. Among the regulated genes in neuronal cell lines

were synapsin, synaptophysin, Crh, BDNF, and the serotonin 1A receptor [74, 79, 80], which

are highly relevant for depression and antidepressant response [81]. In fact, aberrant REST
transcriptional regulation was shown in patients with major depressive disorder in current

depressive state, but not in remission [79]. While it remained so far uninvestigated with

respect to migraine directly, REST was also involved in neuropathic pain symptoms [82]. Fur-

thermore, decreased REST levels associated with increased neuronal excitability and cortical

activity that may be directly related to elevated pain sensations [83]. The two identified poly-

morphisms of REST showed large ORs for migraine. The relevant SNP in the Bayesian analy-

sis, rs1043215 in the 3’ untranslated region was uninvestigated previously. However, our
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functional prediction analysis showed that this SNP is functional with great probability, and it

was detected as a highly conserved SNP suggesting an evolutionary importance for this variant.

The above discussed empirical evidences and the present study delineate REST polymor-

phisms, especially rs1043215, as possible candidates for further studies in migraine with

depression.

The next SNP according to relevance difference, rs11163394, belongs to an intronic region

of ADGRL2 from 1p31.1 encoding latrophilin 2, an adhesion G-protein coupled receptor [84].

Latrophilin receptors are involved in the maintenance of synapses and ADGRL2 in particular

is involved in the intracellular release of Ca-ions [85]. While the latrophilin 1 and 3 receptors

were proposed as contributors to the regulation of mood [85, 86], ADGRL2 remains hitherto

less investigated. The reason was probably the relatively low expression of ADGRL2 compared

to other latrophilins, within the brain [87], however, it cannot be excluded that ADGRL2 is

also involved in the regulation of mood. Elevated excitability of tissues via calcium-channelo-

pathies were already proposed in migraine [88]. In certain cases, familial hemiplegic migraine

is caused by mutations in the calcium voltage-gated channel subunit alpha1 A (CACNA1A),

and it was also proposed that physiologic cation concentrations may be altered in other forms

of the disease [88, 89]. Our study suggests that via variation in the ADGRL2 gene, intracellular

calcium levels might be elevated, resulting in a hyperexcitability similar to that seen in the

familial form of the disease. While it may be premature to draw conclusions about the role of

ADGRL2 in migraine with accompanying depression, the 26 different polymorphisms associ-

ated with ADGRL2 show that the gene might represent an important novel target of migraine

research.

The last two variants based on relevance difference were rs6598982 and rs12129408 from

the 1p31.1 region. Our functional prediction analysis showed high scores for rs6598982 in

some categories suggesting high probability for being an eQTL, a trait-associated and inherited

disease-associated variant. Furthermore, it has to be noted that non-coding LINC01360 and

RN7SKP19 pseudogene in the region associated with depression and anxiety disorder in

GWASs [90–93]. From the perspective of the predictive power, inclusion of these interacting

SNPs in the model slightly improved its prediction value compared to adding only lifetime

depression (10.31% gain).

In summary, interaction analysis indicated that intergenic rs12128399, rs6660757 and vari-

ants in HPSE2, REST and from the 1p31.1 region (including ADGRL2) represent lifetime

depression-dependent genetic factors for migraine.

Limitations

Our study has to be interpreted in light of the following limitations. First, our sample is small

compared to the original study. The lack of large statistical power may explain why we couldn’t

replicate many loci from the Gormley study. To remain rigorous, our significance criterion

was to replicate results in both subsamples and the total sample with nominal significance

instead of the Bonferroni correction used in large genetic studies. We applied two machine

learning methods leading to further validation and characterization of results: the Bayesian rel-

evance analysis validated relevance of interaction results, while the predictive power analysis

confirmed both main effect and interaction polymorphisms. The lack of Bonferroni correction

remains a major limitation of the study. We already discussed why we choose more permissive

p-value thresholds at the relevant section of Methods.

Second, we also have to note that the two subsamples differ in some characteristics (see S1

and S2 Tables), but exactly for this very reason, we believe that those SNPs that were able to

replicate are indeed important.
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Third, we measured migraine and lifetime depression with questionnaires. The migraine

questionnaire was already validated against a clinical sample as demonstrated by Lipton and

colleagues [27, 94]. The latter is also true for the depression questionnaire, which was validated

by us, as indicated in the methods section [95].

Fourth, the polymorphism rs12129408 showed risk OR (> 1) in the PLINK analysis, but

the difference between relevance in depressed and non-depressed individuals was negligible.

This can be explained by the different aims of the methods. The PLINK analysis assesses effect

sizes and based on these estimations calculates significance. At the same time, Bayesian rele-

vance analysis addresses whether a given polymorphism has a direct effect on the outcome var-

iable, but does not state whether this effect is protective or not.

Fifth, the minor allele frequency of the REST gene polymorphism was low in our sample

that might explain the large ORs seen in the analyses (see S2 Table). Therefore, these results

should be interpreted with caution.

Finally, predictive power analysis could confirm the effect of main effect SNPs, and also the

effect of interaction SNPs to some extent, while Bayesian relevance analysis validated interac-

tion effects only. It has to be noted, that these two methods answer different questions about

the roles of these SNPs (predictive power and direct effects, respectively) and, therefore, it is

not surprising that different results were obtained.

Conclusions

The elaborate analysis of 38 risk loci for migraine already proposed by the GWAS of Gormley

et al. [11] could identify only 57 nominally significant variants from altogether four genes/

regions (PRDM16, REST, ADGRL2, HPSE2). Main effect analysis indicated that intergenic

polymorphism rs77864828, and with smaller relevance, intron variant rs2455107 in PRDM16
represent genetic factors for common migraine. In contrast, intergenic rs6660757 and

rs12128399, rs1889974 in HPSE2, rs11163394 in ADGRL2 and rs1043215 of REST may only

serve as biomarkers in migraine accompanied by lifetime depression. In addition, while most

of the above genes could be connected to known migraine pathophysiology, the 1p31.1 region

harboring significant intergenic SNPs also assumes a role for non-coding RNAs behind com-

mon migraine.

The relative scarcity of significantly validated variants emphasize the need of validation

even for large GWAS results especially through the inclusion of interaction factors. It also

reveals that even significantly replicated genetic variants may be involved in different disease

subtypes, in this particular case, migraine without and with accompanying lifetime depression.
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S1 Fig. Genomic location of the significant SNPs in PRDM16 gene.
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57. Horváth C. Alterations in brain temperatures as a possible cause of migraine headache. Medical

hypotheses. 2014; 82(5):529–34. Epub 2014/03/04. https://doi.org/10.1016/j.mehy.2014.02.004 PMID:

24581675.

58. Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ. Prdm16 is required for the maintenance of neu-

ral stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes & develop-

ment. 2017; 31(11):1134–46. Epub 2017/07/13. https://doi.org/10.1101/gad.291773.116 PMID:

28698301.

59. van Dongen RM, Zielman R, Noga M, Dekkers OM, Hankemeier T, van den Maagdenberg AM, et al.

Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia: an

international journal of headache. 2017; 37(1):49–63. Epub 2016/02/19. https://doi.org/10.1177/

0333102415625614 PMID: 26888294.

60. Giral H, Landmesser U, Kratzer A. Into the Wild: GWAS Exploration of Non-coding RNAs. Front Cardio-

vasc Med. 2018; 5(181):181. Epub 2019/01/09. https://doi.org/10.3389/fcvm.2018.00181 PMID:

30619888.

61. Mattick JS, Gagen MJ. The evolution of controlled multitasked gene networks: the role of introns and

other noncoding RNAs in the development of complex organisms. Molecular biology and evolution.

2001; 18(9):1611–30. Epub 2001/08/16. https://doi.org/10.1093/oxfordjournals.molbev.a003951 PMID:

11504843.

62. Rajput DS, Basha SM, Xin Q, Gadekallu TR, Kaluri R, Lakshmanna K, et al. Providing diagnosis on dia-

betes using cloud computing environment to the people living in rural areas of India. Journal of Ambient

Intelligence and Humanized Computing. 2021. https://doi.org/10.1007/s12652-021-03154-4

63. Roqueiro D, Witteveen MJ, Anttila V, Terwindt GM, van den Maagdenberg AM, Borgwardt K. In silico

phenotyping via co-training for improved phenotype prediction from genotype. Bioinformatics (Oxford,

PLOS ONE Polymorphisms behind migraine with and without depression

PLOS ONE | https://doi.org/10.1371/journal.pone.0261477 December 31, 2021 19 / 21

https://doi.org/10.1111/head.12212
https://doi.org/10.1111/head.12212
http://www.ncbi.nlm.nih.gov/pubmed/24021092
https://doi.org/10.1111/head.12329
https://doi.org/10.1111/head.12329
http://www.ncbi.nlm.nih.gov/pubmed/24666033
https://doi.org/10.1111/head.12240
https://doi.org/10.1111/head.12240
http://www.ncbi.nlm.nih.gov/pubmed/24266335
https://doi.org/10.1186/1471-2350-15-38
http://www.ncbi.nlm.nih.gov/pubmed/24674449
https://doi.org/10.1177/0333102414557841
http://www.ncbi.nlm.nih.gov/pubmed/25388962
https://doi.org/10.1007/s11033-019-04593-1
http://www.ncbi.nlm.nih.gov/pubmed/30635810
https://doi.org/10.1016/j.sjbs.2021.06.028
http://www.ncbi.nlm.nih.gov/pubmed/34588893
https://doi.org/10.1111/head.13670
http://www.ncbi.nlm.nih.gov/pubmed/31557325
https://doi.org/10.1177/0333102415610874
http://www.ncbi.nlm.nih.gov/pubmed/26502740
https://doi.org/10.1515/hmbci-2014-0022
http://www.ncbi.nlm.nih.gov/pubmed/25390014
https://doi.org/10.1038/nature07182
http://www.ncbi.nlm.nih.gov/pubmed/18719582
https://doi.org/10.1111/pme.12145
http://www.ncbi.nlm.nih.gov/pubmed/23710707
https://doi.org/10.1016/j.mehy.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24581675
https://doi.org/10.1101/gad.291773.116
http://www.ncbi.nlm.nih.gov/pubmed/28698301
https://doi.org/10.1177/0333102415625614
https://doi.org/10.1177/0333102415625614
http://www.ncbi.nlm.nih.gov/pubmed/26888294
https://doi.org/10.3389/fcvm.2018.00181
http://www.ncbi.nlm.nih.gov/pubmed/30619888
https://doi.org/10.1093/oxfordjournals.molbev.a003951
http://www.ncbi.nlm.nih.gov/pubmed/11504843
https://doi.org/10.1007/s12652-021-03154-4
https://doi.org/10.1371/journal.pone.0261477


England). 2015; 31(12):i303–10. Epub 2015/06/15. https://doi.org/10.1093/bioinformatics/btv254

PMID: 26072497.

64. McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, et al. Cloning and expression profiling of

Hpa2, a novel mammalian heparanase family member. Biochemical and biophysical research commu-

nications. 2000; 276(3):1170–7. Epub 2000/10/12. https://doi.org/10.1006/bbrc.2000.3586 PMID:

11027606.

65. Levy-Adam F, Feld S, Cohen-Kaplan V, Shteingauz A, Gross M, Arvatz G, et al. Heparanase 2 interacts

with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of biological chemis-

try. 2010; 285(36):28010–9. Epub 2010/06/26. https://doi.org/10.1074/jbc.M110.116384 PMID:

20576607.

66. Maggioni F, Bruno M, Mainardi F, Lisotto C, Zanchin G. Migraine responsive to warfarin: an update on

anticoagulant possible role in migraine prophylaxis. Neurological sciences: official journal of the Italian

Neurological Society and of the Italian Society of Clinical Neurophysiology. 2012; 33(6):1447–9. Epub

2012/01/10. https://doi.org/10.1007/s10072-011-0926-4 PMID: 22222938.

67. Rajan R, Ahluwalia J, Lal V. Prothrombotic states in migraine. Clinical and applied thrombosis/hemosta-

sis: official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2014;

20(8):851–6. Epub 2013/05/03. https://doi.org/10.1177/1076029613486538 PMID: 23637003.

68. Tietjen GE, Khubchandani J. Vascular biomarkers in migraine. Cephalalgia: an international journal of

headache. 2015; 35(2):95–117. Epub 2014/10/05. https://doi.org/10.1177/0333102414544976 PMID:

25281220.

69. Hare DL. Depression and cardiovascular disease. Current opinion in lipidology. 2021; 32(3):167–74.

Epub 2021/04/17. https://doi.org/10.1097/MOL.0000000000000749 PMID: 33859128.

70. Hare DL, Toukhsati SR, Johansson P, Jaarsma T. Depression and cardiovascular disease: a clinical

review. European heart journal. 2014; 35(21):1365–72. Epub 2013/11/28. https://doi.org/10.1093/

eurheartj/eht462 PMID: 24282187.

71. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. ’Vascular depression’

hypothesis. Archives of general psychiatry. 1997; 54(10):915–22. Epub 1997/10/24. https://doi.org/10.

1001/archpsyc.1997.01830220033006 PMID: 9337771.

72. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking

vascular disease with depression. Molecular psychiatry. 2013; 18(9):963–74. Epub 2013/02/27. https://

doi.org/10.1038/mp.2013.20 PMID: 23439482.

73. Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants asso-

ciated with subjective well-being, depressive symptoms, and neuroticism identified through genome-

wide analyses. Nature genetics. 2016; 48(6):624–33. Epub 2016/04/19. https://doi.org/10.1038/ng.

3552 PMID: 27089181.

74. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, et al. Genome-wide analy-

sis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/

NRSF) target genes. Proceedings of the National Academy of Sciences of the United States of America.

2004; 101(28):10458–63. Epub 2004/07/09. https://doi.org/10.1073/pnas.0401827101 PMID:

15240883.

75. Chong JA, Tapia-Ramı́rez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, et al. REST: a mammalian

silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995; 80(6):949–57.

Epub 1995/03/24. https://doi.org/10.1016/0092-8674(95)90298-8 PMID: 7697725.

76. Schoenherr CJ, Anderson DJ. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of

multiple neuron-specific genes. Science (New York, NY). 1995; 267(5202):1360–3. Epub 1995/03/03.

https://doi.org/10.1126/science.7871435 PMID: 7871435.

77. Chen ZF, Paquette AJ, Anderson DJ. NRSF/REST is required in vivo for repression of multiple neuronal

target genes during embryogenesis. Nature genetics. 1998; 20(2):136–42. Epub 1998/10/15. https://

doi.org/10.1038/2431 PMID: 9771705.

78. Warburton A. The REST/NRSF Pathway as a Central Mechanism in CNS Dysfunction [PhD thesis]:

University of Liverpool; 2015.

79. Otsuki K, Uchida S, Wakabayashi Y, Matsubara T, Hobara T, Funato H, et al. Aberrant REST-mediated

transcriptional regulation in major depressive disorder. Journal of psychiatric research. 2010; 44

(6):378–84. Epub 2009/10/23. https://doi.org/10.1016/j.jpsychires.2009.09.009 PMID: 19846118.

80. Singh-Taylor A, Molet J, Jiang S, Korosi A, Bolton JL, Noam Y, et al. NRSF-dependent epigenetic

mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting

resilience. Molecular psychiatry. 2018; 23(3):648–57. Epub 2017/01/11. https://doi.org/10.1038/mp.

2016.240 PMID: 28070121.

81. Tamási V, Petschner P, Adori C, Kirilly E, Ando RD, Tothfalusi L, et al. Transcriptional evidence for the

role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also

PLOS ONE Polymorphisms behind migraine with and without depression

PLOS ONE | https://doi.org/10.1371/journal.pone.0261477 December 31, 2021 20 / 21

https://doi.org/10.1093/bioinformatics/btv254
http://www.ncbi.nlm.nih.gov/pubmed/26072497
https://doi.org/10.1006/bbrc.2000.3586
http://www.ncbi.nlm.nih.gov/pubmed/11027606
https://doi.org/10.1074/jbc.M110.116384
http://www.ncbi.nlm.nih.gov/pubmed/20576607
https://doi.org/10.1007/s10072-011-0926-4
http://www.ncbi.nlm.nih.gov/pubmed/22222938
https://doi.org/10.1177/1076029613486538
http://www.ncbi.nlm.nih.gov/pubmed/23637003
https://doi.org/10.1177/0333102414544976
http://www.ncbi.nlm.nih.gov/pubmed/25281220
https://doi.org/10.1097/MOL.0000000000000749
http://www.ncbi.nlm.nih.gov/pubmed/33859128
https://doi.org/10.1093/eurheartj/eht462
https://doi.org/10.1093/eurheartj/eht462
http://www.ncbi.nlm.nih.gov/pubmed/24282187
https://doi.org/10.1001/archpsyc.1997.01830220033006
https://doi.org/10.1001/archpsyc.1997.01830220033006
http://www.ncbi.nlm.nih.gov/pubmed/9337771
https://doi.org/10.1038/mp.2013.20
https://doi.org/10.1038/mp.2013.20
http://www.ncbi.nlm.nih.gov/pubmed/23439482
https://doi.org/10.1038/ng.3552
https://doi.org/10.1038/ng.3552
http://www.ncbi.nlm.nih.gov/pubmed/27089181
https://doi.org/10.1073/pnas.0401827101
http://www.ncbi.nlm.nih.gov/pubmed/15240883
https://doi.org/10.1016/0092-8674%2895%2990298-8
http://www.ncbi.nlm.nih.gov/pubmed/7697725
https://doi.org/10.1126/science.7871435
http://www.ncbi.nlm.nih.gov/pubmed/7871435
https://doi.org/10.1038/2431
https://doi.org/10.1038/2431
http://www.ncbi.nlm.nih.gov/pubmed/9771705
https://doi.org/10.1016/j.jpsychires.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19846118
https://doi.org/10.1038/mp.2016.240
https://doi.org/10.1038/mp.2016.240
http://www.ncbi.nlm.nih.gov/pubmed/28070121
https://doi.org/10.1371/journal.pone.0261477


Glutamatergic [corrected]—and insulin-mediated neuronal processes. PloS one. 2014; 9(11):e113662.

Epub 2014/11/26. https://doi.org/10.1371/journal.pone.0113662 PMID: 25423262.

82. Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain.

The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010; 30(13):4806–14.

Epub 2010/04/02. https://doi.org/10.1523/JNEUROSCI.5541-09.2010 PMID: 20357131.

83. Zullo JM, Drake D, Aron L, O’Hern P, Dhamne SC, Davidsohn N, et al. Regulation of lifespan by neural

excitation and REST. Nature. 2019; 574(7778):359–64. Epub 2019/10/18. https://doi.org/10.1038/

s41586-019-1647-8 PMID: 31619788.

84. Meza-Aguilar DG, Boucard AA. Latrophilins updated. Biomolecular concepts. 2014; 5(6):457–78. Epub

2014/11/28. https://doi.org/10.1515/bmc-2014-0032 PMID: 25429599.

85. Woelfle R, D’Aquila AL, Pavlović T, HusićM, Lovejoy DA. Ancient interaction between the teneurin C-

terminal associated peptides (TCAP) and latrophilin ligand-receptor coupling: a role in behavior. Fron-

tiers in neuroscience. 2015; 9:146. Epub 2015/05/13. https://doi.org/10.3389/fnins.2015.00146 PMID:

25964737.

86. Woelfle R, D’Aquila AL, Lovejoy DA. Teneurins, TCAP, and latrophilins: roles in the etiology of mood

disorders. Translational neuroscience. 2016; 7(1):17–23. Epub 2017/01/27. https://doi.org/10.1515/

tnsci-2016-0004 PMID: 28123817.

87. Matsushita H, Lelianova VG, Ushkaryov YA. The latrophilin family: multiply spliced G protein-coupled

receptors with differential tissue distribution. FEBS letters. 1999; 443(3):348–52. Epub 1999/02/20.

https://doi.org/10.1016/s0014-5793(99)00005-8 PMID: 10025961.

88. Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine,

and autism. Annals of the New York Academy of Sciences. 2009; 1151:133–56. Epub 2009/01/22.

https://doi.org/10.1111/j.1749-6632.2008.03572.x PMID: 19154521.

89. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic

migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4.

Cell. 1996; 87(3):543–52. Epub 1996/11/01. https://doi.org/10.1016/s0092-8674(00)81373-2 PMID:

8898206

90. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis

of depression identifies 102 independent variants and highlights the importance of the prefrontal brain

regions. Nature neuroscience. 2019; 22(3):343–52. Epub 2019/02/06. https://doi.org/10.1038/s41593-

018-0326-7 PMID: 30718901.

91. Levey DF, Gelernter J, Polimanti R, Zhou H, Cheng Z, Aslan M, et al. Reproducible Genetic Risk Loci

for Anxiety: Results From*200,000 Participants in the Million Veteran Program. The American journal

of psychiatry. 2020; 177(3):223–32. Epub 2020/01/08. https://doi.org/10.1176/appi.ajp.2019.19030256

PMID: 31906708.

92. Liu W, Li W, Cai X, Yang Z, Li H, Su X, et al. Identification of a functional human-unique 351-bp Alu

insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neu-

ropsychopharmacology: official publication of the American College of Neuropsychopharmacology.

2020; 45(7):1196–206. Epub 2020/03/21. https://doi.org/10.1038/s41386-020-0659-2 PMID:

32193514.

93. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide associ-

ation analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature

genetics. 2018; 50(5):668–81. Epub 2018/04/28. https://doi.org/10.1038/s41588-018-0090-3 PMID:

29700475.
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