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ABSTRACT
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features
of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these
compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100lM. The highest active
derivatives (8a, 8b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8b, and 9a
showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant
EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and
EGFRT790M with IC50 values of 0.099 and 0.123mM, respectively. In addition, it arrested the cell cycle at
pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced
a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to exam-
ine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
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1. Introduction

According to WHO, cancer was the direct cause of 10 million
deaths in 2020 and the cost of cancer treatment globally was
US$1.16 trillion in 20101. Several internal and external factors can
cause cancer. The most well-known factors are hormonal disor-
ders, genetic mutations, radiations, smoking tobacco, metals, pol-
luted food, chemicals, and infectious organisms2–4. Resistance
against anticancer drugs is considered one of the most serious
problems in cancer management5. Due to the high residence of
many cancer types, the discovery of new anticancer agents with
high effect, less resistance, and fewer side effects is an
urgent need.

Protein kinases (PKs) are a group of enzymes that are respon-
sible for the transference of phosphate from ATP molecule to tyro-
sine, serine and/or threonine amino acids in protein substrates6,7.
Furthermore, PKs promote cellular signalling processes such as
cell growth regulation, differentiation, migration, and metabolism8.
PKs have been found to be overexpressed in a variety of human
malignancies9. Accordingly, the inhibition of PKs has emerged as a
selective method for killing cancer cells10. Receptor tyrosine

kinases (RTKs) are vital category protein kinases. About 20 differ-
ent RTKs have been discovered that have similar structures11.

The epidermal growth factor receptor (EGFR) belongs to the
RTKs family that stimulates differentiation and proliferation of cells
after the binding of its specific active ligand12. EGFR structure has
an extracellular part (at the surface of the cells) and an intracellu-
lar part. The activation of the outer part leads to an activation of
the intracellular region of the receptor and a phosphorylation of
the intracellular substrates13. This step facilitates cell growth, syn-
thesis of DNA, and the expression of oncogenes14. It was reported
that EGFR is over-expressed and implicated in the pathogenesis
and progression of various human carcinomas15. In many patients,
resistance against cancer therapy arises from an acquired muta-
tion in the EGFR kinase domain (T790M). Such mutant EGFR is
called EGFRT790M16. Thus, EGFRs (wild and mutant types) are inter-
esting biological targets for the discovery of new anti-
cancer agents17,18.

The ATP binding site of EGFR consists of five regions; an aden-
ine-binding pocket, a sugar region (ribose binding pocket), a
hydrophobic region I, a hydrophobic region II, and a phosphate-
binding region19–21. Most of the reported EGFR inhibitors are ATP-
competitive inhibitor small molecules that have specific moieties
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to occupy the adenine-binding pocket, the hydrophobic region I,
and the hydrophobic region II10 (Figure 1).

EGFR inhibitors have a specific Y-shaped structure23. In add-
ition, the structure of EGFR inhibitors should comprise many
essential pharmacophoric features24. Each feature binds at a spe-
cific region in the ATP binding site. For example, a flat hetero aro-
matic system is an essential feature of EGFR inhibitor to occupy
the adenine binding pocket of the ATP binding site. Such hetero
structure can form hydrogen bonds with some amino acids as
Met769, Thr790, and Thr85425. Also, a terminal hydrophobic head
of the EGFR inhibitor can occupy the hydrophobic region I

forming many hydrophobic interactions24. Finally, a hydrophobic
tail be buried in the hydrophobic region II producing high
affinity19,26.

Till now, three generations of EGFR inhibitors were approved
by the FDA (Figure 2). Erlotinib I27 and gefitinib II28 are examples
of the first generation. The generated mutation in EGFR led to the
acquired drug resistance and reduced efficacy in cancer treat-
ment29. The mutant form of protein (EGFRT790M) resists the affinity
of ATP-competitive inhibitors30. The second-generation of EGFR
inhibitors was approved to overcome the drug resistance that was
induced by EGFRT790M. These inhibitors can form covalent interac-
tions with Cys797 at the ATP binding site31–33. Pelitinib III34 is a
well-known example of this class. Unfortunately, low maximal-tol-
erated-dose, the major drawback of this class, led to poor clinical
outcomes35,36. Osimertinib 537, an example of the third-generation
EGFR inhibitors, exhibited greater activities against mutant form
(EGFRT790M) than the wild form (EGFRWT). Recently, toxic epidermal
necrolysis was reported upon the administration of olmutinib38.
Hence, many efforts are still required to reach more potent and
less toxic EGFR inhibitors.

Pyrido[2,3-d]pyrimidin-4(3H)-one moiety was utilised before for
the synthesis of various anticancer agents39–42, and EGFR inhibi-
tors43. Interestingly it was included in the discovery of highly spe-
cific inhibitors against the mutant EGFRT790M44.

As an extension of our previous efforts in the design and syn-
thesis of new anticancer agents45–51, especially that target
RTKs52,53 and EGFR22 54–58, we used the pyrido[2,3-d]pyrimidin-
4(3H)-one moiety as a building block for the design and synthesis
of new anticancer agents targeting the wild EGFR (EGFRWT) as
well as the mutant EGFR (EGFRT790M).Figure 1. The essential pharmacophoric features of erlotinib as an EGFR inhibitor

occupying three pockets in the ATP binding site based on Reference22.

Figure 2. Some reported EGFR-TK inhibitors and their basic pharmacophoric features.
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1.1. Rationale of molecular design

For years, our team synthesised several EGFR inhibitors which
showed promising anticancer activities. In 2018, a series of 1H-pyr-
azolo[3,4-d]pyrimidine derivatives were synthesised and evaluated
for their inhibitory activities against EGFRWT and EGFRT790M. com-
pound V potently inhibited the two EGFR types with a good
apoptotic effect and arrested the cell cycle at the G2/M phase.
Such compounds comprise two hetero-aromatic rings (1H-pyra-
zolo[3,4-d]pyrimidine) to occupy the adenine binding pocket22.

In 2019, we designed and synthesised a series of thieno[2,3-
d]pyrimidine derivatives as EGFR and HER2 tyrosine kinase inhibi-
tors. Compound VI was the most active member producing signifi-
cant apoptosis. This compound contains two hetero-aromatic
rings (thieno[3,2-d]pyrimidine) to occupy the adenine bind-
ing pocket54.

In 2020, our team designed and synthesised a new series of
pyrimidine-5-carbonitrile derivatives as EGFR inhibitors. Compound
VII showed high inhibitory activities against EGFRWT and
EGFRT790M. In addition, it arrested the cell cycle at the G2/M phase
and induced a significant apoptotic effect in HCT-116, HepG-2,
MCF-7cells. This compound contains one hetero-aromatic ring
(pyrimidine) to occupy the adenine binding pocket55.

In the current work, we used the previously reported active
candidates (V, VI, and VII)22,54,55 as lead compounds in the design
of the new derivatives. The rationale of our molecular design
depended on the modification of such compounds to get new
EGFR inhibitors. The modification was carried out at three features
following the essential features of EGFR inhibitors. Concerning the
terminal hydrophobic head and the hydrophobic tail, different
substituted benzene rings were used to study the SAR of the syn-
thesised compounds. Regarding the flat hetero-aromatic system,
we used three different systems. The first one is pyrido[2,3-d]pyri-
midin-4(3H)-one moiety which comprises two hetero-aromatic
rings (compounds 9a–e). The second one is pyrido[2,3-d][1,2,4]tria-
zolo[4,3-a]pyrimidin-5(1H)-one moiety which composes three het-
eroaromatic rings (compounds 10a–d, 11a–e, and 12a–d). The
third one is 5H-pyrido[20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-
dione moiety which constitutes four hetero-aromatic rings (com-
pounds 8a–d; Figure 3).

2. Results and discussion

2.1. Chemistry

In continuation of the previous work59, the starting precursor 2-
thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one derivatives
7a–e were afforded via the reaction of the appropriate chalcones
6a–e with 6-aminothiouracil 3. The target compounds were syn-
thesised in acceptable yield as reported59. Here in, the structure
of the new 2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one
derivative 7a was proved by elemental and spectral analyses. 1H
NMR spectrum showed two D2O exchangeable singlet signals at d
12.51, 13.23 ppm correspond to the two protons of each NH
groups. Also, a singlet signal was recorded at d 7.97 ppm, corre-
sponding to the proton at C6 of pyridopyrimidine ring. The 13C
NMR spectrum of 7a analogue displayed two characteristic signals
at d 162.29, 175.61 corresponding to carbons of C¼O and C¼S
groups, respectively.

The 5H-pyrido[20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-
dione analogues 8a–d were synthesised through the reaction of
compounds 7b–e with anthranilic acid in the presence of catalytic
amount of sodium ethoxide under reflux condition60. Their chem-
ical structures were confirmed by elemental and spectral data for

example the 1H NMR of compound 8d revealed an increase in the
integration of aromatic region at d 6.76–8.15 ppm, and the pres-
ence of D2O exchangeable singlet signal assigned for one proton
of NH group at d 11.64 ppm. The 13C NMR spectrum showed the
characteristic two signals for the two carbons of C¼O signals at d
161.45 and 169.46 ppm. The mass spectrum for 8d revealed the
expected molecular ion peak at m/z of 520. Finally, IR spectrum of
8 b displayed absorption bands at 1693, 1750 and 3410 cm�1 cor-
responding to two C¼O and one NH groups, respectively.

The 2-hydrazinopyrido[2,3-d]pyrimidin-4(3H)-one derivatives
9a–e were depicted through the nucleophilic attack of hydrazine
hydrate upon the key derivatives 7a–e following the reported
method60. The newly hydrazinyl derivative 9a was proved by
spectral data. The 1H NMR spectrum showed two singlet signals at
d 8.23, 9.12 ppm assigned for three protons of hydrazinyl
group NHNH2.

Cyclo-condensation of the 2-hydrazinyl derivative 9a–e with
ethyl chloroformate in dry pyridine produced pyrido[2,3-
d][1,2,4]triazolo[4,3-a]pyrimidine-3,5-dione derivatives 10a–d. The
IR spectrum of compound 10d revealed the presence of three
absorption bands at 1708, 3437, and 3425 cm�1 assigned for two
carbonyl and two NH groups, respectively. The 1H NMR spectrum
for the same compound showed two D2O exchangeable signals at
d 9.26, 11.07 ppm assigned for two NH groups. Mass spectrum of
compound 10c showed molecular ion peak at m/z of 479 and its
isotope at m/z of 481.

Reaction of hydrazinyl derivatives 9a–e with ammonium thio-
cyanate in glacial acetic acid under reflux afforded 3-aminopyr-
ido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one derivatives
11a–e. The 1H NMR of compound 11a revealed the presence of
two exchangeable singlet signals at 7.09 and 7.33 ppm assigned
for NH and NH2 groups. Mass spectra of compound 11c illustrated
the expected molecular ion peak at m/z of 400.5.

The 3-phenylpyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-
one analogues 12a–e were obtained via the reaction of hydrazinyl
derivatives 9a–e with benzoyl chloride in pyridine under reflux
conditions. Analytical and spectroscopic measurements confirmed
the structures of compounds 12a–d. The IR spectrum of 12b dis-
played two absorption bands at 1720, 3414 cm�1 corresponds to
C¼O and NH groups, respectively. The 1H NMR spectrum of the
same series gave an increase in aromatic integration due to the
presence of an extra phenyl ring. The mass spectrum of 12b
revealed a molecular ion peak at m/z of 459 (Schemes 1 and 2).

2.2. Biological evaluation

2.2.1. In vitro antiproliferative activities
All the final synthesised (19) compounds were tested for their
anticancer activities against four tumour cell lines namely, lung
cancer (A-549), prostate cancer (PC-3), colon cancer (HCT-116), and
breast cancer (MCF-7) using standard MTT method61–63.
Preliminary screening against the cancer cell lines was performed,
using doxorubicin as a reference drug at doses of 100 lM.
Variable results were recorded for the screened compounds as
depicted in Table 1. The pyrido[2,3-d]pyrimidin-4(3H)-one deriva-
tives (8a, 8 b, 8d, and 9a) that exhibited inhibitory activity �70%
were selected for IC50 screening comparing erlotinib.

All compounds were barely active against breast cancer (MCF-
7) cell line at 100 lM (% of inhibition ranging from 5 to 68%
(Table 1). By focussing on the prostatic cell line (PC-3), the anti-
cancer profile of the tested compounds was significantly improved
especially the tetracyclic derivatives 8a (IC50 ¼ 7.98mM) and 8d
(IC50 ¼ 7.12 mM) that exhibited about 1.5 times more active than
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erlotinib (11.05 mM). In addition, compound 9a showed a strong
activity against PC-3 line with an IC50 value of 9.26 mM. For com-
pound 8d, it showed a strong anti-proliferative activity against A-
549 with an IC50 value of 7.23 mM which is comparable to erlotinib
(IC50 ¼ 6.53mM). Compound 8b revealed a moderate inhibitory
activity against PC-3 cell line with an IC50 value of 18.01 mM.
Generally, no cytotoxic activity was observed against the colon
cancer cell line (HCT-116), but compounds 8a, 8b, 8d, 12b
revealed mild cytotoxic activity.

2.2.2. Structural–activity relationship
The synthetic pathway of the target compounds was depicted in
two schemes starting with thioxo-precursors 7a–e to afford tetra-
cyclic derivatives 8a–d, hydrazinyl derivatives 9a–e, and triazolyl
derivatives 10a–d, 11a–e, and 12a–d (Figure 4).

Expansion of pyrido[2,3-d]pyrimidin-4(3H)-one core to give
tetracyclic 5H-pyrido [20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-
dione derivatives 8a–d showed the preferred impact on the eval-
uated anticancer activity. Compounds 8a, b, d exhibited the most

Figure 3. Synthesis of new EGFR inhibitors strategy.
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potent cytotoxic activity against A-549 cell line with IC50 values of
16.2, 16, and 7.23 lM, respectively, and the later was equipotent
to erlotinib (IC50 ¼ 6.53 lM).

Concerning prostate cancer cell line (PC-3), both compounds
8a (IC50 ¼ 7.98lM), and 8d (IC50 ¼ 7.12lM), were two-fold more
potent than the reference molecule (IC50 ¼ 11.05 lM). It was
noticed that the electronic factor greatly influences the anticancer
activity of the same series against lung and prostate cancer cells.
For example, the existence of electron-donating (OCH3) group at
4-position of compounds 8a and 8d was beneficial for activity.
The modification of tetracyclic derivatives 8a (IC50 ¼ 7.98lM) into
hydrazinyl derivatives 9a (IC50 ¼ 9.26 lM) decreased the

anticancer activity against prostate cancer cell line (IC50 ¼
9.26 lM). In addition, the expansion of pyrido[2,3-d]pyrimidin-
4(3H)-one scaffold into triazolyl analogues caused a remarkable
drop in the activity with an inhibition range from 2 to 52%
(Table 2).

2.2.3. EGFRWT kinase inhibitory assay
The promising antiproliferative compounds (8a, 8d, and 9a) were
further examined for their EGFRWT kinase inhibitory activities using
Homogeneous time resolved fluorescence (HTRF) assay64. Erlotinib
was used as a reference molecule (Table 3).

Scheme 1. General procedure for the synthesis of the target compound 7a–e, 8a–d, and 9a–e.
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The tested derivatives 8a, 8d, and 9a showed promising inhibi-
tory activities against EGFRWT with IC50 values of 0.099, 0.419, and
0.594 mM, respectively. compounds 8a showed a good activity
compared to erlotinib (IC50 ¼ 0.043 mM). Whereas compounds 8d
and 9a showed moderate act nlp0m kinase inhibitory assay

To evaluate the potential activity of the synthesised com-
pounds against the mutant form of EGFR, the most active cyto-
toxic compounds (8a, 8d and 9a) were tested for their inhibitory
effect against EGFRT790M. Erlotinib was used as a positive control.

The tested compounds 8a, 8d and 9a showed inhibitory
effects against EGFRT790M with IC50 values of 0.123, 0.290, and
0.571 mM, respectively. Compound 8a exhibited the highest inhibi-
tory effect but less than erlotinib (IC50 ¼ 0.071 mM). While com-
pounds 8d and 9a showed moderate inhibitory activities
(Table 3).

2.2.4. Cell cycle analysis
Based on the above-mentioned biological testing, the most prom-
ising candidate 8a was subjected to flow cytometry analysis to
investigate its effect on the cell cycle distribution in the most sen-
sitive cell line (PC-3). The reported protocol described by Wand
et al.65 was applied in this test. PC-3 cells were incubated with
compound 8a for 24 h in a concentration equal to its IC50 against

such cell line (7.98mM). After that, the different phases of the cell
cycle were analysed.

Compound 8a showed different effects on the cell cycle distri-
bution. Compared to the control cells (Cont. (PC-3)), the cell popu-
lation increased at the phases of pre-G1 and %S by 22 and 1.3
folds, respectively. For the Pre-G1phase, the cell increased from
1.78% (in cont. cells) to 41.06% (at the treated cells). In the S
phase, the cell increased from 41.03% (in cont. cells) to 53.69% (at
the treated cells). On the other hand, the cell population
decreased in both the G0–G1 and the G2-M phases. Such results
obviously reveal that compound 8a can arrest the PC-3 cell line at
pre-G1 of the cell cycle (Figure 5 and Supplementary data).

2.2.5. Annexin V-FITC apoptosis assay
To analyse the apoptotic effect of the most active compound 8a,
Annexin V and PI double staining assay with FITC was applied66.
In this test, PC-3 cells were incubated with compound 8a at a
concentration of 7.98 mM for 24 h. The results were depicted in
(Figure 6 and Supplementary data).

Investigating the results of Annexin V and PI double staining
assay, revealed that compound 8a produced a significant increase
in the early apoptosis ratio from 0.43 to 13.92% (32-fold). Also, it
exerted an increase in the late apoptosis ratio from 0.15 to

Scheme 2. General procedure for the synthesis of the target compound 10a–d, 11a–e and 12a–d.
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22.49% (150-fold). Such findings indicate that compound 8a has a
significant apoptotic effect against PC-3 cells.

2.2.6. Caspase-3 determination
The ability of a drug to induce apoptosis determines the sensitiv-
ity of the cancer cells against it. There are many signalling path-
ways that control apoptosis induction. Caspases family are
considered as one of the most apoptotic regulators67. Activation
of caspases especially (caspase-3) produces cell death68. In add-
ition, it was reported that EGFR inhibitors exhibit significant

Table 1. Percentage of growth inhibition activity of compounds 7a, 8a–d, 9a,
10a–e against A549, PC-3, HCT-116 and MCF-7 at a concentration of 100lM.

Comp.

Growth inhibition (%)

A549 PC-3 HCT-116 MCF-7

7a 14 12 18 34
8a 90 98 84 32
8b 94 96 67 9
8c 8 17 9 21
8d 97 95 78 15
9a 42 90 89 68
10a 17 29 21 41
10b 7 15 14 4
10c 9 52 23 8
10d 2 8 5 5
11a 2 30 9 7
11b 28 43 15 29
11c 26 28 3 23
11d 5 20 3 37
11e 30 22 6 23
12a 41 28 35 45
12b 33 36 56 54
12c 22 30 33 55
12d 4 14 5 15
Doxorubicin 100 100 100 100

Figure 4. SAR according to modifiable moieties in the target compounds.

Table 2. IC50 values of compounds 8a, 8b, 8d, 9a and 12b against A-549, PC-3,
HCT-116 and MCF-7.

Compounds
IC50 (mM)

a

A-549 PC-3 HCT-116 MCF-7

8a 16.2 ± 2.4 7.98 ± 2.4 25.61 ± 1.3 –
8b 10 ± 2.4 18.01 ± 2.3 26 ± 1.3 –
8d 7.23 ± 2.1 7.12 ± 2.0 70.17 ± 2 –
9a – 9.26 ± 2.4 – 42 ± 1.2
12b – – 86.26 ± 2.2 –
Erlotinib 6.53 ± 0.82 11.05 ± 1.07 5.47 ± 0.3 4.21 ± 0.62
aAll IC50 values are calculated as the mean of at least three different
experiments.
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apoptotic effects through the caspase pathway69,70. Here, the
effect of the most active EGFR inhibitor 8a on caspase-3 was
examined in PC-3 cells. Compound 8a was applied on PC-3 cells
at a concentration of 3.04mM for 24 h. The results revealed that
such a compound generated a marked increase in the level of cas-
pase-3 (452.3 pg/mL, 5.3-fold) compared to the control cells
(84.24 pg/mL). In addition, the tested compound showed a com-
parable effect with the reference compound; staurosporine
(413.1 pg/mL; Table 4 and Supplementary data).

2.3. Docking studies

To confirm our rationale of design, the binding modes of the syn-
thesised compounds were investigated against the proposed

targets using a docking approach. The used biological targets in
docking studies were EGFR-TK Wild-type (EGFRWT, PDB: 4HJO)71

and EGFR-TK mutant type (EGFRT790M, PDB: 3W2O)72 using MOE
14.0 software. The co-crystallised ligands were used as reference
molecules. The output of docking studies showed a high affinity
of the synthesised compounds against the two tested targets
compared to the reference molecules (Table 5).

To validate the docking procedures, the co-crystallised ligands
(Erlotinib and TAK-285) were re-docked against EGFRWT and
EGFRT790M, respectively. The RMSD of docked and original ligands
of erlotinib and TAK-285 were 0.88 and 1.05Å, respectively. These
values indicate the validity of the docking protocol (Figures 7
and 8).

The co-crystallised ligand (erlotinib) of EGFRWT showed a bind-
ing energy of �22.12 kcal/mol. The heterocyclic system (quinazo-
line moiety) was buried in the adenine pocket forming a
hydrogen bond with Met769. Also, it formed four hydrophobic
interactions with Lue694, Ala719, and Leu820. The ethynylphenyl
moiety was oriented into the hydrophobic pocket I forming three
hydrophobic interactions with Ala719, Val702, and Lys721. The 2-
methoxyethoxy groups occupied the hydrophobic region II form-
ing a hydrogen bond with Cys773 (Figure 9).

Compound 8a showed a binding mode like that of erlotinib
with a binding energy of �19.29 kcal/mol. The 5H-pyri-
do[20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-dione moiety

Table 3. In vitro enzymatic inhibitory activities against EGFRL858R and EGFR790M.

Comp.
EGFRWT

IC50 (mM)a
EGFRT790M

IC50 (mM)
a

8a 0.099 ± 0.007 0.123 ± 0.010
8d 0.419 ± 0.029 0.290 ± 0.023
9a 0.594 ± 0.042 0.571 ± 0.046
Erlotinib 0.043 ± 0.003 0.071 ± 0.006
aThe results were presented as Mean ± Standard error (SE) of three differ-
ent tests.

Figure 5. PC3distribution upon treatment with compound 8a.

Figure 6. Apoptosis and necrosis percent induced by compound 8a.
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occupied the adenine pocket of the EGFRWT forming one hydro-
gen bond with the crucial amino acid Met769. In addition, it
formed nine hydrophobic interactions with Val702, Leu694, and
Leu820. The tolyl moiety occupied the hydrophobic pocket I form-
ing four hydrophobic interactions with Leu890, Ala719, and
Lys721. Moreover, the 4-chlorophenyl moiety occupied the hydro-
phobic region II forming two hydrophobic interactions with
Val702 and Arg817 (Figure 10).

Compound 8b showed a binding energy of �19.06 kcal/mol.
The 5H-pyrido[20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-dione
moiety was buried in the adenine pocket forming two hydrogen
bonds with acid Met769 and Cys773. In addition, it formed six
hydrophobic interactions with Val702, Leu694, and Leu820. The 4-
methoxyphenyl moiety occupied pocket I forming two hydropho-
bic interactions with val702, and Cys773. Moreover, the 4-chloro-
phenyl moiety occupied the hydrophobic II forming three
hydrophobic interactions with Val721 and Ala719 (Figure 11).

With regard to compound 8d, it showed a binding mode simi-
lar to the refrence molecules with a binding energy of
�21.92 kcal/mol. The 5H-pyrido[20,30:4,5]pyrimido[2,1-b]quinazo-
line-5,7(12H)-dione moiety was involved in two hydrogen bonds
with the amino acids Met769 and Cys773 in the adenine pocket.
In addition, it formed eight hydrophobic interactions with Val702,

Leu694, Gly772, and Leu820. The 3,4,5-trimethoxyphenyl moiety
occupied pocket I forming two hydrophobic interactions with
Ala719 and Leu820. It formed two hydrogen bonds with Thr766
and Thr830. Moreover, the tolyl moiety occupied the hydrophobic
II forming three hydrophobic interactions with Val702, Arg817 and
Cys773 (Figure 12).

Compound 9a showed a binding energy of �15.80 kcal/mol.
The 2-hydrazinylpyrido[2,3-d]pyrimidin-4(3H)-one moiety was
inserted in the adenine pocket forming a hydrogen bond with the
amino acid Met769. Further, it formed five hydrophobic interac-
tions with Val702, Leu694, and Leu820. The 4-chlorophenyl moiety
occupied pocket I forming three hydrophobic interactions with
Leu764, Lys721, and Ala719. Moreover, the 2,4-dichlorophenyl
moiety occupied the hydrophobic II forming five hydrophobic
interactions with Val702, Arg817, Leu694, and Cys773 (Figure 13).

The synthesised compounds showed good binding affinities
against EGFRT790M with binding free energies ranging from �11.59
to �22.39 kcal/mol (Table 5). The co-crystallised ligand (TAK-285)
exhibited a binding energy of �18.70 kcal/mol. The pyrrolo[3,2-
d]pyrimidine moiety was buried in the adenine pocket forming a
hydrogen bond with Met793 and three hydrophobic bonds with
Leu844 and Ala743. The terminal 3-(trifluoromethyl)phenoxy group
occupied the hydrophobic pocket I forming a hydrogen bond
with Lys745. Also, it formed seven hydrophobic interactions with
Lys745, Glu762, Leu788, and Ile759. In addition, the N-ethyl-3-
hydroxy-3-methylbutanamide moiety occupied the hydrophobic
region II forming hydrogen bond with Ser720. The phenyl moiety
formed hydrophobic interactions with Met790, Val726, and Ala743
(Figure 14).

Compound 8c exhibited a binding mode similar to that of
TAK-285 with an affinity value of �19.40 kcal/mol. The 5H-pyri-
do[20,30:4,5]pyrimido[2,1-b]quinazoline-5,7(12H)-dione moiety occu-
pied the adenine pocket of forming five hydrophobic interaction
with Lys745, Glu762, and Leu844. Also, it formed three hydrogen
bonds with Thr854, Met790, and Lys745. The 3,4,5-trimethoxy-
phenyl moiety occupied the hydrophobic pocket I and 4-chloro
phenyl moiety occupied the hydrophobic region II forming three
hydrophobic bonds with Leu718, Leu844, and Leu792 (Figure 15).

Compound 9a exhibited a binding energy of �12.15 kcal/mol.
The 2-hydrazinylpyrido[2,3-d]pyrimidin-4(3H)-one moiety occupied
the adenine pocket of forming four hydrophobic interaction with
Lys745,Glu762, and Thr854. Also, it formed two hydrogen bonds
with Glu762 and Mey766. The 2,4-dichlorophenyl moiety occupied
the hydrophobic pocket I and 4-chloro phenyl moiety occupied
the hydrophobic region II forming six hydrophobic bonds with
Val726, Met793, Ala743, Leu844 and Leu792 (Figure 16).

Compound 10d exhibited a binding energy of �19.86 kcal/mol.
The 1,2-dihydropyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine-3,5-
dione moiety occupied the adenine pocket of forming three
hydrogen bonds with Lys745, and Met790. Also, it formed four
hydrophobic interactions with Lys745, and Met790. The 3,4,5-tri-
methoxyphenyl moiety occupied the hydrophobic pocket I and
tolyl moiety occupied the hydrophobic region II forming three
hydrophobic bonds with Leu718, Leu844 and Leu792 (Figure 17).

Compound 12d exhibited a binding energy of �22.39 kcal/mol.
The pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one moiety
occupied the adenine pocket of forming two hydrogen bonds
with Gln791 and Met793. Also, it formed six hydrophobic interac-
tions withVal726, Leu844, Ala743, and Met793. The 3,4,5-trime-
thoxyphenyl moiety occupied the hydrophobic pocket I and tolyl
moiety occupied the hydrophobic region II forming three hydro-
phobic bonds with Leu788, Ile759 and Lys745 (Figure 18).

Table 4. Effect of compound 8a on active caspase-3 in PC-3 cells after
24 h treatment.

Sample Caspase-3 (pg/mL)a

8a/PC-3 452.3 ± 10.5
Staurosporine/PC-3 413.1 ± 11.66
Cont. (PC-3) 84.24 ± 16.5
aValues are given as mean ± SEM of three independent experiments.

Table 5. The docking binding free energies of the synthesised compounds
against EGFRWT and EGFRT790M.

Comp.

Binding free energy (kcal/mol)

EGFRWT EGFRT790M

7a –16.16 –11.59
7b –16.61 –11.77
7c –19.17 –15.03
7d –21.41 –16.26
7e –22.42 –19.57
8a –19.29 –15.63
8b –19.06 –18.13
8c –21.92 –19.40
8d –21.92 –19.30
9a –15.80 –12.15
9b –16.62 –15.14
9c –19.23 –15.18
9d –21.55 –17.63
9e –22.46 –17.63
10a –17.13 –15.27
10b –19.19 –15.20
10c –21.28 –16.57
10d –22.48 –19.86
11a –17.02 ––14.22
11b –16.92 –15.58
11c –19.28 –15.89
11d –21.60 –17.33
11e –22.32 –19.22
12a –20.96 –18.50
12b –21.02 –20.62
12c –21.67 –21.70
12d –23.46 –22.39
Erlotinib –22.12 –
TAK-285 – –18.70
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3. Conclusion

New nineteen pyrido[2,3-d]pyrimidin-4(3H)-one derivatives have
been designed and synthesised as EGFR inhibitors. These com-
pounds were evaluated for antiproliferative activities against A-
549, PC-3, HCT-116, and MCF-7 cell lines. Compounds 8a, 8 b, 8d,
9a, and 12b exhibited the highest activities. Compound 8a
showed promising activities against A-549, PC-3, and HCT-116 cell
lines with IC50 values of 16.2, 7.98, and 25.61 mM, respectively.
Compounds 8a, 8b, and 9a showed promising inhibitory activities
against EGFRWT with IC50 values of 0.099, 0.419, and 0.594 mM,
respectively. In addition, such derivatives showed good inhibitory
effects against EGFRT790M with IC50 values of 0.123, 0.290, and
0.571 mM, respectively. The most promising candidate 8a induced
a significant apoptotic effect in PC-3 cells and arrested the cell
cycle at the pre-G1 phase. Structure-activity relationship studies
revealed that tetracyclic 5H-pyrido [20,30:4,5]pyrimido[2,1-b]quina-
zoline-5,7(12H)-dione derivatives 8a–d have the preferred impact
on the anticancer activity. In addition, the existence of an elec-
tron-donating (OCH3) group at 4-position of compounds 8a and
8d is beneficial for activity. To give an additional comprehensive

investigation about the mechanism of action of the synthesised
compounds, docking studies were performed against EGFRWT and
EGFRT790M. Docking studies revealed that the synthesised com-
pounds have similar binding modes against the prospective bio-
logical targets. This work introduces compounds 8a as a potential
promising EGFR inhibitor.

4. Experimental

4.1. Chemistry

4.1.1. General
All details of chemicals and different apparatus for analyses were
provided in Supplementary data.

4.1.2. General procedure for synthesis of thioxopyridopyrimidinone
7a–e
A mixture of the appropriate a, b-unsaturated ketones 6a–e
(0.01mol) and 6-amino-2,3-dihydro-2-thioxopyrimidin-4(1H)-one (3)
(1.43 g, 0.01mol) was heated in dry DMF (20ml) under reflux for

Figure 7. (A and B) 3D and 2D superimposition of the docked ligand (erlotinib; pink) and the original ligand (green) with RMSD value of 0.88 Å.
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10–15 h. After cooling, the precipitates were filtered and crystal-
lised from DMF to afford compounds 7a–e. All spectral data of thi-
oxo derivatives 7b–e was reported in our previous work73. Herein,
we described our newly synthesised thioxo precursor 7a.

4.1.2.1. 7–(4-Chlorophenyl)-5–(2,4-dichlorophenyl)-2-thioxo-2,3-
dihydropyrido [2,3-d]pyrimidin-4(1H)-one (7a). Yield (50%); m.p.

318–320 �C. IR (KBr) (cm�1): 3387 (NH), 1701 (C¼O); 1HNMR
(400MHz, DMSO-d6) d (ppm): 7.40–7.76(m, 5H, Ar-H), 7.97 (s, 1H,
pyridine-H6), 8.26 (d, J¼ 8Hz, 2H, chlorophenyl-H2,H6), 12.50 (brs,
1H, NH, D2O exchangeable); 13.23 (brs, 1H, NH, D2O exchange-
able); 13CNMR (DMSO-d6) d (ppm): 108.8, 118.5, 126.5, 127.7,
128.7, 129.1, 130.1, 132.4, 133.1, 134.7, 136.7, 149.3, 152.4, 158.3,
158.6, 162.2, 175.6; MS (m/z) 434; Anal. Calc. for: (C19H10Cl3N3OS):
C, 52.50; H, 2.32; N, 9.67; Found: C, 52.57; H, 2.36; N, 9.73%.

Figure 8. (A and B) 3D and 2D superimposition of the docked ligand of mutant EGFR (TAK-285; Pink) and the original ligand (green) with RMSD value of 1.06 Å.
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4.1.3. General procedure for synthesis of 2,4-diaryl-5Hpyrido
[2’,3’:4,5] pyrimido[2,1-b]quinazoline-5,7(12H)-dione(8a–d)
A mixture of 2-thioxopyrido[2,3-d]pyrimidine derivatives 7a–e
(0.01mol) and anthranilic acid (1.37 g, 0.01mol) was heated under
reflux for 20 h in the presence of 2% sodium ethoxide (20ml) The
reaction mixture was cooled, poured into ice cold water and acidi-
fied by diluted hydrochloric acid. The formed precipitate was fil-
tered, washed several times with water, dried and washed with
hot ethanol to give the compounds 8a–d.

4.1.3.1. 2–(4-Chlorophenyl)-4-(p-tolyl)-5H-pyrido[2’,3’:4,5]pyrimido
[2,1-b] quinazoline-5,7(12H)-dione (8a). Yield (68%); m.p. >300 �C.
IR(KBr) (cm�1): 3479 (NH), 1750 (C¼O), 1685 (C¼O); 1HNMR
(400MHz, DMSO-d6) d (ppm): 2.36 (s, 3H, CH3), 6.45 (m, 1H, Ar-H),
6.66 (d, J¼ 8.4 Hz, 2H, Ar-H), 7.10 (t, J¼ 8Hz, 1H, Ar-H), 7.20 (d,
J¼ 8Hz, 2H, Ar-H), 7.31(d, J¼ 8Hz, 2H, Ar-H), 7.50 (s, 1H,

C6-pyridine), 7.56 (d, J¼ 8.4 Hz, 2H, Ar-H), 8.42 (d, J¼ 8.4 Hz, 2H,
Ar-H), 11.19 (brs, 1H, NH, D2O exchangeable); 13CNMR (DMSO-d6)
d (ppm): 21.3, 106.3, 114.5, 116.1, 118.4, 127.7, 128.6, 129.0, 129.3,
129.36, 129.6, 131.8, 132.6, 135.5, 136.0, 136.2, 137.4, 150.1, 153.6,
154.2, 157.9, 169.7, 169.8; MS (m/z): 466 (Mþ 2), 464 (Mþ); Anal.
Calc. for: (C27H17ClN4O2): C, 69.75; H, 3.69; N, 12.05; % Found: C,
69.82; H, 3.74; N, 12.11%.

4.1.3.2. 4–(4-Methoxyphenyl)-2-(p-tolyl)-5H-pyrido[2’,3’:4,5]
pyrimido[2,1-b] quinazoline-5,7(12H)-dione (8b). Yield (52%); m.p.
>300 �C. IR (KBr) (cm�1): 3410 (NH), 1693 (C¼O), 1750 (C¼O);
1HNMR (400MHz, DMSO-d6) d (ppm): 2.36 (s, 3H, CH3), 3.79 (s, 3H,
OCH3), 6.92–6.95 (m, 2H, Ar-H), 7.29–7.44 (m, 6H, Ar-H), 7.49 (s, 1H,
C-6 pyridine), 8.07–8.10 (m, 4H, Ar-H), 11.11 (brs, 1H, NH, D2O
exchangeable); 13CNMR (DMSO-d6) d (ppm): 21.3, 55.6, 106.3,
114.5, 116.2, 118.7, 127.3, 128.1, 129.3, 129.3, 129.6, 131.4, 132.2,

Figure 9. Erlotinib docked into the active site of EGFRWT.
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135.4, 136.8, 136.2, 137.8, 150.2, 153.7, 154.8, 154.5, 157.6, 169.7,
169.8; MS (m/z): 460; Anal. Calc, for: (C28H20N4O3); C, 73.03; H, 4.38;
N, 12.17%; Found: C, 73.07; H, 4.44; N, 12.23%.

4.1.3.3. 2–(4-Chlorophenyl)-4–(3,4,5-trimethoxyphenyl)-5H-pyrido
[2’,3’:4,5] pyrimido[2,1-b]quinazoline-5,7(12H)-dione (8c). Yield
(87%); m. p. <300 �C. IR (KBr) (cm�1): 3468 (NH), 1708 (C¼O);
1HNMR (400MHz, DMSO-d6) d (ppm): 3.74 (s, 3H, OCH3), 3.80 (s,
6H, 2OCH3), 6.51 (t, 1H, Ar-H,), 6.74 (d, J¼ 8Hz, 2H, Ar-H), 7.23 (m,
1H, Ar-H,), 7.62–7.68 (m, 2H, Ar-H,), 7.76 (s, 1H, C-pyridine), 8.32 (d,
J¼ 8Hz, 4H, Ar-H), 11.24 (brs, 1H, NH, D2O exchangeable); 13CNMR
(DMSO-d6) d (ppm): 56.6, 60.6, 106.3, 106.7, 109.0, 115.0, 119.6,
126.9, 129.3, 129.6, 129.9, 130.4, 131.5, 133.9, 134.2, 135.6, 137.9,

150.5, 152.5, 153.4, 157.8, 159.1, 161.4, 170.6; MS (m/z): 542
(Mþ 2), 540 (Mþ); Anal. Calc. for: (C29H21ClN4O5): C, 64.39; H, 3.91;
N, 10.36%; Found: C, 64.44; H, 3.95; N, 10.41%.

4.1.3.4. 2-(p-Tolyl)-4–(3,4,5-trimethoxyphenyl)-5H-pyrido[2’,3’:4,5]
pyrimido[2,1-b]quinazoline-5,7(12H)-dione (8d). Yield (57%); m.p.
>300 �C. IR (KBr) (cm�1): 3421 (NH), 1697(C¼O); 1HNMR (400MHz,
DMSO-d6) d (ppm): 2.39 (s, 3H, CH3), 3.74 (s, 3H, OCH3), 3.80 (s,
6H, 2OCH3), 6.75 (s, 2H, Ar-H), 7.21–6.76 (m, 2H, Ar-H,), 7.35 (d,
J¼ 8Hz, 2H, Ar-H), 7.46 (s, 1H, C6-pyridine), 7.57 (m, 2H, Ar-H),
7.99 (d, J¼ 8Hz, 1H, Ar-H), 8.14 (d, J¼ 8Hz, 1H, Ar-H), 11.65 (brs,
1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) d (ppm): 21.6,
56.2, 60.2, 106.0, 106.3, 106.7, 118.0, 127.9, 128.6, 129.3, 129.3,

Figure 10. Compound 8a docked into the active site of EGFRWT.
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129.6, 129.9, 134.2, 134.6, 136.5, 137.9, 140.9, 144.2, 150.1, 152.2,
153.4, 154.1, 159.1, 161.4, 169.4; MS (m/z): 520; Anal. Calc. for:
(C30H24N4O5); C, 69.22; H, 4.65; N, 10.76%; Found: C, 69.25; H, 4.71;
N, 10.82%.

4.1.4. General procedure for synthesis of 2-Hydrazinyl -5,7-diary-
lpyrido[2,3-d]pyrimidin-4(3H)-one (9a–e)
A mixture of 2-thioxopyrido[2,3-d]pyrimidine derivatives 7a–e
(0.004mol) and hydrazine hydrate (99%, 3ml, 0.006mol,) was
heated under reflux in absolute ethanol (20ml) for 10–15 h. After
cooling, the precipitate was filtered and washed with hot ethanol
to give compounds 9a–e. All spectral data of hydrazino deriva-
tives 9b–e was reported in our previous work73. Herein we
described our newly synthesised hydrazine precursor 9a.

4.1.4.1. 7-(4-Chlorophenyl)-5–(2,4-dichlorophenyl)-2-hydrazineyl-
pyrido[2,3-d]pyrimidin-4(3H)-one 9a. Yield (45%); m.p. 265–267 �C.

IR (KBr) (cm�1): 3398, 3367 (NH) and (NH2), 1685 (C¼O); 1H NMR
(400MHz, DMSO-d6) d (ppm): 7.59 (d, J¼ 8Hz, 2H, Ar-H), 7.61–7.62
(m, 3H, Ar-H), 8.09 (s, 1H, H6-pyridine), 8.23 (brs, 2H, NH2, D2O
exchangeable), 8.47 (d, J¼ 8Hz, 2H, Ar-H), 9.18 (brs, 1H, NH, D2O
exchangeable), 12.83, (brs, 1H, NH, D2O exchangeable); 13C NMR
(DMSO-d6) d (ppm): 106.5, 112.8, 120.3, 124.7, 129.0, 129.2, 130.1,
131.6, 132.9, 136.14, 136.19, 144.7, 147.8, 148.6, 157.9, 160.1,
174.6; MS (m/z): 438 (Mþ 6), 436 (Mþ 4), 434 (Mþ 2), 432 (Mþ).
Anal. Calc. for: (C19H12Cl3N5O): C, 52.74; H, 2.80; N, 16.19%; Found:
C, 52.78; H, 2.86; N, 16.25.

4.1.5. General procedure for synthesis of 6.8-diaryl-pyrido[2,3-d][1,
2, 4]triazolo[4,3-a]pyrimidine-3,5-dione (10a–d)
A mixture of 2-hydrazinylpyrido[2,3-d]pyrimidine 9 b–e (1mmol)
and ethyl chloroformate (0.22 g, 2mmol) in dry pyridine (10ml)
was heated under reflux for 9 h60. The reaction mixture was
cooled and the obtained solid was filtered, washed with ethanol,
dried, and crystallised from DMF: EtOH (1:2).

Figure 11. Compound 8b docked into the active site of EGFRWT.
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4.1.5.1. 8-(4-Chlorophenyl)-6-(p-tolyl)-1,2-dihydropyrido[2,3-d][1, 2,
4]triazolo[4,3-a]pyrimidine-3,5-dione (10a). Yield (80%); m.p.
347–349 �C. IR (KBr) (cm�1): 3383 (NH), 1685 (C¼O), 1647 (C¼O);
1HNMR (400MHz, DMSO-d6) d (ppm): 2.37 (s, 3H, CH3), 7.24–7.26
(m, 3H, Ar-H), 7.37 (d, J¼ 8Hz, 1H, Ar-H), 7.48–7.62 (m, 4H, 2Ar-
Hþ 2NH, D2O exchangeable), 7.92 (s, 1H, C-6pyridine,), 8.48 (d,
J¼ 8Hz, 1H, Ar-H), 8.67 (d, J¼ 8Hz, 1H, Ar-H); 13C NMR (DMSO-d6)
d (ppm): 21.2, 108.6, 121.5, 128.1, 128.8, 129.4, 129.8, 134.5, 134.8,
135.7, 137.8, 145.7, 147.4, 148.0, 155.7, 159.4, 169.9; MS (m/z): 405
(Mþ 2), 403 (Mþ); Anal. Calc. for: (C21H14ClN5O2): C, 62.46; H, 3.49;
N, 17.34%; Found: C, 62.54; H, 3.55; N, 17.40%.

4.1.5.2. 6-(4-Methoxyphenyl)-8-(p-tolyl)-1,2-dihydropyrido[2,3-d][1,
2, 4]triazolo[4,3-a]pyrimidine-3,5-dione (10b). Yield (54%); m.p.

366–368 �C. IR(KBr) (cm�1): 3398 (NH), 3375 (NH), 1697 (C¼O),
1654 (C¼O); 1HNMR (400MHz, DMSO-d6) d (ppm): 2.38 (s, 3H,
CH3), 3.83 (s, 3H, OCH3), 6.96 (d, J¼ 8Hz, 2H, Ar-H), 7.32–7.40 (m,
5H, Ar-H), 7.79 (s, 1H, C6-pyridine), 8.06 (brs, 2H, 2NH, D2O
exchangeable), 8.57 (d, J¼ 8Hz, 1H, Ar-H); MS (m/z): 399; Anal.
Calc. for: (C22H17N5O3): C, 66.16; H, 4.29; N, 17.53%; Found: C;
66.24, H, 4.35; N, 17.60%.

4.1.5.3. 8-(4-Chlorophenyl)-6–(3,4,5-trimethoxyphenyl)-1,2-dihydro-
pyrido[2,3-d][1, 2, 4]triazolo[4,3-a]pyrimidine-3,5-dione (10c). Yield
(67%); m.p. 367–369 �C. IR(KBr) (cm�1): 3160 (2NH), 1759,
1697(2 C¼O) 1HNMR (400MHz, DMSO-d6) d (ppm): 3.73 (s, 3H,
OCH3), 3.78 (s, 6H, 2OCH3), 6.79 (s, 2H, Ar-H), 7.53–7.61 (m, 2H, Ar-
H), 7.89 (s, 1H, C6-pyridine), 8.22–8.77 (m, 2H, Ar-H), 9.46 (s, 2H,

Figure 12. Compound 8d docked into the active site of EGFRWT.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 1067



2NH, D2O exchangeable); 13C NMR (DMSO-d6) d (ppm); 56.1, 59.7,
105.7, 106.8, 116.4, 117.5, 119.1, 128.0, 129.6, 137.7, 140.5, 148.8,
149.4, 152.3, 155.8, 158.4, 161.9, 169.6; MS (m/z): 481 (Mþ 2), 479
(Mþ). Anal. Calc. for: (C23H18ClN5O5): C, 57.57; H, 3.78; N, 14.59%;
Found: C; 57.64, H, 3.85; N, 14.64%.

4.1.5.4. 8-(p-Tolyl)-6–(3,4,5-trimethoxyphenyl)-1,2-dihydropyr-
ido[2,3-d][1, 2, 4]triazolo [4,3-a]pyrimidine-3,5-dione (10d). Yield
(54%); m.p. 391–393 �C. IR (KBr) (cm�1): 3494 (NH), 3383 (NH),
1685 (C¼O), 1660 (C¼O); 1HNMR (400MHz, DMSO-d6) d (ppm):
2.37 (s, 3H, CH3), 3.73 (s, 6H, 2 OCH3), 6.73 (s, 2H, Ar-H), 7.34–7.45
(m, 2H, Ar-H), 7.95 (s, 1H, C6-pyridine), 8.07–8.11 (m, 2H, Ar-H),
9.26 (s, 1H, NH, D2O exchangeable), 11.07 (s, 1H, NH, D2O
exchangeable); MS (m/z): 459. Anal. Calc. for: (C24H21N5O5): C,
62.74; H, 4.61; N, 15.24%; Found: C; 62.81, H, 4.67; N, 15.31%.

4.1.6. General procedure for 3-amino-6,8-diaryl-2,3-dihydropyr-
ido[2,3-d][1, 2, 4]triazolo[4,3-a]pyrimidin-5(1H)-one 11(a–e)
A mixture of 2-hydrazinylpyrido[2,3-d]pyrimidines 9a–e (0.002mol)
and ammonium thiocyanate (2.38 g, 0.3mol) in glacial acetic acid
(15ml) was heated under reflux for 10 h. The reaction mixture was
cooled, poured onto iced water and the precipitate was filtered,
dried and washed with hot ethanol60.

4.1.6.1. 3-Amino-8–(4-chlorophenyl)-6–(2,4-dichlorophenyl)-10,10a-
dihydropyrido [2,3-d][1, 2, 4]triazolo[4,3-a]pyrimidin-5(1H)-one
(11a). Yield (33%); m.p. 381–383 �C. IR (KBr) (cm�1): 3421, 3356
(NH, NH2), 1681 (C¼O); 1HNMR (400MHz, DMSO-d6) d (ppm): 7.09
(brs, 1H, NH, D2O exchangeable), 7.33 (brs, 2H, NH2, D2O
exchangeable), 7.52–7.63 (m, 3H, Ar-H), 7.70 (d, J¼ 8Hz, 1H, Ar-H),
7.85 (s, 1H, C6-pyridine), 8.04 (s, 1H, Ar-H), 8.28 (d, J¼ 12Hz, 2H,

Figure 13. Compound 9a docked into the active site of EGFRWT.

1068 H. S. A. ELZAHABI ET AL.



Ar-H); 13C NMR (DMSO-d6) d (ppm): 119.5, 127.4, 128.4, 129.1,
129.8, 131.0, 132.1, 132.4, 134.4, 134.7, 136.4, 136.7, 138.0, 141.1,
147.6, 148.5, 154.5, 167.2; MS (m/z): 463 (Mþ 6), 461 (Mþ 4), 459
(Mþ 2), 457 (Mþ). Anal. Calc. for: (C20H11Cl3N6O): C, 52.48; H, 2.42;
N, 18.36%; Found: C, 52.55; H, 2.47; N, 18.42%.

4.1.6.2. 3-Amino-8–(4-chlorophenyl)-6-(p-tolyl)-2,3-dihydropyr-
ido[2,3-d][1, 2, 4] triazolo[4,3-a]pyrimidin-5(1H)-one (11b). Yield
(33%); m.p. 383–385 �C. IR (KBr) (cm�1): 3422, 3394 (NH, NH2),
1697 (C¼O); 1HNMR (400MHz, DMSO-d6) d (ppm): 2.34 (s, 3H,
CH3), 7.16–7.22 (m, 2H, Ar-H), 7.33 (d, J¼ 8Hz, 2H, Ar-H), 7.53–7.62
(d, J¼ 8Hz, 2H), 7.88 (s, 1H, C-6pyridine), 8.28 (d, J¼ 8Hz, 2H),
11.66 (brs, 1H, NH, D2O exchangeable), 11.65, (brs, 2H, NH2, D2O
exchangeable); 13C NMR (DMSO-d6) d (ppm): 20.6, 106.5, 109.3,

119.7, 122.7, 127.1, 128.3, 129.4, 134.7, 135.5, 137.4, 145.8, 147.3,
150.2, 153.7, 155.6, 167.4; MS (m/z): 404 (Mþ 2), 402 (Mþ); Anal.
Calc. for: (C21H15ClN6O); C, 62.61; H, 3.75; N, 20.86%; Found: C,
62.66; H, 3.84; N, 20.91%.

4.1.6.3. 3-Amino-6–(4-methoxyphenyl)-8-(p-tolyl)-2,3-dihydropyr-
ido[2,3-d][1, 2, 4] triazolo[4,3-a]pyrimidin-5(1H)-one (11c). Yield
(47%); m.p. 381–383 �C. IR (KBr) (cm�1): 3425, 4332 (NH, NH2),
1697 (C¼O);1H NMR (400MHz, DMSO-d6) d (ppm): 2.35 (s, 3H,
CH3), 3.81 (s, 3H, OCH3), 6.91–6.96 (m, 2H, Ar-H), 7.31–7.40 (m, 4H,
Ar-H), 7.81 (s, 1H, C6-pyridine), 8.14 (d, J¼ 8Hz, 2H, Ar-H), 11.11
(brs, 2H, NH2, D2O exchangeable), 11.57 (brs, 1H, NH, D2O
exchangeable); 13C NMR (DMSO-d6) d (ppm): 21.2, 54.7, 112.8,
127.7, 129.4, 130.1, 133.4, 139.7, 140.7, 145.4, 145.7, 149.6, 150.0,

Figure 14. Co-crystallised ligand (TAK-285) docked into the active site of EGFRT790M.
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153.3, 153.6, 159.3, 162.6, 167.9; MS (m/z): 398. Anal. Calc. for:
(C22H18N6O2): C, 66.32; H, 4.55; N, 21.09%; Found: C; 66.36, H, 4.60;
N, 21.14%.

4.1.6.4. 3-Amino-8–(4-chlorophenyl)-6–(3,4,5-trimethoxyphenyl)
-2,3dihydropyrido[2,3-d][1, 2, 4]triazolo[4,3-a] pyrimidin-5(1H)-
one(11d). Yield (85%); m.p. 365–367 �C. IR (KBr) (cm�1): 3437, 3425
(NH, NH2), 1708 (C¼O); 1H NMR (400MHz, DMSO-d6) d (ppm): 3.71
(s, 3H, OCH3), 3.78 (s, 6H, 2OCH3), 7.17 (s, 2H, Ar-H), 7.61–8 (m, 3H,
Ar-HþC6-pyridine), 8.23–8.31 (m, 2H, Ar-H), 11.18 (brs, 2H, NH2,
D2O exchangeable), 11.71 (brs, 1H, NH, D2O exchangeable); 13C
NMR (DMSO-d6) d (ppm): 56.0, 60.0, 106.4, 106.2, 128.8, 129.1,
129.4, 129.8, 134.1, 135.7, 140.7, 150.0, 151.7, 152.9, 153.6, 157.3,

160.9, 167.3; MS (m/z): 480 (M þ 2), 478 (Mþ) Anal. Calc. for:
(C23H19ClN6O4); C, 57.69; H, 4.00; N, 17.55%; Found: C, 57.74; H,
4.07; N, 17.59%.

4.1.6.5. 3-Amino-8-(p-Tolyl)-6–(3,4,5-trimethoxyphenyl)-2,3-dihy-
dropyrido[2,3-d][1, 2, 4]triazolo[4,3-a]pyrimidin-5(1H)-one (11e).
Yield (85%); m.p. 358–360 �C. IR (KBr) (cm�1): 3433, 3367 (NH,
NH2), 1701 (C¼O) 1H NMR (400MHz, DMSO-d6) d (ppm): 2.37 (s,
3H, CH3), 3.77 (s, 3H, OCH3), 3.78 (s, 6H, 2OCH3), 6.73–6.78 (m, 2H,
Ar-H), 7.32–7.39 (m, 2H, Ar-H), 7.92 (s, 1H, C6-pyridine,), 8.19 (d,
J¼ 8Hz, 2H, Ar-H), 11.15 (brs, 2H, NH2, D2O exchangeable), 11.61
(s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6) d (ppm): 20.5,
55.7, 59.7, 106.5, 107.9, 114.8, 117.5, 127.5, 129.4, 134.1, 137.1,

Figure 15. Binding of compound 8c with EGFRT790M.
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140.1, 150.0, 152.0, 153.4, 153.7, 158.6, 161.3, 167.7; MS (m/z): 458;
Anal. Calc. for: (C24H22N6O4); C, 62.87; H, 4.84; N, 18.33%; Found: C,
62.94; H, 4.91; N, 18.39%.

4.1.6.6. 3-Phenyl-6,8-disubistitutedphenylpyrido[2,3-d][1, 2, 4]tria-
zolo[4,3-a]pyrimidin-5(1H)-one (12a–e). To a solution of hydrazine
derivative 9b–e (0.001mol) in dry pyridine (20ml) benzoyl chloride
was added (0.001mol), and the resulting mixture was heated
under reflux for 10–15 h. After cooling, the formed precipitate was
filtered washed with hot ethanol to afford 12a–d, respectively.

4.1.6.7. 8–(4-Chlorophenyl)-3-phenyl-6-(p-tolyl)pyrido[2,3-d][1, 2,
4]triazolo[4,3-a]pyrimidin-5(1H)-one (12a). Yield (67%); m.p.

315–317 �C. IR(KBr) (cm�1): 3414(NH) 1750 (C¼O); 1H NMR
(400MHz, DMSO-d6) d (ppm): 2.40 (s, 3H, CH3), 7.27–8.30 (m, 14H,
Ar-H), 11.21(brs, 1H, NH, D2O exchangeable); 13C NMR (DMSO-d6)
d (ppm): 21.3, 106.3, 118.0, 128.2, 128.2, 128.6, 129.3, 135.5, 136.6,
136.9, 138.5, 142.2, 150.8, 151.5, 153.8, 154.1, 155.2, 158.1, 162.8,
166,1, 188.4; MS m/z (%): 465(M þ 2), 463 (Mþ); Anal. Calc. for:
(C27H18ClN5O); C, 69.90; H, 3.91; N, 15.10%; Found: C, 69.97; H,
3.98; N, 15.14%.

4.1.6.8. 6-(4-Methoxyphenyl)-3-phenyl-8-(p-tolyl)pyrido[2,3-d][1, 2,
4]triazolo[4,3-a]pyrimidin-5(1H)-one (12b). Yield (33%); m.p.
325–327 �C. IR (KBr) (cm�1): 3414, NH, 1720 (C¼O);1H NMR
(400MHz, DMSO-d6) d (ppm); 2.39 (s, 3H, CH3), 3.85 (s, 3H, OCH3),

Figure 16. Binding of compound 9a with EGFRT790M.
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7.03–8.32 (m, 15H 14Ar-HþNH- D2O exchangeable); 13C NMR
(DMSO-d6) d (ppm): 21.6, 55.5, 113.2, 127.1, 127.6, 128.5, 129.0,
129.5, 129.8, 129.9, 130.3, 130.9, 131.5, 132.7, 135.4, 143.6, 145.2,
150.4, 154.6, 158.4, 160.3, 170.6; MS (m/z): 459; Anal. Calc. for:
(C28H21N5O2); C, 73.19; H, 4.61; N, 15.24%; Found: C, 73.25; H, 4.66;
N, 15.27%.

4.1.6.9. 8-(4-Chlorophenyl)-3-phenyl-6–(3,4,5-trimethoxyphenyl)pyr-
ido[2,3-d][1, 2, 4]triazolo[4,3-a]pyrimidin-5(1H)-one (12c). Yield
(33%); m.p. 313–315 �C. IR (KBr) (cm�1): 3417 (NH), 1693 (C¼O); 1H
NMR (400MHz, DMSO-d6) d (ppm): 3.7 (s, 3H, OCH3), 3.8 (s, 6H,
2OCH3), 7.47–59 (m, 3H, Ar-H), 7.59–7.63 (m, 4H, Ar-H), 7.93–8.06
(m, 3H, 2Ar-Hþ 1NH-D2O exchangeable), 8.55–8.59 (m, 1H, C6-
pyridine), 8.91–8.92 (m, 2H, Ar-H); 13CNMR (DMSO-d6) d (ppm):
55.6, 59.6, 113.3, 123.9, 127.2, 128.9, 129.3, 129.5, 129.7, 129.8,

129.9, 130.3, 130.9, 132.6, 143.3, 146.5, 152.7, 160.2, 169.2; MS (m/
z): 541(M þ 2), 539 (Mþ); Anal. Calc. for: (C29H22ClN5O4): C, 64.51;
H, 4.11; N, 12.97%; Found: C, 64.57; H, 4.16; N, 13.03%.

4.1.6.10. 3-Phenyl-8-(p-tolyl)-6–(3,4,5-trimethoxyphenyl)pyrido[2,3-
d][1, 2, 4]triazolo [4,3-a]pyrimidin-5(1H)-one(12d). Yield (33%);
m.p. 322–324 �C. IR (KBr) (cm�1): 3464 (NH), 1701 (C¼O); 1H NMR
(400MHz, DMSO-d6) d (ppm): 2.37 (s, 3H, CH3), 3.75 (s, 3H, OCH3),
3.9 (s, 6H, 2OCH3), 6.76–7.07 (m, 2H, Ar-H), 7.09–7.87 (m, 8H, Ar-H),
8.10–8.22 (m, 2H, Ar-H), 11.16 (brs, 1H, NH, D2O exchangeable);
13C NMR (DMSO-d6) d (ppm): 20.8, 56.1, 60.1, 105.5, 106.5, 107.9,
108.9, 117.5, 118.8, 120.4, 127.4, 128.4, 129.1, 130.5, 132.3, 133.8,
134.4, 137.1, 140.1, 150.0, 151.7, 153.3, 158.6,162.6; MS (m/z): 519;
Anal. Calc. for: (C30H25N5O4); C, 69.35; H, 4.85; N, 13.48%; Found: C,
69.41; H, 4.91; N, 13.52%.

Figure 17. Binding of compound 10d with EGFRT790M.
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4.2. Biological evaluation

4.2.1. In vitro cytotoxic activity
In vitro cytotoxicity was carried out using MTT assay protocol63 as
described in Supplementary data.

4.2.2. In vitro EGFR kinase assay
In vitro EGFR inhibitory activity was assessed using Homogeneous
time-resolved fluorescence (HTRF) assay64 as described in
Supplementary data.

4.2.3. Cell cycle analysis
The effect of compound 8a on cell cycle distribution was per-
formed using propidium iodide (PI) staining technique as
described in Supplementary data65,74,75.

4.2.4. Apoptosis analysis
The effect of compound 8a on cell apoptosis was investigated as
described in Supplementary data76–78.

4.3. Docking studies

Molecular docking studies of the synthesised compounds were
carried out against EGFRWT (PDB ID: 4HJO, resolution 2.75Å and
EGFRT790M (PDB ID: 3W2O, resolution 2.35Å) as described in
Supplementary data22.
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