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Abstract: New magnetic metal complexes with organic radical ligands, [M(hfac)2(PyBTM)2] (M = NiII,
CoII; hfac = hexafluoroacetylacetonato, PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl
radical), were prepared and their crystal structures, magnetic properties, and electronic structures
were investigated. Metal ions in [M(hfac)2(PyBTM)2] constructed distorted octahedral coordination
geometry, where the two PyBTM molecules ligated in the trans configuration. Magnetic investigation
using a SQUID magnetometer revealed that χT increased with decreasing temperature from 300 K in
the two complexes, indicating an efficient intramolecular ferromagnetic exchange interaction taking
place between the spins on PyBTM and M with J/kB of 21.8 K and 11.8 K for [NiII(hfac)2(PyBTM)2] and
[CoII(hfac)2(PyBTM)2]. The intramolecular ferromagnetic couplings in the two complexes could be
explained by density functional theory calculations, and would be attributed to a nearly orthogonal
relationship between the spin orbitals on PyBTM and the metal ions. These results demonstrate that
pyridyl-containing triarylmethyl radicals are key building blocks for magnetic molecular materials
with controllable/predictable magnetic interactions.

Keywords: ferromagnetic interaction; radical; heterospin

1. Introduction

Molecular materials with magnetic functions have been focused on as promising com-
ponents for future molecule-based devices. This is mainly due to their good tunability in
their physical properties by molecular design. Among the molecule-based magnetic mate-
rials developed to date, the coupling of magnetic metal ions and open-shell organic radical
ligands has resulted in a variety of unprecedented materials such as a one-dimensional
chain magnet with slow magnetic relaxation, light-responsive breathing crystals, and
high-temperature molecular magnets [1–3]. In these materials, precise control of magnetic
interactions between the radical and metals is the crucial factor for achieving desired
functions. In general, a radical–metal magnetic interaction is interpreted by overlapping
and orthogonality of spin orbitals on the radical and metal ion; the former and the latter
result in antiferromagnetic (AFM) and ferromagnetic (FM) interactions, respectively [4,5].
In radical-coordinated metal complexes, coordination geometry around the metal center
predominantly affects the strength (J, an exchange coupling constant) and sign (FM or
AFM) of through-bond radical–metal interaction.

Polychlorinated triarylmethyl (PTM) radicals are an important class of stable organic
radicals possessing an unpaired electron with S = 1/2 [6]. PTM radicals bearing metal-
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binding sites such as carboxylato and sulfonato moieties have been utilized to prepare
magnetic molecular materials using a metal–radical heterospin strategy [7,8]. For example,
efficient AFM interactions mediated through the carboxylato groups were elucidated
between carboxylato-functionalized PTM, PTMMC, and CuII with a JR-Cu/kB value of
−23.1 K [9].

We have recently prepared a series of PTM radicals, PyBTM, bisPyTM, trisPyM,
(PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical, bisPyTM =
bis(3,5-dichloro-4-pyridyl)(2,4,6-trichlorophenyl)methyl radical, trisPyM = tris(3,5-dichloro-
4-pyridyl)methyl radical), possessing one, two, and three pyridyl groups in the triaryl-
methyl skeleton (Figure 1) [10–12]. Importantly, the pyridyl nitrogen atoms in these
radicals can coordinate to metal ions such as CuII, MnII, ZnII, and AuI ions [12–18]. We
have shown that CuII complexes [CuII(hfac)2(PyBTM)2] (hfac = hexafluoroacetylacetonato)
and [CuII(hfac)2(bisPyTM)] demonstrated FM radical–CuII interaction with JR-Cu/kB of
47 K for the former and 46 K (low-temperature phase) and 11 K (high-temperature phase)
for the latter [15,16], while [MnII(hfac)2(PyBTM)2] displayed AFM radical–MnII coupling
(JR-Mn/kB of −9.7 K) [13]. These efficient radical–metal couplings are attributed to the
spin densities of PyBTM and bisPyTM, which are well delocalized onto the π-conjugated
framework including the pyridyl nitrogen atoms [10,11].
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In this study, we prepared novel NiII and CoII complexes with coordinated PyBTMs,
[M(hfac)2(PyBTM)2] (M = NiII, CoII) (Figure 1), to elucidate how the central metal ion
affects structural and magnetic characteristics in this class of molecular heterospin systems.
We herein report the synthesis, structures, and magnetic properties of [M(hfac)2(PyBTM)2]
(M = NiII, CoII), where efficient FM radical–metal couplings were achieved. These results
are different from PTM-ligated CoII and NiII complexes [M(PTMMC)2(pyridine)3(H2O)]
(M = NiII, CoII) reported previously, where two PTMMCs were coordinated to the metal
ions via the carboxylate groups in the trans fashion to demonstrate AFM radical–metal
couplings with JR-M/kB = −23.6 K for M = NiII and −7.6 K for M = CoII [19].

2. Results and Discussion

[M(hfac)2(PyBTM)2] (M = NiII, CoII) were prepared by mixing PyBTM and M(hfac)2·nH2O
in mixed solvent under reflux. The resulting complexes were characterized by elemental
analysis, diffuse reflectance spectroscopy, and powder and single-crystal X-ray diffractions
(Figure S1–3, Table S1). The complexes showed no detectable ESR signal in the solid state at
room temperature. Both the X-ray diffraction studies revealed that [NiII(hfac)2(PyBTM)2]
and [CoII(hfac)2(PyBTM)2] are both isostructural with the other [M(hfac)2(PyBTM)2]
(M = ZnII, CuII, MnII) reported previously [13,16]. Here, we mainly focus on the crystal
structure of [CoII(hfac)2(PyBTM)2] as the representative to discuss the structural character-
istics of the two complexes. The unit cell contains two crystallographically non-equivalent
[CoII(hfac)2(PyBTM)2] molecules, and one of them is shown in Figure 2a. The CoII ion
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forms a distorted octahedral coordination geometry, and is located on an inversion center.
Two PyBTM radicals ligate to the CoII ion via the nitrogen atoms in a trans configuration.
Averaged M–O1, M–O2, and M–N bond lengths for the two non-equivalent complexes are
2.048 Å, 2.047 Å, and 2.140 Å for M = CoII and 2.028 Å, 2.040 Å, and 2.078 Å for M = NiII.
The coordination geometry is elongated along the M–N bond direction, as observed simi-
larly in [ZnII(hfac)2(PyBTM)2] and [MnII(hfac)2(PyBTM)2] [13,16]. Trifluoromethyl groups
in the hfac ligands are disordered in two positions. In the ligated PyBTM radicals, the
C1 atom is located within a plane constructed by C4, C10, and C16 atoms, forming sp2

hybridization. The three aromatic rings construct propeller-like structures due to steric
repulsion between the chlorine atoms in their ortho positions. These structural characteris-
tics are similar to a non-coordinated PyBTM [10], confirming the radical character of the
PyBTM ligands in [M(hfac)2(PyBTM)2].
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Figure 2. (a) Molecular structure of [CoII(hfac)2(PyBTM)2] in the crystal. (b) Crystal structure viewed
along the b-axis and (c) the a-axis. The disorder of trifluoromethyl groups is omitted for clarity.

Shortest M–M and C1–C1 distances in the crystal lattice are 8.5382 Å and 8.501(6) Å for
M = CoII and 8.5557 Å and 8.51(2) Å for M = NiII; the spin centers are separated sterically.
Several intermolecular Cl···F, Cl···H, and F···F atomic contacts were confirmed, which
would mediate weak intermolecular AFM interactions suggested in the magnetic studies.

The magnetic properties of the complexes were examined using a SQUID magnetome-
ter (Figure 3a). In [NiII(hfac)2(PyBTM)2], the χT value at 300 K was 2.12 cm3·K·mol−1 and
was a little higher than the value expected from one S = 1 for NiII and two S = 1/2 spins
for PyBTMs (1.75 cm3·K·mol–1 with g = 2.00). The χT value increased with decreasing
temperature and reached a maximum around 20 K, indicating an FM interaction dominant
between the spins. The subsequent decrease in the χT value below 20 K would be due to
the intermolecular AFM interaction, as observed similarly in the other [M(hfac)2(PyBTM)2]
complexes [13,16]. The FM interaction can be attributed to the intramolecular exchange
interaction between the NiII and the PyBTM spins. The temperature dependence of χT was
analyzed by a symmetrical three-spin model with H = −2JM-R(SRSM + SMSR) [20], where
SM = 1 or 3/2 for M = NiII or CoII, SR = 1/2, and JM-R indicates an exchange coupling
constant between the spins on M and PyBTM. The χT–T plot of [NiII(hfac)2(PyBTM)2]
was fitted using Equation (1) [20]. N, µB, and kB indicate the Avogadro constant, the Bohr
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magneton, and the Boltzmann constant, respectively; x = exp(JM-R/kBT), and θ represents
the intermolecular AFM interactions.

χ = [NµB
2g2/kB(T−θ)][(10 + 2x−2 + 2x−4)/(5 + 3x−2 + 3x−4 + x−6)] (1)
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(b) [CoII(hfac)2(PyBTM)2]. Red lines indicate fitting curves.

The fitting afforded JNi-R/kB, g, and θ values of 21.8 K, 2.13, and −2.63 K, respectively.
The positive JNi-R/kB value confirms an efficient FM PyBTM–NiII interaction.

Figure 3b depicts the temperature dependence of χT of [CoII(hfac)2(PyBTM)2] mea-
sured at 10 kOe. The χT value was 3.78 cm3·K·mol−1 at 300 K (2.625 cm3·K·mol−1 when
assumed from isolated one S = 3/2 and two S = 1/2 spins with g = 2.00), and increased
upon cooling, confirming the predominant FM interaction taking place between the spins
on CoII with S = 3/2 and PyBTM with S = 1/2. The subsequent decrease in χT below
20 K is presumably due to the intermolecular AFM interaction. The χT behavior was
analyzed with Equation (2) based on the symmetrical three-spin model, as was done for
[NiII(hfac)2(PyBTM)2], to yield JCo-R/kB, g, and θ values of 11.8 K, 2.24, and −3.87 K, re-
spectively. A g-value larger than 2.0 would reflect magnetic anisotropy and spin-orbit
coupling characteristic of CoII [20]. The positive JCo-R/kB value agreed with the presence
of FM interaction between the spins.

χ = [NµB
2g2/4kB(T−θ)][(35 + 10x−3 + 10x−5 + x−8)/(3 + 2x−3 + 2x−5 + x−8)] (2)

The magnetic couplings between metal ions and radicals in the present heterospin
system are interpreted based on the overlap or orthogonality of relevant spin orbitals, in
which the former and the latter mediate AFM and FM exchange interactions, respectively.
As the SOMO of PyBTM on the nitrogen atom has a pπ character, orbital overlap is expected
for dyz and dxz orbitals of the metal ions while an orthogonal relationship can be achieved
for dz2, dx2–y2, and dxy orbitals, assuming that the M–N bond direction corresponds to
the z-axis direction. All these orbital interactions contribute to the magnetism of the
complexes, thereby determining their net magnetic properties. In [M(hfac)2(PyBTM)2], it is
expected that NiII possesses two unpaired electrons on the dz2 and dx2–y2 orbitals while
CoII bears two of the three unpaired electrons on the dz2 and dx2–y2 orbitals. Accordingly,
the FM couplings observed experimentally can be explained as orbital orthogonality of the
spin orbitals.

The FM radical–metal couplings in [M(hfac)2(PyBTM)2] were reproduced theoreti-
cally by broken-symmetry DFT calculation. The geometries used for the calculations were
extracted from the crystallographic data. [NiII(hfac)2(PyBTM)2] possesses a quintet ground
state. The phase of spin density on the centering carbon atoms of the PyBTM ligands
and the NiII ion is the same (Figure 4a). The results represent an FM configuration of the
spins. The calculated JNi–R/kB values are 27.9 and 29.8 K for the two crystallographically
non-quivalent molecules. These results were consistent with the experimental results,
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while the JNi–R/kB values calculated are little larger than the value estimated experimen-
tally. Similarly, sextet ground states with FM radical–CoII couplings (5.4 and 4.8 K) are
calculated for two crystallographically independent [CoII(hfac)2(PyBTM)2] molecules. The
spin density distribution of one of the two [CoII(hfac)2(PyBTM)2] molecules is shown in
Figure 4b. Namely, the theoretical calculations nicely support the FM interaction detected
in magnetic studies.
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In conclusion, novel heterospin complexes [NiII(hfac)2(PyBTM)2] and [CoII(hfac)2
(PyBTM)2] were prepared and their structural and magnetic characteristics were investi-
gated. The metal ions formed a distorted octahedral coordination environment with the two
PyBTM radicals coordinating in the trans configuration in the solid state. Magnetic investi-
gation elucidated FM interactions operated between PyBTM and the metal ions in the two
complexes. The FM interactions could be interpreted as an orthogonal relationship between
the spin orbitals. These results demonstrate that pyridyl-containing triarylmethyl radicals
are key building blocks for magnetic molecular materials with controllable/predictable
magnetic interactions.

3. Materials and Methods
3.1. General Methods

Unless otherwise noted, solvents (dichloromethane, chloroform, and hexane) and
reagents ([CoII(hfac)2·nH2O] and [NiII(hfac)2·nH2O]) were purchased from TCI Co., Ltd.
(Tokyo, Japan), FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan), Kanto Chemical
Co., Inc. (Tokyo, Japan), or Merck KGaA (Darmstadt, Germany), and used without further
purification. Dry dichloromethane and hexane were purified with Ultimate Solvent Sys-
tem 4S (AS ONE Corp., Osaka, Japan). PyBTM was prepared according to the previous
literature [10].

3.2. Syntheses of Complexes

[CoII(hfac)2(PyBTM)2]. Under a nitrogen atmosphere, [CoII(hfac)2·nH2O] (51.7 mg,
0.102 mmol for n = 2) was dissolved in dry hexane (30 mL) under reflux. To this so-
lution was added a solution of PyBTM (105 mg, 0.202 mmol) in dry dichloromethane
and dry hexane (1.4 mL and 2.6 mL) at the same temperature, and the mixture was
refluxed for 16 h. The resulting suspension was cooled to −30 ◦C for 2 h, and the pre-
cipitates were collected by filtration. The solid was recrystallized from chloroform to
give [CoII(hfac)2(PyBTM)2] as a red solid (37.9 mg, 0.025 mmol, 25%). Anal. Calcd for
C46H14Cl16F12N2O4Co ([CoII(hfac)2(PyBTM)2]): C, 36.52; H, 0.93; N, 1.85. Found: C,
36.48; H, 1.17; N, 1.91. The single crystal of [CoII(hfac)2(PyBTM)2] suitable for X-ray
analysis was obtained by slow vapor diffusion of hexane into a chloroform solution of
[CoII(hfac)2(PyBTM)2] at 30 ◦C.

[NiII(hfac)2(PyBTM)2]. Under a nitrogen atmosphere, [NiII(hfac)2·nH2O] (51.4 mg,
0.101 mmol for n = 2) was dissolved in a mixed solvent of dry hexane (30 mL), dry
dichloromethane (15 mL), and dry chloroform (14 mL) under reflux. To this solution
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was added a solution of PyBTM (105 mg, 0.202 mmol) in dry dichloromethane and
dry hexane (1.4 mL and 2.6 mL) at the same temperature, and the mixture was re-
fluxed for 15 h. The resulting suspension was cooled to −30 ◦C for 2 h, and the pre-
cipitates were collected by filtration. The solid was recrystallized from chloroform to
give [NiII(hfac)2(PyBTM)2] as a red solid (71.4 mg, 0.047 mmol, 47%). Anal. Calcd
for C46H14Cl16F12N2O4Ni ([NiII(hfac)2(PyBTM)2]): C, 36.53; H, 0.93; N, 1.85. Found:
C, 36.28; H, 1.03; N, 1.90. The single crystal of [NiII(hfac)2(PyBTM)2] suitable for X-ray
analysis was obtained by slow vapor diffusion of hexane into a chloroform solution of
[NiII(hfac)2(PyBTM)2] at 30 ◦C.

3.3. Single-Crystal X-ray Diffraction Study

The data for single-crystal X-ray diffraction analyses were collected at 113 K on a ROD,
Synergy Custom system (Rigaku Oxford Diffraction, Tokyo, Japan) equipped with mirror
monochromated Mo-Kα radiation. A suitable single crystal was mounted on a looped film
(micromount) with Paraton-N. Data were processed using CrysAlisPro 1.171.39.43c (Rigaku
Oxford Diffraction, Tokyo, Japan). The structures were solved using SHELXT [21] and the
whole structure was refined against F2 with SHELXL-2018/3 [22]. All non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were located at idealized positions and were
refined using a riding model with fixed thermal parameters. Crystal structure data (CIF,
CCDC 2103614 for [CoII(hfac)2(PyBTM)2] and 2103615 for [NiII(hfac)2(PyBTM)2]) can be
obtained free of charge from the Cambridge Crystallographic Data Centre.

3.4. Powder X-ray Diffraction Study

Powder X-ray diffraction measurements were performed at room temperature using a
MiniFlex600 diffractometer (Rigaku Corp., Tokyo, Japan) (Cu-Kα radiation, λ= 1.5406 Å)
operating at 40 kV/15 mA with a Kβ foil filter. The recorded diffraction pattern was
analyzed by SmartLab Studio II (Rigaku Corp., Tokyo, Japan). The initial lattice parameters
were obtained from the single-crystal data measured at 113 K, and were refined by the
Pawley method.

3.5. Magnetic Measurements

The temperature dependence of the magnetic susceptibility of complexes was mea-
sured with a MPMS-7 SQUID magnetometer (Quantum Design Japan, Inc., Tokyo, Japan).
Aluminum foil was used as a sample container, whose magnetic contribution was sub-
tracted as background by measuring its own magnetic susceptibility in every measurement.
The diamagnetic correction χdia for the sample was carried out with Pascal’s constants.
χdia: 7.41 × 10−4 cm3·K·mol−1 for [CoII(hfac)2(PyBTM)2]; 7.40 × 10−4 cm3·mol−1 for
[NiII(hfac)2(PyBTM)2].

3.6. DFT Calculations

The calculations were carried out using the Gaussian 16 Revision C.01 program
package [23]. The geometry of each complex was extracted from the crystallographic
data. Single-point calculations were performed assuming either sextet or doublet states for
[CoII(hfac)2(PyBTM)2] and quintet or singlet states for [NiII(hfac)2(PyBTM)2], at the uB3LYP
level of theory with the LANL2DZ (Hay-Wadt ECP) basis set for the metal atoms and the 6-
31G(d) basis set for the other atoms [24–26]. The intramolecular exchange interactions were
considered within the approximate spin-projection (AP) method proposed by Yamaguchi
and co-workers [27–29]. Discussion on the difference between the calculated JM–R/kB
values and the experimentally obtained ones is provided in the Supplementary Materials.

Supplementary Materials: Discussion on JM–R/kB values; Figure S1. Observed and calculated pow-
der X-ray diffraction profiles for compounds; Figure S2. Crystal structure of [NiII(hfac)2(PyBTM)2];
Figure S3. Diffuse reflectance spectra of compounds; Table S1. Crystallographic data of complexes.
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