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Abstract: The main focus of the current research was the characterization of the by-products from the
steam distillation of Lavandula angustifolia Mill. (LA) and Lavandula x intermedia Emeric ex Loisel (LI)
aerial parts, as they are important sources of bioactive compounds suitable for several applications in
the food, cosmetic, and pharmaceutical industries. The oil-exhausted biomasses were extracted and
the total polyphenol and flavonoid contents were, respectively, 19.22 + 4.16 and 1.56 + 0.21 mg/g
for LA extract and 17.06 £ 3.31 and 1.41 £ 0.10 mg/g for LI extract. The qualitative analysis by
liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS) revealed that both
the extracts were rich in phenolic acids and glycosylated flavonoids. The extracts exhibited radical
scavenging, chelating, reducing activities, and inhibitory capacities on acetylcholinesterase and
tyrosinase. The IC50 values against acetylcholinesterase and tyrosinase were, respectively, 5.35 & 0.47
and 5.26 £ 0.02 mg/mL for LA, and 6.67 + 0.12 and 6.56 & 0.16 mg/mL for LI extracts. In conclusion,
the oil-exhausted biomasses demonstrated to represent important sources of bioactive compounds,
suitable for several applications in the food, cosmetic, and pharmaceutical industries.
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1. Introduction

In March 2020, the European Commission adopted the “new circular economy ac-
tion plan”, one of the main building blocks of the “European green deal” for sustainable
growth [1]. The action plan promotes the circular economy and ensures the prevention of
waste production, supporting the regeneration of resources. The program was born to face
the increment of agricultural wastes, co-products, and by-products in Europe, which have
been esteemed to be more than 700 million tons every year [2]. In this context, the scientific
community is utilizing efforts to valorize the food and agricultural wastes, which might be
rich sources of valuable compounds. Nowadays, these wastes, also called biomasses, are
mainly used for energy recovery by producing biofuel. However, this is the less preferable
procedure to manage the biomass, according to the “waste hierarchy” proposed by the
Environmental Protection Agency (EPA) [3]. Based on the EPA’s scheme, waste reuse
and recycling are favored over recovery energy. Plant and food biomasses are rich in
polysaccharides (such as pectin and cellulose), enzymes (such as bromelain from pineap-
ples), and secondary metabolites. Secondary metabolites are essential for plant long-term
survival and can act as antimicrobial agents, protectors against predators, or attractors of
pollinators [4]. Since ancient times, the positive effects of secondary metabolites on human
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health were observed through the consumption of herbs in traditional medicine. These
compounds are usually classified according to the biosynthetic pathway, and the polyphe-
nols’ group is one of the main ones, along with alkaloids and terpenes. The polyphenols
group includes phenols, phenolic acids, flavonoids, and tannins, which are in turn classified
based on the hydroxyl groups, the number of aromatic rings, and the number of carbon
atoms [5]. Among the several beneficial activities of such compounds, the antioxidant,
anti-inflammatory, and antimicrobial are the most recognized and studied [6-10]. For
these properties, polyphenols exhibit health benefits for treating and preventing several
conditions, such as age-related diseases, heart diseases, and cancers.

Essential oils (EOs) are obtained by steam distillation of flowers, roots, leaves, and
fruit peels of aromatic plants. Due to the countless activity and properties, the EOs are
commonly used in several industrial fields. Recent reports highlighted that the global
market of the EOs is growing due to consumers’ higher attention to “green” products,
where synthetic active compounds are more and more replaced by natural compounds
in cosmetics and foods [11]. In addition, the global market is destined to grow since the
novel potentiality of the EOs is arising. Nowadays, the oil-exhausted biomass obtained
after the extraction of EOs is considered waste, mainly used for mulching in other crop
cultivations or for energy production from combustion. However, the biomass is still rich
in polyphenols which are not volatile and thus not collected in the EO. For these reasons,
the valorization of the biomasses from the production of EOs is an important issue to
promote recycling and to increase the value of these crops. Furthermore, being the majority
of the EOs approved for food flavoring, the waste and by-products of their production
can be employed in organic farming as a feed additive, according to the European Council
Regulation 2018/848 [12].

The Lavandula genus is cultivated worldwide for its EOs, which are largely employed
in cosmetics, food processing, perfumes, aromatherapy, and drugs. According to Giray’s
report, the production of lavender EOs is dynamically increasing, following today’s trend
in “natural and organic” [13].

Lavandula genus includes several species, and the most used in the industries are the
L. angustifolia (LA) and L. x intermedia (LI). Lavender can be considered one of the most
produced EO, especially in Bulgaria, France, Italy, China, and Spain [13]. Furthermore,
lavender EO is considered one of the most valuable EOs, despite numerous cases of
adulteration which led the regulatory organization to promote interventions to guarantee
their authenticity, including through the development and application of new analytical
methods in the last few years [14-20]. Indeed, lavender EOs demonstrated to be extremely
versatile due to their different biological activities. In the last decades, lavender EOs
have been demonstrated to act on the central nervous system, exerting anti-depressive,
anxiolytic, antioxidant, and anti-inflammatory effects both in humans and animals [21-26].
Furthermore, regarding the agro-food industry, these EOs showed promising antibacterial
activity on antibiotic-resistant bacteria and fungi [27,28] and exhibited pronounced effects
on different pests and weeds [29-32]. For these reasons, lavender EOs might be also
employed in food safety and stability.

Thus, the present work was focused on the characterization of the solid waste from
the steam distillation of LA and LI, as a source of bioactive compounds. Several biological
activities were evaluated to explore the potentiality of the reuse of lavender biomass. To
the best of our knowledge, this is the first study that aimed at the evaluation of the enzyme
inhibitory capability of extracts obtained from oil-exhausted lavender biomasses.

2. Results and Discussion

Lavender EOs are among the most produced EOs in Europe, and the exhausted
biomass obtained from the steam distillation is currently considered a low valuable by-
product. To promote the reuse of this agricultural waste, an extensive study of the chemical
composition and the activities of the bioactive compounds still present after the steam
distillation is required. Indeed, it is certainly worth remarking that the biomass wastes
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from the steam distillation process underwent thermal stress due to the high temperatures
employed for the extraction of the EOs. As a consequence, the bioactive compounds present
in plant biomasses might be degraded and chemically modified, resulting in a decrease in
their biological activities. For this reason, the study of the biological and chemical activities
of polyphenols extracted from lavender must be performed on oil-exhausted biomass to
demonstrate the importance and potentiality of the reuse of this waste. Thus, in the present
work, the exhausted biomasses of L. angustifolia and L. intermedia were considered as the
main characters of the research, as sources of natural bioactive compounds. In that, the
extracts of LA and LI were characterized in terms of composition and antioxidant and
inhibitory capacities against certain enzymes. The methods and results concerning the EOs
and the hydrosols obtained from the steam distillation process are fully described in the
Supplementary Materials. Specifically, the chemical composition of the Eos and hydrosols
is reported in Table S1 and Table S2, respectively.

2.1. Total Phenolic and Total Flavonoid Content

The solvent screening for the recovery of polyphenols from oil-exhausted lavender
biomasses suggested that the mixture of ethanol and water (50:50) was the optimal solvent
in terms of TPC. The yields of the dry extracts were determined by freeze-drying the liquid
extracts, obtaining 211.5 £ 7.8 mg/g e 193.0 & 2.6 mg/g of dry extract of biomass for LA
and LI, respectively.

The estimation of the total phenolic content (TPC) and total flavonoid content (TFC)
was carried out through Folin-Ciocalteu and aluminum chlorate assays, respectively. The
two hydroalcoholic extracts did not show any significant difference in both TPC and TFC
contents (Table 1).

Table 1. Total phenolic content (TPC) and total flavonoid content (TFC) of L. angustifolia (LA) and
L. x intermedia (LI) oil-exhausted biomasses. The results are expressed as the mean =+ standard
deviation of mg equivalents of gallic acid (GAE) and quercetin (QE) respectively per g of biomass
(three extracts for each biomass). The TPC and TFC were calculated also as a percentage (w/w) in the

dry extract.
Residual Material LA LI
TPC (mg GAE/g) 19.22 £ 4.16 17.06 + 3.31
TPC % (GAE dry extract) 9.09 £+ 0.33 8.84 +0.12
TFC (mg QE/g) 1.56 + 0.21 1.41 +0.10
TFC % (QE/dry extract) 0.74 +£0.03 0.73 +0.01

The TFC represented about 8% of the TPC in both lavender extracts. In the literature,
different results on the Lavandula genus can be observed, and the diversity might be due to
several factors.

As an example, Spiridon et al. reported higher values for the alcoholic extract
from Lavandula angustifolia leaves and flowers. The TPC and TFC were found to be
50.6 + 3.16 mg GAE/g and 27.6 + 3.42 mg Rutin equivalent/g, respectively [33]. On the
other hand, Duda et al. (2015) showed similar TPC and TFC results by studying the whole
biomass of L. angustifolia harvested in two different phenological periods (the beginning
of flowering and the full bloom). They observed a TPC of between 12.44 and 18.16 mg
GAE/g, and a TFC between 3.37 and 4.85 mg QE/g dry plant [34]. These differences might
be due to the part of the biomass considered in the study. Indeed, by comparing the results
from these studies, the leaves and the flowers of lavender seem to be richer in polyphenols
than stems, which are evaluated in the extraction of the entire biomass. In addition, it has
been reported that the TPC of lavender is strongly affected by the species, harvest time,
growing conditions of the crops, and plant age.

By comparing the results obtained in this study with other works concerning lavender
wastes from the distillation process, Turrini et al. observed higher levels of both TPC and TFC
(40.15 £ 0.04 mg GAE/g and 4.72 & 3.56 mg QE/g, respectively) in Lavandula angustifolia
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biomass after pulsed ultrasound-assisted extraction [35]. On the contrary, Slavov et al.
noticed lower TPC that ranged from 7.52 and 10.75 mg GAE/g in Bulgarian lavender
(Lavandula angustifolia) waste [36]. Moreover, the obtained values were higher than those
obtained in the research conducted by Méndez-Tovar et al. on the Lavandula latifolia EO
distillation by-product. The TPC content in the studied samples varied between 1.89 & 0.09
and 3.54 + 0.22 mg GAE/g of dry flowers [37].

The dry extracts contained about 9% and 0.7% of TPC and TFC, respectively. These
results suggested that the majority of the extracts were composed of other substances, such
as fibers, lignin, organic acids, triterpenoids, and sugars [38,39].

2.2. LC—ESI—MS and MS/MS Analysis

To understand the composition of lavender extracts, an LC-ESI-MS analysis was car-
ried out. The detected compounds in the hydroalcoholic extract of the residual plant
material were identified using data acquired by LC-ESI-MS of the parent ions and data-
dependent MS/MS fragmentation. A typical chromatogram of lavender extracts is dis-
played in Figure 1. The retention times, molecular ions, fragmentation patterns, tentative
identifications, molecular weights, and formulas are illustrated in Table 2. LC-ESI-MS and
MS/MS analyses allowed the detection of the molecular ion for each compound and pro-
duced the fragmentation in negative mode. Chlorogenic acid, caffeic acid, 4-coumaric acid,
ferulic acid, rosmarinic acid, luteolin, and apigenin standard compounds were used for
the identification of the aglycones. The tentative identification of glycosides was supposed
basing only on the fragmentation of precursor ions.

Intens.
x108 2

33

50 60 Time [min]

Figure 1. LC-MS base peak chromatogram of Lavandula angustifolia hydroalcoholic extract.

In general, the LA extract exhibited a higher abundance of phenolic acids and flavonoids.
The main compounds found in the extracts were also reported by other authors [35,38,39].

Among the phenolic acids, the most abundant were the derivatives of caffeic acid,
p-coumaric acid, ferulic acid, and rosmarinic acid. Compound 1 was identified as caf-
feoyl aspartic acid due to the fragment at m/z 179 with a relative loss of 115 Da, which
corresponds to the aspartic acid moiety [40]. Compound 2 was recognized as danshensu
(3,4-dihydroxyphenyl lactic acid), the derivative of caffeic acid, which showed the precursor
ion of m/z 197 and the fragments m/z 178.9 and 135, caused by the loss of hydroxylic
(18 Da) and carboxylic (44 Da) groups, respectively [41]. Compounds 4, 8, and 6, 11 were
classified as hexose-derivative of p-coumaric acid and ferulic acid, respectively, due to the
loss of a glucosyl moiety (162 Da) and the characteristic fragment at m/z 119 and m/z 149
(loss of a carboxylic group, 44 Da) [42]. Finally, the unprotonated molecular ion at m/z
359.1 was identified as rosmarinic acid (compound 19). The fragments at m/z 196.9 and
178.9 were related to the loss of danshensu and caffeic acid moieties, while the fragment at
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m/z160.9 to the following loss of one water molecule [43]. Compound 22 was tentatively
identified as a derivative of rosmarinic acid due to the presence of the fragments m/z 179

and 135 [44,45].

Table 2. LC-ESI-MS and MS/MS data (negative ionization mode) of the tentatively identified

compounds in L. angustifolia (LA) and L. intermedia extracts. The symbols

presence or the absence of the compounds in the extracts.

“u

+7 an

d “—" indicate the

Peak

Molecular

Number Rt (min) Tentative Identification [M-HI~ (m/z) Fragments (im/z) Weight (g/mol) LA LI
1 2.3 Caffeoyl aspartic acid 294.1 179.0 295.24 + -
2 42 Danshensu 395.0 (2M-H), 197.0 178.9,135.0 198.17 + +
3 49 Unknown 501.0 336.9,295.0 + +
4 6.5 p-coumaric acid hexose 651.3 (2M-H), 325.0 162.9,119.0 326.10 + +
5 8.2 Unknown 387.2 369.2,207.0 + +
6 8.9 Ferulic acid hexose 711.3 (2M-H), 355.1 192.9,148.9 356.32 + +
7 11.5 Unknown 351.0 248.9,231.0,177.0, 113.0 + —
8 13.3 p-coumaric acid hexose 651.0 (2M-H), 325.1 162.9,119.0 326.10 + —
9 14.7 Luteolin 7-O-diglucuronide 637.2 461.1,284.9 638.11 + —
10 15.5 Apigenin 7-O-diglucuronide 621.0 445.1, 268.9 622.12 + —
11 18.4 Ferulic acid hexose 711.0 2M-H), 355.1 192.9,149.0 356.32 + +
12 19.2 Unknown 521.2 358.9,229.0, 285.0 + —
13 20.7 Quercetin hexose 463.0 301.0,178.9 464.09 + —
14 21.0 Luteolin/kaempferol hexose 447.2 284.9 448.10 + +
15 215 Unknown 4412 395.3,262.9 + +
16 223 Lute;ﬁ?cfl lziiriré};feml 461.1 284.9 462.40 + +
17 23.7 Quercetin 3-O-rhamnoside 4471 300.9, 151.0 448.10 + —
18 24.3 Apigenin 7-O-glucoside 431.2 269.0 432.40 + +
19 25.8 Rosmarinic acid 359.1 2228, 1128 99 /1789, 360.31 + +
20 26.7 Lute;ﬁiﬁ ﬁgiﬁzfa"l 461.0 285.0 462.40 + +
21 27.2 Apigenin 7-O-glucurunide 4451 269.0,174.9 446.40 + +
22 30.5 Rosmarinic acid methylester 373.0 178.9,135.0 374.30 + —
23 31.9 Kaempferol/Luteolin 285.1 254.8,226.9 286.05 + —
24 33.4 Unknown 493.0 295.0, 269.1 + +
25 33.9 Unknown 618.4 582.4,462.3 + —
26 35.3 Quercetin hexose 463.2 301.0 464.09 + +
27 36.6 Unknown 507.3 345.2,299.2 + +
28 37.9 Unknown 329.2 221.0,193.0,170.9 + +
29 39.1 Ellagic acid 301.2 2834 302.19 + —
30 39.6 Unknown 287.2 269.1 + —
31 444 Unknown 307.2 289.0,235.0, 185.0 + -
32 51.0 Unknown 309.2 291.1,208.9,184.9 + —
33 53.9 Unknown 487.5 469.4 + —

Regarding the flavonoids, the identified compounds were derivatives of quercetin,
apigenin, luteolin/kaempferol. Luteolin and kaempferol could not be distinguishable
due to the same fragmentation patterns. The derivatives were identified due to the loss
of glucosidic (162 Da), thamnosidic (146 Da), and glucuronic (176 Da) moieties. The
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aglycones were classified based on the characteristic product ions. Luteolin and kaempferol
derivatives exhibited the fragment at m/z 284.9 [42], quercetin—fragments at m/z 301, 179,
and 151 [46], and apigenin—fragments m/z 289 and 175 [47]. Finally, compound 29 was
tentatively identified as ellagic acid, due to the precursor ion at 111/z 301 and the product
ion at m/z 283 [48].

2.3. Antioxidant Activity

The antioxidant properties of the two extracts were evaluated by calculating the direct
neutralization of free radicals generated by DPPH, and the prooxidant activities related to
the interaction with iron ions. The prooxidant activity is exerted by the chelation of iron (II)
and the reduction of iron (III), both involved as a catalyst in the Fenton reaction. Indeed,
the chelation or reduction of iron ions prevents the conversion of hydrogen peroxide
to hydroxyl radicals [49]. The IC50 values of the DPPH inhibition were 0.17 £ 0.02 and
0.17 £ 0.01 mg of biomass for LA and LI, respectively. The amount of the standard reference
Trolox that gave the same inhibition was 16.40 £ 0.41 ug. Regarding the iron chelation,
the IC50 values were 22.17 £ 0.42 mg of biomass, 15.77 £ 0.10 mg, and 33.00 & 0.34 pg of
biomass from LA and LI, and EDTA, respectively. The reducing power of the extracts was
calculated as described in the Methods section and was esteemed equal to that obtained by
the AA solutions at a concentration of 0.313 £ 0.014 and 0.261 & 0.010 mg/mL for LA and
LL respectively.

To evaluate the antioxidant strength of lavender biomasses, the mg equivalents of the
references per gram of biomass were calculated (Table 3).

Table 3. Antioxidant activities of hydroalcoholic extracts of L. angustifolia and L. X intermedia expressed
as the mean = standard deviation milligrams of positive control per gram of lavender biomass. The
results were obtained from three independent experiments on the replicates of the extracts.

LA LI
Antiradical activity 9417 £ 629 mgeql/g 94.51 £2.85mgeql/g
Chelation activity 1.49 + 0.03 mg eqEDTA /g 2.10 £ 0.13 mg eqEDTA /g
Fe3+ reduction capacity 89.36 £3.92mgeqAA/g 7453 +£2.74 mgeqAA/g

T, Trolox; AA, ascorbic acid.

The results highlighted the marked antioxidant properties of the extracts of lavender
biomasses. This evidence was in contrast to Miliauskas et al.’s findings, where acetone ex-
tract of LA did not exhibit remarkable antioxidant activities [50]. Conversely, several other
authors highlighted strong dose-dependent scavenging, chelating, and reducing activities
of lavender and lavandin extracts [35,36,51,52]. Specifically, the two lavenders exhibited
similar free scavenging activities, while the chelating and reducing activities demonstrated
opposite trends. LA showed a significantly higher content of eqAA /g (p < 0.0001), suggest-
ing a greater capability in reducing ferric ions, as reported by BlaZzekovi¢ et al. [53]. The
higher activity of LA compared to LI in oxidation-reduction reactions resulted in an agree-
ment with the greater total phenolic content (Table 1). In addition, besides the phenolic
acids and flavonoids, several other compounds might contribute to the antioxidant power
of the extracts, such as organic acids which have been reported in the Lavandula genus [39].
On the contrary, LI exhibited a significantly higher activity (p < 0.01) in chelating ferrous
ions, correlated to the major content of eqEDTA /g. Similar evidence was also reported by
Robu et al., where LI biomass displayed a greater chelating activity than LA biomass [54].
This result might be due to the major concentration of polyphenols with more than one
chelating site or with greater stability constants of the complex. Indeed, the metal chelation
potential of polyphenols is strongly related to the catechol moieties and the combination
of hydroxyl and carbonyl groups, characteristic of the flavonoid structure [55]. Therefore,
even though the TPC and TFC of LI were slightly smaller than LA, these results suggested
the presence of a higher concentration of stronger chelating polyphenols, such as rosmarinic
acid, luteolin, and kaempferol.
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2.4. In Vitro Acetylcholinesterase (AChE) and Tyrosinase Inhibition Assay

Nowadays, with cholinesterase inhibition being the most widely used approach for the
treatment of Alzheimer’s disease, several efforts have been made to discover new sources
of inhibitors. Different plants have been tested to understand their effects on AChE [56-58].
Indeed, flavonoids and phenolic acids have been reported to fit into the gorge of the active
site of the enzyme [59]. Furthermore, these compounds demonstrated strong tyrosinase
inhibiting properties, conferring them with features for several applications in the food,
cosmetic, and pharmaceutical industries [60-62]. Indeed, tyrosinase is a widespread en-
zyme in food, fungi, bacteria, and animals. Tyrosinase is the enzyme responsible for food
browning, and in humans, it causes melanogenesis and skin pigmentation [62].

The freeze-dried extracts of LA and LI were tested to evaluate their anti-cholinesterase
and anti-tyrosinase activities (Table 4). Both extracts were demonstrated to be effective in
the inhibition of the enzymes. In particular, LA extracts showed significantly lower IC50
values than LI extracts, suggesting a stronger inhibition capability (p < 0.01 and 0.001 for
AChE and tyrosinase, respectively). The higher inhibition capacity of the LA extract might
be related to the highest content of both polyphenols and flavonoids.

Table 4. Acetylcholinesterase (AChE) and tyrosinase inhibition activities of L. angustifolia (LA) and
L. x intermedia extracts, and reference inhibitors galantamine and kojic acid. The results are expressed
as the mean =+ standard deviation of IC50 values. The results were obtained from three independent
experiments on the replicates of the extracts.

AChE Tyrosinase
LA 5.35 £+ 0.47 mg/mL 5.26 £ 0.02 mg/mL
LI 6.67 £ 0.12 mg/mL 6.56 £ 0.16 mg/mL

Galantamine 18.83 & 1.05 pg/mL

Kojic acid 18.13 + 0.45 pug/mL

In the literature, the studies that aimed at evaluating the activity of Lavandula on
AChE employed the whole fresh aerial parts of the plant to prepare the extracts. Thus,
the extracts were composed of both volatile terpenes and polyphenols. No studies aimed
at the evaluation of the inhibitory activity of lavender biomasses that were subjected
to steam distillation prior to the extraction of polyphenols. With terpenes from EOs
being well-recognized AChE inhibitors [63-65], a direct comparison with the results of
other authors might be difficult. Vladimir-KneZevi¢ and co-authors evaluated the anti-
cholinesterase capacity of ethanolic extracts of medicinal plants from Lamiaceae family. In
their work, Lavandula angustifolia showed inhibition of 50% at a concentration of 1 mg/mL,
while galantamine exhibited an IC50 value of 0.122 pg/mL. In addition, the authors
highlighted the essential role of certain polyphenols in the inhibition in combination with
the terpenes of the EOs [66]. In another report, Costa et al. affirmed that supercritical
fluid extracts of Lavandula viridis exerted an IC50 value of 1.975 mg/mL, proving a central
role of the monoterpenes of the EO. In their study, the author stated that the IC50 of the
reference standard galantamine was 2.20 pug/mL under the same test condition of L. viridis
extract [67].

Regarding the anti-tyrosinase activity of Lavandula extracts, no studies aimed at the
evaluation of the activity of extracts obtained from by-products of the steam distillation.
The only study present in the literature considered the whole fresh plant. Hsu and co-
workers tested water extracts of different species of Lavandula, demonstrating that the
strength of the inhibition was species dependent. Furthermore, in contrast with our results,
all the inhibitory capacities of the extracts were impaired by the freeze-drying process. The
authors explained this evidence by suggesting that the inhibitory effects of the extracts
were related to the action of the enzyme polyphenol esterase, which degraded during the
drying process [68].
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3. Materials and Methods
3.1. Sample Materials and Chemicals

One sample of Lavandula angustifolia and one sample of Lavandula x intermedia culti-
var “Grosso” aerial parts were provided from two different farms located in the Italian
Tuscan-Emilian Apennines (9X4] + 7W map and 7XWH + 3F map, respectively). The aerial
parts of the plants were hand-picked when the inflorescences were in full blooming during
summer 2021. 1,1-diphenyl-2-picrylhydrazyl (DPPHe), quercetin, gallic acid, sodium sul-
phate (NaySOy), ferrozine, iron (III) and iron (II) chlorides, ethylenediaminetetraacetic acid
(EDTA), ascorbic acid, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox),
trichloroacetic acid, potassium ferricyanide, Folin-Ciocalteu reagent, acetylcholinesterase
(AChE) (electric eel, E.C. 3.1.1.7, type VI-S), acetylthiocholine iodide (ATCI), 5,5'-dithiobis
(2-nitrobenzoic acid) (DTNB), galantamine hydrobromide, tyrosinase (mushroom, E.C.
1.14.18.1), L-tyrosine, kojic acid, aluminum chloride, and Cg—Cyg n-alkanes were purchased
from Sigma-Aldrich (Milan, Italy).

Acetonitrile (ACN), acetic acid (HAc), ethylacetate (EtOAc), n-hexane (Hex), and
ethanol were of LC-MS purity grade (Sigma-Aldrich) (Milan, Italy).

3.2. Lavender Steam Distillation

The EOs from lavenders were extracted from fresh aerial parts by steam distillation
according to the European Pharmacopoeia X Ed., as described in our previous work [69].
Briefly, about 400 g of flowers was steam distilled for 1 h by a stainless-steel distiller
coupled with a Clevenger-type apparatus (Albrigi Luigi s.r.l.,, Stallavena, VR, Italy). The EO
collected was separated from hydrosol and measured on an analytical scale. The percent
yield of the EOs was calculated as the weight of oil per weight of fresh lavender flowers.
The EOs were stored at 4 °C until analysis. The oil-exhausted biomasses were collected
and dried at room temperature.

3.3. Plant Material and Extraction Procedure

The extraction was performed by dynamic maceration, and several extracting solvents
or solvent mixtures were tested (ethanol, methanol, water, ethyl acetate, and hydroalcoholic
solutions at different ratios). The optimal solvent was selected based on the efficiency in
recovering polyphenols, quantified by Folin-Ciocalteu method as described below. Briefly,
3.5 g of oil-exhausted aerial parts was extracted by dynamic maceration with 40 mL of the
extracting solvent. The solution was filtered into a volumetric flask and the biomass was
extracted two more times with 35 mL of the same solvent. The filtrates were adjusted at a
final volume of 100 mL and stored at 4 °C. The extraction was performed in triplicate. For
the enzymatic assays, the ethanol was removed under vacuum and the remaining aqueous
suspension was freeze-dried (Lio 5P, CinquePascal, Milan, Italy). The extracts obtained
by the optimal solvent (ethanol 50%) for the recovery of polyphenols were used for the
following analyses.

3.4. Total Polyphenolic and Flavonoid Content

The total polyphenolic content (TPC) in each Lavandula oil-exhausted biomass was
determined by Folin—Ciocalteu method. Briefly, 50 uL of the extract was mixed with 2.5 mL
of 10% Folin—Ciocalteu reagent. Then, 2 mL of Nay,COj3 saturated solution was added
and the reaction mixture was incubated at 50 °C for 15 min. Finally, the absorbance of the
solution was measured at 760 nm by using a UV /Vis spectrophotometer (UVmini-1240;
Shimadzu Corp., Kyoto, Japan). The concentration of total polyphenolic compounds was
calculated by using a standard curve prepared with gallic acid solutions (Figure S1A). The
total polyphenolic content was expressed as milligrams of gallic acid equivalents (GAE) per
gram of lavender flowers. The results were expressed as the mean + standard deviation
calculated from the results obtained in duplicate for each replicate of extract (1 = 3).

The total flavonoid content (TFC) was determined according to the aluminum chloride
method in each Lavandula oil-exhausted biomass. Briefly, 100 uL of the sample was mixed
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with 1.9 mL of ethanol and 2 mL of 2% AIClj solution. The reaction mixture was incubated
for 30 min at room temperature in the dark and the absorbance was measured at 420 nm by
a UV/Vis spectrophotometer (UVmini-1240). The concentration of total flavonoids was
determined by using a standard curve prepared with quercetin solutions (Figure S1B). The
total flavonoid content was expressed as milligrams of quercetin equivalents (QE) per gram
of lavender aerial parts. The results were expressed as the mean + standard deviation
calculated from the results obtained in duplicate for each replicate of extract (1 = 3).

3.5. Identification of Polyphenols by LC—ESI—MS and MS?

The liquid extracts were properly diluted and analyzed for the identification of the
active compounds.

The LC-ESI-MS and MS? analyses were carried out using an Agilent Technologies
modular 1200 system coupled to an Agilent 6310A ion trap mass analyzer with an ESIion
source (Agilent, Waldbronn, Germany). HPLC analyses were performed on an Ascentis
C18 column (250 mm x 4.6 mm 1.D., 5 um, Supelco, Bellefonte, PA, USA), with a mobile
phase composed of (A) 0.3% acetic acid in water and (B) ACN. The gradient elution was
set as follows: 0 min, 17% (B); 35 min, 23% (B); 52 min, 49% (B). The flow rate was set
at 1 mL/min and the injection volume was 20 pL. The ESI source operated in negative
ionization mode and the experimental parameters were set as follows: the capillary voltage
was 3.5 kV, the nebulizer (N,) pressure was 32 psi, the drying gas temperature and flow
were 350 °C and 10 L/min, respectively, and the skimmer voltage was 40 V.

Agilent 6300 Series Ion Trap LC/MS system software (version 6.2) was used for
instrument control, data acquisition, and qualitative analysis. The mass spectrometer was
operated in full-scan mode in the m/z range 200-1200. MS2 spectra were automatically
performed by using the SmartFrag function with helium as the collision gas in the m/z
range 50-1500.

3.6. Evaluation of Antioxidant Activity

The antioxidant activities were evaluated on the three different extracts obtained from
each Lavandula oil-exhausted biomass.

3.6.1. Determination of DPPH Free Radical-Scavenging and Fe?* Chelating Activities

For the DPPH free radical-scavenging activity, the freshly prepared extracts were
diluted (1:10) with water:ethanol (50:50) solution and different aliquots of the obtained
solution (ranged from 50 pL to 1.2 mL) were further diluted with ethanol to a final volume
of 2.7 mL directly in a cuvette. To each extract dilution, 300 pL of 0.04% DPPH ethanolic
solution was added and the reaction mixtures were left to stand at room temperature
for 15 min in the dark. The DPPH solution was freshly prepared daily and stored in a
flask covered with aluminum foil in the dark at 4 °C. A DPPH control sample (containing
2.7 mL of ethanol and 300 puL of DPPH solution) was prepared and measured daily. Finally,
the absorbances were measured at 517 nm against blank extracts (without the addition
of DPPH) by using a UV /Vis spectrophotometer (UVmini-1240, Shimadzu Corp., Kyoto,
Japan). Ethanolic solutions with different Trolox concentrations (ranged from 0.2 to 1.6 mM)
were analyzed as a positive control.

For the determination of Fe?* Chelating activity, to different aliquots (0.1-1.2 mL) of
freshly prepared extracts, 200 uL of 2 mM FeCl, solution and 200 puL of 5 mM ferrozine
solution were added. The solutions were diluted with MilliQ water to 10 mL in a volumetric
flask and left to stand at room temperature for 10 min. The control sample was prepared
in the same manner without the addition of the extract. Finally, the absorbances were
measured at 562 nm against blank extracts (without the addition of FeCl, and ferrozine
solutions) by using a UV /Vis spectrophotometer (UVmini-1240). EDTA was selected as
positive control and different concentration (0.25-1.00 mg/mL) were analyzed.
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The DPPH scavenging and metal chelating effects were calculated as follows:

Acontrol — ASample)

(inhibition %) = ( x 100 1)

AControl

where Acoutror 1S the absorbance of the control reaction and Asample is the absorbance of the
sample. The free radical scavenging and the metal-chelating capacities were expressed by
IC50 values extrapolated from the dose-response curves.

3.6.2. Reducing Power Activity

The reducing power activity was performed according to the method by Papotti
et al. with slight modifications [70]. The freshly prepared extracts were diluted (1:10) with
water:ethanol (50:50) solution and different aliquots of the obtained solution (ranged from
100 to 500 uL) were further diluted with the same solvent up to 500 pL. Then, 2.5 mL of
phosphate buffers solution (pH 6.6) and 2.5 mL of potassium ferricyanide 1% solution were
added, and the solutions were incubated at 50 °C. After 20 min, 2.5 mL of trichloroacetic
acid 10% solution, 8 mL of water, and 1.6 mL of Iron (IIT) chloride 0.1% solution were added.
Finally, 2 mL of the solutions was diluted with 2 mL of water, and the absorbances were
measured at 700 nm. The slope of the dose-response curves indicated the reducing power of
the extracts. Solutions of ascorbic acid (AA) with different concentrations (100-750 pg/mL)
were prepared and analyzed as described above. The slope of the dose-response curves
obtained for each ascorbic acid solution was plotted against the concentration, and the
equation of the linear regression curve was used to determine the reducing power of the
extracts in terms of concentration of AA.

3.7. Acetylcholinesterase and Tyrosinase Inhibitory Assays

The freeze-dried extracts of biomass of LA and LI (three replicates for each biomass)
were dissolved in PBS at the concentration of 10 mg/mL and different dilutions were
prepared in the range of 0.5-10.0 mg/mL. For the inhibition of AChE, the extracts and
reagents were solubilized in PBS 100 mM at pH 8. For the inhibition of tyrosinase, PBS
20 mM at pH 6.8 was employed to prepare the solutions.

The capacity of the extract in inhibiting AChE was evaluated according to Costa et al.
with minor modifications [67]. The reaction solution was prepared by mixing 1 mL of DTNB
15mM, 200 pL of ATCI 3mM, 400 pL of PBS, and 200 pL of inhibitor solution (or PBS in
the case of the enzymatic control) into a 1 mL cuvette. Then, 200 uL of AChE 0.115 U/mL
was added, and the reaction was monitored for 5 min by recording the absorbance at
405 nm every 14 s using a UV /vis spectrophotometer (Jasco V-730, Easton, MD, USA). The
absorbances were recorded against a blank solution composed of all the reactive without
the enzyme. Galantamine was selected as a reference inhibitor and was tested in the range
of 7-170 pug/mL under the same operative conditions.

The inhibition of tyrosinase was evaluated according to Fiocco et al. with minor
changes [71]. The reaction solution was prepared by mixing 250 pL of tyrosine 1.66 mM,
700 uL of PBS (20 mM, pH 6.8), and 200 pL of inhibitor solution (or PBS in the case of the
enzymatic control) in a 1 mL cuvette. Then, 300 pL of tyrosinase 170 U/mL was added,
and the reaction was monitored for 40 min by recording the absorbance at 475 nm every
14 s. Kojic acid was selected as a reference inhibitor and was tested in the range 7-70 pg/mL
under the same operative conditions.

For both assays, the velocities (slopes, OD/min) of the reactions were calculated for
each inhibitor concentration tested, and the inhibition percentage was calculated as follows:

inhibition % =

(SZOPECTRL — Slopeinhibitor) % 100 (2)
SlopeCTRL
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where Slopectrr, and Slope;,piviror are the velocities of the enzyme in the absence or pres-
ence of the inhibitor, respectively. The percentages of inhibition were plotted against the
concentrations of the inhibitor and the curve was fitted to calculate the IC50 value.

3.8. Statistical Analysis

Student’s t-test was used to highlight significant differences between the two lavenders
(p <0.05).

4. Conclusions

The antioxidant and enzyme inhibitory capabilities of Lavandula extracts have been
extensively studied in the last few decades. Thus, it is well known that the aerial parts
of the Lavandula species are important sources of polyphenols with countless activities.
However, to promote the reuse and valorization of agricultural wastes from the production
of lavender EOs, studies focusing on the characterization of oil-exhausted biomasses are
required. Indeed, during the steam distillation process, the aerial parts of lavender are
subjected to high temperatures for hours, causing the partial degradation and deactivation
of polyphenols. In the present work, L.angustifolia and L. intermedia oil-exhausted biomasses
were demonstrated to represent an interesting source of bioactive compounds, even though
they might have been partially lost during the steam distillation process. The selected
method of extraction of the oil-exhausted biomasses proved to be a promising strategy
for the recovery of polyphenols by using food-grade solvents (ethanol and water), also
applicable on a large scale. Several properties of lavender extracts from oil-exhausted
biomass have been demonstrated, and for the first time, their enzyme inhibitory effects
were evaluated. These results confer to these extracts their suitability in different fields.
Indeed, the antioxidant and anti-tyrosinase activities might be exploited in the food and
cosmetic industries to prevent the browning and degeneration of active compounds and
ameliorate the conservation of the final products. Furthermore, these extracts might be used
by the pharmaceutical industry also due to their anti-enzymatic capabilities demonstrated
here. In that, they might represent a valid therapeutic alternative for the prevention and
treatment of Alzheimer’s disease, hyperpigmentation, and other chronic diseases where
radicals play a central role.

Supplementary Materials: The following supporting information can be downloaded at; Table S1:
Semi-quantitative results of the percent chemical composition of LA and LI EOs.; Table S2: Semi-
quantitative results of the percent chemical composition of LA and LI hydrosols; Figure S1. Calibration
curves of gallic acid (A) and quercetin (B) employed for determining the content of polyphenols and
flavonoids in the extracts [69,72-83].
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