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Epithelial cell alarmin cytokines:
Frontline mediators of the
asthma inflammatory response

Marc Duchesne, Isobel Okoye and Paige Lacy*

Alberta Respiratory Centre, Department of Medicine, University of Alberta, Edmonton,
AB, Canada
The exposure of the airway epithelium to external stimuli such as allergens,

microbes, and air pollution triggers the release of the alarmin cytokines IL-25,

IL-33 and thymic stromal lymphopoietin (TSLP). IL-25, IL-33 and TSLP interact

with their ligands, IL-17RA, IL1RL1 and TSLPR respectively, expressed by

hematopoietic and non-hematopoietic cells including dendritic cells, ILC2

cells, endothelial cells, and fibroblasts. Alarmins play key roles in driving type

2-high, and to a lesser extent type 2-low responses, in asthma. In addition,

studies in which each of these three alarmins were targeted in allergen-

challenged mice showed decreased chronicity of type-2 driven disease.

Consequently, ascertaining the mechanism of activity of these upstream

mediators has implications for understanding the outcome of targeted

therapies designed to counteract their activity and alleviate downstream type

2-high and low effector responses. Furthermore, identifying the factors which

shift the balance between the elicitation of type 2-high, eosinophilic asthma

and type-2 low, neutrophilic-positive/negative asthma by alarmins is essential.

In support of these efforts, observations from the NAVIGATOR trial imply that

targeting TSLP in patients with tezepelumab results in reduced asthma

exacerbations, improved lung function and control of the disease. In this

review, we will discuss the mechanisms surrounding the secretion of IL-25,

IL-33, and TSLP from the airway epithelium and how this influences the allergic

airway cascade. We also review in detail how alarmin-receptor/co-receptor

interactions modulate downstream allergic inflammation. Current strategies

which target alarmins, their efficacy and inflammatory phenotype will

be discussed.
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Asthma: A heterogenous response in
the airway epithelium

Asthma is a multifactorial, diverse, and heterogenous

malady comprising of a combination of respiratory symptoms,

which stem from chronic airway inflammation and tissue

remodelling. Early accounts of asthma symptoms can be

traced back to the 4th century BC, when it was described in

the Hippocratic Corpus as spasms of breathlessness observed

mainly in metalworkers, anglers, and tailors (1, 2). Recently,

clinicians and researchers have sought to redefine asthma as a

collection of chronic airway manifestations which vary,

depending on treatable symptoms (such as airflow limitation,

eosinophilic inflammation, and comorbidities), and factors

including age, lifestyle, and environment (3). Other recent

approaches based on systems biology techniques have

classified asthma based on T2 (type 2) high and non-T2 high

endotypes designated according to cellular mechanisms and

molecular pathways [reviewed in (4)].

Alarmin cytokine production in asthma may be initiated by a

wide spectrum of triggers including multiple allergens, microbes,

and air pollutants, which can promote loss of integrity as well as

anchorage of the respiratory epithelium as shown in Figure 1 (4,

5). Allergic, or atopic, asthma is thought to be established by a

sensitisation phase to allergens, followed by a challenge phase

which initiates airway hyperreactivity. These environmental

perturbations can induce alarmin production from epithelial

cells, which facilitate downstream infiltration of inflammatory

mediators and events leading to airway hyperreactivity. In this

review, we cover the triggers and effects of alarmin cytokines

released from airway epithelial cells and summarise how these

may be targeted for therapeutic intervention.
Allergens

The onset of asthma and its exacerbations may be triggered

by inhalation of allergens such as house dust mite (HDM)

allergens, cat dander, cockroach allergens, and Aspergillus

spores. It is noteworthy that allergens originate from

organisms that are not inherently harmful to the host.

Allergens consist mainly of proteins with functional domains

that confer enzymatic and/or ligand-binding activity, which

inadvertently facilitate the interaction and modification of

airway epithelial cells. Consequently, the nature of immune

responses elicited by allergen sensitisation and challenge

depends on the properties of the relevant allergen as well as

genetic polymorphisms in the allergic individual that are

thought to predispose individuals to asthma.

The ability of allergens to differentially induce asthma in

patients may reflect several factors including the underlying

mechanisms of epithelial cell interaction and disruption. For

example, the cockroach allergen Per a 10 increases secretion of
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IL-33 and TSLP in vitro (6). Of relevance is the elevation of

allergic inflammation, including increased IL-33, TSLP, IL-1a
and uric acid in the lungs of Per a 10-treated mice (6).

Interestingly, the intrinsic protease activity of some allergens is

responsible for eliciting alarmin cytokine production. The serine

protease activity of the fungus Alternaria alternata evokes

secretion of IL-33 in airway epithelial cells of challenged mice,

a mechanism dependent on the activation of protease activated

receptor-2 and ATP signaling (7). These findings suggest that

various enzyme activities in allergens may induce alarmin

cytokine expression and can impact downstream allergic

airway responses.

Furthermore, TSLP secretion is increased by lung epithelia

exposed to carbohydrate-dependent natural Der p1. This was

confirmed by minimal uptake of deglycosylated Der p1 by DCs

(8). Thus, glycosylation of allergens can also have a significant

impact on their allergenic properties. These observations are

indications of various biochemical mechanisms harnessed by

allergens, which contribute to alarmin secretion and

downstream airway inflammatory responses.
Virus infections

Viruses can induce epithelial disruption, and studies in mice

have demonstrated that viral infections can promote the

secretion of alarmin cytokines such as IL-33 by non-

hematopoietic cells and necrotic cells (9, 10). IL-33 signalling

through its receptor, ST2 expressed by cytotoxic CD8+ T cells,

can promote the expansion of primary effector CD8+ T cells and

the differentiation of cytotoxic T cells in LCMV-infected mice

(10). Furthermore, IL-33 release can modulate innate and

adaptive responses to HIV, viral hepatitis and HSV infections

(11). Importantly, IL-33 has been implicated in COVID-19-

associated lung remodelling, fibrosis, anti-viral cytotoxic T cell

activity, antibody production and release (12, 13).
Air pollution

Airborne particulate matter includes solid particles or air-

suspended liquid droplets of various sizes (in diameters), which

can be differentially deposited and absorbed in the airways and

thereby induce local inflammation and asthma exacerbation.

Studies have shown that the expression of TSLP, IL-25 and IL-33

as well as other Th2 cytokines are increased in particulate

matter-exposed cells (reviewed in (14). However, few studies

have shown how oxidative stress, DNA damage and increased

arginase II activity directly impact TSLP, IL-25 and IL-33

secretion in airway epithelial cells. There is the likelihood that

similar to results from studies on HDM-induced asthma, the

secretion of alarmin cytokines in response to particulate matter-

associated DNA damage will depend on the levels of DNA
frontiersin.org
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double-strand breaks, repair proteins and apoptosis of airway

epithelial cells (15). A time-dependent increase in the

production of arginase II observed in particulate matter-

treated bronchial epithelial cells (16) may be an indication of

upstream alarmin cytokine secretion and amplified type

2 responses.

Other studies have focused on the correlates of particulate

matter-induced oxidative stress (17, 18). TSLP secretion has

been found to occur in response to direct epithelial cell injury,

particularly during tight junction disruption by particulate

matter (14, 19). In a proof-of-concept study in which human

bronchial epithelial cells were co-cultured with myeloid DCs,

treatment of co-cultures with diesel exhaust particles

upregulated OX40 ligand and Jagged-1 expression by DCs,

which was dependent on TSLP release (20, 21). In a study set

up to investigate the role of oxidative stress in response to

allergens, IL-33 release was found to be controlled by the

transcription factor nuclear factor-erythroid-2-related factor 2

(Nrf2) (22). In another study by Brandt et al., the authors found

that exposure to diesel exhaust particles promoted oxidative

stress, IL-6, neutrophils and pulmonary accumulation of IL-33;

however, IL-25 and TSLP levels were unaffected (23).

The expression of the aryl hydrocarbon receptor (AhR) by

bronchial epithelial cells promotes mucin production and
Frontiers in Immunology 03
enhanced allergic responses (24). A link has been identified

between TSLP upregulation and expression of miR-375, which

targets the AhR (25). Results from another study show increased

secretion of IL-25, IL-33 and TSLP in primary bronchial

epithelial cells in response to with diesel exhaust particles

treatment, which was reversed by silencing AhR expression

(26). Results from chromatin immunoprecipation assays

indicated that binding of the AhR nuclear translocator to the

IL-33, IL-25 and TSLP promoters facilitated severe allergic

manifestations (26).
Alarmin cytokines: Heralds of
epithelial stress

Alarmin cytokines are a small group of epithelial-derived

mediators of the immune system holding a pivotal role in

initiating T2 inflammatory responses in asthma. These

mediators correspond to TSLP, IL-25, and IL-33, in the order

of their discovery (27–30). Their characterizations as alarmins

signify that these cytokines possess traits associated with other

alarmins: they can be produced by healthy activated immune

cells and secreted through the ER-Golgi apparatus or non-

classical pathways, such as nonprogrammed cell death, but not
FIGURE 1

The secretion of alarmin cytokines in the airway epithelium may be triggered through multiple mechanisms which depend on the nature of the
external insult. Asthma exacerbations can occur in response to air pollutants, allergens, and respiratory viruses. Various studies based on in
vitrochallenged human bronchial epithelial cells and animal models indicate that IL-25, IL-33 and TSLP are released through cleavage of tight
junctions (TJ), and necroptosis. Particulate matter and other air pollutants can trigger oxidative stress and the release of reactive oxygen and
nitrogen species as well as DNA damage.
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apoptosis; they promote the adaptive immune system directly or

indirectly through the recruitment and activation of antigen-

presenting innate immune cells such as DCs and ILC2; and they

can promote homeostatic functions such as tissue repair and

immune system processes (29, 31–35). Despite their similar

roles, their signaling pathways differ greatly between them

depending on the cell type, as shown in Figures 2–4.

Signalling pathways triggered in response to allergens and/or

pollutants influence downstream inflammatory responses that

underlie the complex nature of asthma endotypes. Of

importance is the ability of the alarmin cytokines TSLP, IL-25

and IL-33 secreted by epithelial cells to activate T2 immune

responses, which are mediated by T helper 2 (Th2) and group 2

innate lymphocyte cells (ILC2). T2 airway inflammation is

characterised by allergic and non-allergic eosinophilic

inflammation, driven by IL-5 produced by Th2 and ILC2 cells

(36). TSLP has also been implicated in the activation of non-T2 or

T2-low airway responses driven by T helper 17 cells and

neutrophilic inflammation (36). In addition, TSLP can regulate

the interaction between airway smooth muscle cells and mast cells

and promote structural changes that trigger airway remodelling

(37–39). Collectively, it is evident that from their prime position in

the inflammatory cascade, TSLP, IL-25 and IL-33 orchestrate the

elicitation and activity of multiple effector cells and pathways that

constitute the asthma phenotype (Figure 1).

The pivotal role of alarmin cytokines has generated

substantial interest in their respective functions; however, due

to the pleiotropic nature of these cytokines, fully understanding

their roles within the immune system has been difficult. Here, we

try to deconstruct their roles from research over the last

twenty years.
Thymic stromal lymphopoietin (TSLP)
structure and function in the airways

The originally characterised alarmin cytokine TSLP, a

member of the IL-2 family of cytokines, was first identified as

a B cell growth factor in a mouse model in 1994 (40). Later

classified as an IL-7-like cytokine, its receptor is a heterodimer

comprised of the IL-7 receptor a chain (IL7Ra) and a g-like

receptor chain called TSLP receptor (TSLPR) (41). TSLPR is

located on various immune cell types, which include immature

DCs, mast cells, activated CD4+ T cells, CD8+ T cells, B cells,

NKT cells, basophils, eosinophils, and monocytes, with the

highest expression in myeloid DC populations (41–46). This

feature also highlighted that TSLP has multiple signaling

pathways which varies by cell type that remain to be solved

(47). Unlike its receptor, TSLP expression is restricted with its

primary expression site in airway epithelial cells, extending to

airway smooth muscle cells and mast cells in asthma, and

activating a caspase-1/NF-kB pathway (37, 48, 49). The wide
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distribution of TSLPR expression indicates the potency of TSLP

to induce broad effects throughout the body, although much

remains to be elucidated regarding the role of TSLP in airway

inflammation and asthma.

TSLP is a pleiotropic cytokine capable of inducing both pro-

inflammatory and regulatory functions within the immune

system. Early studies in mouse models demonstrated a

necessary and sufficient role for TSLP in the initiation of allergic

inflammatory diseases based on transgenic lung-specific

expression of TSLP in antigen-induced asthma and similar

models in TSLPR-deficient mice (50, 51). Antibodies to TSLP

were subsequently found to reduce the inflammatory response

and airway remodeling inmouse models of chronic allergic airway

inflammation (52). This led to the concept of targeting TSLP in

human asthma at the level of the airway epithelium.

Interestingly, the functions of TSLP are uniquely split

between two isoforms in humans, with short-form TSLP

(sfTSLP) associated with promoting homeostasis and long-

form TSLP (lfTSLP) related to promoting airway inflammation

(Figure 5) (53–55). An additional complexity of these isoforms is

the human-specific expression of sfTSLP, with no evidence for

its expression in rodents or other species (56). The two isoforms

were first described in human bronchial epithelial cells by

Harada et al. (53). While human lfTSLP consists of 159 amino

acids, sfTSLP is considerably shorter at 63 amino acids, which

are identical in the C-terminal region of lfTSLP. These proteins

derive from transcripts produced from two distinct 5’-

untranslated regions resulting in two different open reading

frames for TSLP in the human genome (57). The expression

and release of these two isoforms are differentially regulated;

stimulation of keratinocytes by T2 cytokines or ligands for TLRs

resulted in increased lfTSLP transcription but not sfTSLP (58).

In contrast, vitamin D upregulated total, but not long form,

TSLP transcription, although it did not induce the release of

TSLP, suggesting that sfTSLP may be regulated by vitamin D.

Comprehensive studies in mice have elucidated the role of

mouse TSLP (similar to human lfTSLP) in the development of

asthma and other type 2 inflammatory manifestations,

represented by the induction of downstream responses by

TSLPR-expressing cells such as DCs, ILC2s, basophils and

mast cells (59). However, the lack of sfTSLP expression in

mice makes it difficult to compare the specific immunological

role of sfTSLP with that of lfTSLP in homeostasis or allergic

inflammation in a whole animal model.

Expression of lfTSLP is highly inducible by many cytokines in

bronchial epithelial cells, suggesting a proinflammatory role for

this isoform in the lungs (53), and a recent study showed elevated

sfTSLP and lfTSLP mRNA expression in nasal epithelial cells but

not the circulating blood of children with asthma (55). Such

localized expression of these isoforms suggests that they have

important homeostatic and proinflammatory roles at the level of

the tissue microenvironment rather than systemic circulation.
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Studies reveal several allergen-derived proteases such as

Alternaria, Per a 10 in cockroach extract, and Der-p2 from

HDM can induce TSLP, although these studies did not

discriminate between sfTSLP and lfTSLP (6, 60–63).

Additionally, respiratory viruses, bacterial peptidoglycans,

double-stranded RNA (dsRNA), cigarette smoke, and some

pro-inflammatory cytokines such as IL-1, IL-4, IL-13, and

TNF-a and can induce TSLP in epithelial cells and immune

cells, ultimately promoting airway inflammation (37, 43, 48, 64–

67). Air pollutants such as diesel exhaust particles can also

amplify TSLP release triggered by allergens, which links

decreasing air quality in heavily urbanised areas with an

increased susceptibility of asthma and asthma exacerbation in

urban centers.

The central role of TSLP in airway inflammation is to

activate CD11c+ myeloid DCs to express OX40 ligand

(OX40L), which then primes naïve CD4+ T cells to

differentiate into a pro-inflammatory T2 phenotype expressing

IL-4, IL-5, IL-13, and TNF-a (41, 43, 44, 48, 49). T regulatory

cells interacting with TSLP-activated DCs (through OX40L)

switch from an IL-10 producing regulatory subtype into a pro-

inflammatory TNF-a producing subtype (41). When activated,

CD4+ T cells are maintained and expanded through TSLP-

activated DCs expressing the prostaglandin D2 receptor

CRTH2, which contribute to the proliferation of Th2 memory
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cells. Tissue damage is also promoted directly through TSLP-

activated DCs by activating naïve CD8+ T cells and inducing

their differentiation into an ineffective cytotoxic cell with

prominent IL-5 and IL-13 producing capabilities. These cells

can be further amplified by the presence of CD40L, which

induces differentiation of CD8+ T cells into cytotoxic effector

cells that can produce IL-5, IL-13, and a large amount of IFN-g
(41, 43, 44, 48, 49, 64, 66, 68).

While DCs remain the primary target cell type for TSLP,

other TSLPR-expressing cells of the innate immune system also

contribute to T2 cytokine-mediated allergic responses initiated

by TSLP. For example, NKT cells expressing TSLP heterodimers

are directly activated by TSLP to produce IL-13 (69). Eosinophils

are particularly affected by TSLP, since eosinophils interacting

with TSLP survive for a significantly longer time before

undergoing apoptosis through the expression of an increased

amount of adhesion molecules that bind to fibronectin, which

then further enhances their survival (70, 71). TSLP also induces

release of IL-6 and the chemokines CXCL1, CXCL8, and CCL2

from eosinophils, as well as promoting the migration of

neutrophil and non-hematopoietic cells (44, 70).

Mouse model studies suggest that eosinophilia and

basophilia are promoted through TSLP-mediated upregulation

of CD34+ progenitor cells and their recruitment at sites of

infections (72, 73). Secreted cytokines from CD34+ were
FIGURE 2

TSLP signalling pathways through JAK1 and JAK2. TSLP signaling pathways require a heterodimer of IL-7Ra and TSLP receptor (TSLPR).
Interaction between TSLP and its receptor cascades in a signaling pathway through JAK1 and JAK2 which varies depending on the cell type.
JAK1 and JAK 2 can activate STAT1, STAT3 and STAT5 as well as NF-kB and MAP kinases through PI3K, but all these pathways have not been
fully resolved. The outcome of activation also varies with the type of cell affected, but includes upregulation of IL-6, IL-8, cell proliferation; in
dendritic cells, activation by TSLP causes their migration and maturation to a Th2 phenotype.
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shown to activate epithelial cells and promote TSLP release in a

positive feedback loop, while TSLP induced differentiation of

CD34+ cells into eosinophils and basophils and further

enhanced allergic inflammation in the tissue (40, 72, 74).

Other studies in humans found similar properties of TSLP in

mediating basophil and eosinophil hematopoiesis, skewing the

immune system towards a T2 high phenotype (41, 72–75).

Findings from these studies also revealed that TSLP promotes

the formation of extracellular traps from eosinophils and

regulates basophil degranulation, which then initiates a

positive feedback loop of TSLP production and exacerbates

allergic airway inflammation (71, 72, 74, 75). Interestingly,

eosinophil extracellular trap induction by TSLP is associated

with the severity of asthma and promotes this through

pulmonary neuroendocrine cells via the CCDC25-ILK-PKCa-
CRTC1 pathway (76). However, there are no studies showing

how TSLP itself is secreted from epithelial cells, although one

study has indicated both apical and basolateral secretion

pathways are possible for TSLP from bronchial epithelial

cells (77).

On its own, TSLP is a powerful inducer of airway

inflammation, but it can also work synergistically with two

alarmin cytokines, IL-25 and IL-33. Studies have shown that

IL-33 and TSLP modulate migration of CD34+ progenitor cells

in patients with asthma, further enhancing eosinophilia and
Frontiers in Immunology 06
basophilia, and also inversely correlate with lung function (78).

For its part, IL-25 mainly affects TSLP by its contribution to Th2

memory cell expansion through proliferation, T2 polarization,

and its effect on upregulation of chemokine and cytokine

receptors, CCR4, IL-4Ra, and IL-7Ra (79). Asthmatic patients

exhibited an increase in cells immunoreactive for IL-25, IL-33,

and TSLP in their submucosal lung samples, which was

accompanied by increased airway obstruction characterised by

late-phase bronchoconstriction and reduced FEV1 following

allergen exposure (34). These findings suggest that TSLP can

work both independently and synergistically with other alarmin

cytokines to contribute to the pathogenicity of allergic airway

inflammation (30, 80–82).
Function of interleukin-25 (IL-25) in the
airways

IL-25, also known as IL-17E, belongs to the IL-17 cytokine

family, including IL-17A, IL-17B, IL-17C, IL-17D, and IL-17F (30,

80–82). IL-25 was discovered in 2001 in a mouse model study

showing that infusion of IL-25 induced a T2-like response (83). In

the airways, IL-25 is secreted by airway endothelial cells and

epithelial cells, as well as immune cells such as alveolar

macrophages, mast cells, Th2 cells, activated eosinophils, and
FIGURE 3

IL-25 signalling pathways through Act1. The IL-17E/IL-25 signaling pathway requires a heterodimer of IL-17RA and IL-17RB which allows
interactions with Act1. Act1 recruits TRAF4 and TRAF6 which activates gene upregulation through NF-kB. SMURF2 removes the inhibitory effects
of DAZAP2 which allows upregulation through MAP kinases and induces JAK2 to signal through STAT5 for IL-4, IL-9 and IL-13. The IL-25
pathways available represent the resolved pathways in T cell and airway epithelial cells, but IL-25 receptors are also found on mast cells,
eosinophils, basophils, and other immune cells.
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basophils (35, 81, 84–90). The widespread expression of IL-25 in

numerous tissue and immune cells highlights the broad impact of

this cytokine in both the initiation and progression of

allergic inflammation.

The receptor for IL-25 is a heterodimer complex composed of

the two subunits, IL-17RA and IL-17RB (88). After formation of the

heterodimer complex, IL-25-mediated signaling pathway recruits

the adaptor protein Act 1, followed by TRAF4 and TRAF6. TRAF6

activates the NF-kB pathway while TRAF4 activates the MAPK

pathway through degradation of the inhibitory protein DAZAP2

(deleted in azoospermia DAZ-associated protein 2) by Smad

ubiquitin regulatory factor 2 (SMURF-2) (30, 87, 91, 92). The

currently understood signaling pathway for IL-25 (Figure 3) is still

under investigation and requires further study to identify nuances

between various cell types.

The immunological role of IL-25 may be associated with

protection against parasitic infections. This is supported by the

observation that epithelial-derived IL-25 secretion induced the

expulsion of Nippostrongylus brasiliensis, a helminth, in a mouse

model that exhibits delayed worm expulsion (93). IL-25 was also

found to have protective capabilities in an ex vivo enteroinvasion

challenge model where exogenous IL-25 restored intestinal

barrier functions and prevented bacterial infections (94).

While the beneficiary role of IL-25 extends to homeostasis and

wound healing, these features have so far been limited to the

keratinocytes in the skin and the gastrointestinal epithelium.
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Since its identification almost two decades ago, various

studies have sought to delineate the role of IL-25 as an

initiator of T2 responses. Since the seminal study by Fort and

colleagues (83), in which the administration of IL-25 to mice was

shown to elicit the production of T2 cytokines and induce gross

eosinophilia, IL-25 has proven to be a main player in shaping

allergy and asthma responses. Of clinical relevance is the

association of IL-25 production with asthma exacerbations

triggered by respiratory viruses (95). The induction of IL-25

by rhinoviruses in lung epithelial cells and concomitant

activation of T2 inflammation was distinctly higher in samples

from asthma patients (95). This finding has uncovered a role for

IL-25 signalling in dampening antiviral responses, which can be

targeted as a strategy for asthma treatment. IL-25 is also involved

in chronic inflammation from inflammatory bowel disease

(IBD) and rheumatoid arthritis (RA). In IBD, IL-25 is

characterized has a pleiotropic protein, having both beneficial

and negative effects depending on stage of the disease and the

type of studies. Human patients with IBD have very low IL-25

levels in their serum and inflamed mucosa suggesting IL-25

presence could prove beneficial. However, IL-25-deficient mice

were found to be more resilient to dextran sulfite sodium (DSS)-

induced colitis, resisting up to 3 treatments before levels of

inflammatory markers rose. In that study, IL-25 upregulated T2

responses from colon epithelial cells with increased IL-33, IL-6

and TNF-a levels absent in the IL-25-/- (96). In RA, IL-25 has
FIGURE 4

IL-33 signalling pathways through MyD88. The IL-33 signaling pathway requires a heterodimer of ST2 and IL-1 receptor accessory protein (IL-
1RAcP) to activate and signal through MyD88. If IL-33 avoids binding to soluble ST2 decoys, it signals through MyD88 to interact with IRAK1 and
IRAK4, which in turns activate TRAF6 and leads to NF-kB and AP-1 gene upregulation of IL-5, IL-13 and MCP-1. AP-1 is also able to activate
independently of MyD88 through an undiscovered pathway involving MAP kinases.
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been reported to be produced in excess in synovial fibroblasts

suggesting a pro-inflammatory role. Later studies found IL-25

could suppress the pathogenesis response of Th17 cells (97).

In asthma, the role of IL-25 appears to be primarily recognised

as a detriment to positive health outcomes. Lipopolysaccharide

(LPS), ovalbumin (OVA), and injury to the epithelium are known

to activate epithelial IL-25 release (92). OVA and LPS activate IL-

25 production through the MAPK p38 and JNK pathway in vitro

(86). Airborne allergens such as cockroach extract (CE) and HDM

and their associated proteases can trigger the secretion of IL-25

along with IL-33 and TSLP (6, 98). The release of IL-25 from

epithelial cells in asthma also leads to overproduction of IL-4, IL-

5, IL-9, IL-13, and CCL11, which then initiate recruitment of

eosinophils, DCs, ILC2s, basophils, T cells, and other immune

cells (86–88, 99). Among these recruited cells, IL-25 induces

eosinophils through NF-kB, p38 MAPK and JNK pathways to

produce chemoattractant protein-1 (MCP-1) which accelerates

monocyte/macrophages recruitment, macrophage inflammatory

protein-1a (MIP-1a) which can cause neutrophilic infiltration

and the pro-inflammatory cytokine IL-6 and IL-8 (100, 101).

Recent findings highlighted the presence of IL-17RB+ myeloid

dendritic cells (mDCs) and IL-17RB+ plasmyeloid dendritic cells

(pDCs) in humans (102). These newly identified DCs have

potential pro-inflammatory and anti-inflammatory roles

following IL-25 induction for mDCs and pDCs respectively (102).
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Airway remodeling is also associated with IL-25, which is

characterised by goblet cell hyperplasia, mucus hyperproduction,

and enhanced angiogenesis through increased endothelial cell

expression of vascular endothelial growth factor (VEGF) that

activates the PI3K/Akt and Erk/MAPK pathways (28, 83). In

airway remodeling, IL-25 induces the differentiation of fibroblasts

into myofibroblasts and increases extracellular matrix deposition

of collagen I/III and fibronectin in the lungs (80, 91). IL-25 is a

major driver for airway remodeling in asthma by causing

increased epithelial damage, which then maintains eosinophil

and immune cell infiltration by neutrophils and T cells and

creates a positive feedback loop system that can perpetuate

inflammation (28, 81, 83–85). The direct link of IL-25 to

fibroblast activation in inflammation is unique among the

alarmin cytokines and has led to an initiative to generate

potential therapeutic targets that target IL-25. Allergen-primed

memory-like ILC2 cells have been demonstrated to be highly

responsive to IL-25 (103). Recently, tuft cells in the airway

epithelium were discovered to be a key source of IL-25 and

were responsible for driving the allergic inflammatory response

together with cysteinyl leukotrienes (104, 105).

A similar cell type was found in murine synovial epithelium

named solitary chemosensory cells (SCCs). This suggests a

similar activation of these cells by their taste receptor could

regulate the immune response to allergens. It is currently
FIGURE 5

TSLP isoforms. TSLP has two isoforms covering two distinct roles: sfTSLP (63 amino acids) for homeostasis and lf TSLP (159 amino acids) for
inflammatory responses. Each isoform is under the control of different promoter regions directed by distinct pathways, with the vitamin D
receptor/retinoid X receptor pathway specific for sfTSLP expression and the AP-1/NF-kB pathway for lfTSLP. Both isoforms share the same
Cterminus amino acid sequence but have distinct N-terminus sequences.
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believed a similar type of IL-25 positive chemosensory cell exist

in the human nasal cavity which would increase the relevance of

IL-25 in asthma even further (91).

As found for TSLP, there is limited information about how

IL-25 is secreted from cells despite extensive knowledge of

signalling pathways that trigger its production. Taken together,

the pro-inflammatory effects of IL-25 in allergic airway

inflammation is in marked contrast to its role in protection

against helminth infection.
Role of interleukin-33 (IL-33) in allergic
airway inflammation

IL-33 was first identified in 2003 as “nuclear factor from high

endothelial venules” (NF-HEV) before being assigned to the IL-1

family in 2005 (27). IL-33 is constitutively expressed and

chromatin-associated in endothelial cells in large blood vessels

throughout the body, as well as in epithelial cells, with a higher

abundance in mucosal epithelial cells in contact with the external

environment, including gastrointestinal and bronchial epithelia

(32, 106, 107). IL-33 is highly expressed in the nuclei of various

cells in the steady state and contributes to tissue homeostasis and

responses to environmental stimuli (106). Its constitutive

expression in various tissues is attributed to its prevalence in

endothelial cells from blood vessels along the vascular tree (106).

Nevertheless, IL-33 expression is further increased in response to

inflammatory cues such as necrotic cell death, mechanical and

oxidative stress (108). In addition, IL-33 can be proteolytically

activated by allergen and calpain proteases, which leads to

increased processing and release from damaged airway

epithelial cells (108). Interestingly, the half-life of IL-33 is brief

due to oxidation (within minutes of its release), suggesting that it

may serve as a “molecular clock” that limits its range and

duration of activity in response to airway stimuli (109).

As a pleiotropic protein, IL-33 is both a pro-inflammatory

cytokine and an intracellular transcriptional factor with

regulatory properties. Lacking a signal peptide, IL-33 is bound

directly to nuclear histones and is released directly from cell

nuclei upon damage to the epithelium, so it is not released under

apoptotic conditions but instead through necrosis (63, 110). Its

intranuclear localisation may be important for prevention of

inappropriate secretion, as IL-33 overexpressing transgenic mice

are highly susceptible to systemic inflammation (111). The

genetic sequences encoding IL33 and IL-1 receptor-like 1

(ILRL1), which encodes ST2, are amongst the few genes

associated with asthma (112). A rare variant in IL33 correlates

with low eosinophil counts and reduced risk of asthma in

Europeans. Interestingly, the mutation induces truncation of

the C-terminal 66 amino acids, which does not affect the

intracellular localisation of IL-33 (112).

Unlike the activating effects of caspase-1 on IL-1b and IL-18

during apoptosis, caspase-1 deactivates IL-33 upon its cleavage.
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Caspase-3 and caspase-7 were also found to inactivate IL-33

which suggests caspases possibly act as an anti-inflammatory

protective layer to limit the effects of IL-33 in vitro (113).

Currently, studies suggest that the bioactivity of IL-33 is

mediated through interaction with activated neutrophil serine

proteases, elastase and cathepsin G, that cleave intact IL-33 into

shorter highly active forms (99, 114–116).

Upon release, IL-33 binds to a heterodimeric cell surface

receptor composed of the selectively expressed receptor IL1RL1/

ST2 in combination with the IL-1R accessory protein (IL-

1RacP), which is ubiquitously expressed (117). ST2 was first

discovered on Th2 cells and mast cells (118–120), and since then

studies have revealed its constitutive expression on most

immune cells which include ILC2 cells, eosinophils, basophils,

natural killer cells, NKT cells, Treg cells, cytotoxic T cells and

activated Th1 cells (32, 63, 78, 99, 106, 107, 113, 115, 116, 121–

129). In ILC2 cells, IL-33 induces expression of OX40L serves a

critical role in Treg and Th2 cell expansion which leads to type 2

pulmonary inflammation (130).

Similar to TSLP and IL-25, the receptor for IL-33 possesses

two main isoforms (Figure 6). The membrane bound ST2 forms

a heterodimer with IL-1RAP and activates the ST2/IL-33

signaling pathway, while the soluble form of ST2 (s)ST2 acts

as a decoy to bind free IL-33 and prevent IL-33/ST2 signaling

pathway activation (131). Another human isoform of ST2 exists

(ST2V), although little information is currently available about

its functionality. ST2V is highly expressed in the stomach, small

intestine and colon, and is regulated by alternate promoter

binding sites (132).

sST2 acts as a negative regulator of IL-33/ST2 signaling and

dampens the pro-inflammatory effects of IL-33. The function of

sST2 as a down regulator of IL-33 signaling was first discovered

in a murine asthma model (131), BALB/C mice were challenged

with OVA to confirm the increasing expression of both ST2 and

sST2. They later proceeded to pre-treat murine thymoma EL-4

cells stably expressing membrane-bound ST2 with sST2 which

supressed the production of IL-4, IL-5 and IL-13 (131), but the

exact location of sST2 production was not found at the time. We

now know that sST2 in humans is produced by lung, heart,

kidney, small intestine cells, and macrophages (133). sST2

production is also increased by IL-1b and TNF-a in human

lung epithelial cells as well as cardiac myocytes in vitro, and IL-

33 itself can induce production of sST2 by mast cells (134). For

its counterpart, ST2 expression can be enhanced by IL-33 on

eosinophils, Th9 cells, innate lymphoid cells, and regulatory T

cells (106, 122, 135). Macrophage ST2 expression is enhanced by

IL-4 and IL-13 while basophil ST2 expression is regulated by IL-

3 stimulation (136–140). Finally, Th2 cell ST2 expression is

dependent on GATA3 signaling and can be enhanced by IL-6,

IL-1, TNF-a or IL-5 (119, 141). Other than sST2, ST2 has two

other forms of down-regulation. Downregulation may occur

through the ubiquitin-proteasome system which degrades ST2

internally, and TIR8, also known as SIGIRR which was found to
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disrupt the ST2/IL-1RacP dimer (142–145). When IL-33 binds

to ST2 and not the ST2 decoy, it triggers ST2 to form a

heterodimer with IL-1RAP which recruits MyD88 as shown in

Figure 6. MyD88 binding is followed by IL-1R-associated kinase

activation (IRAK) which activates TNF receptor-associated

factor 6 (TRAF6). TRAF6 then activates mitogen-activated

protein kinase (MAPK) and the inhibitor of nuclear factor-kB
(NF-kB) kinase (IKK) complex. MAPK subsequently activates

activator protein 1 (AP-1) while IKK liberates NF-kB which

both leads to T2 cytokine upregulation (106, 146). While the

pathways of IL-33/ST2 appear complete, there are still some

unknowns when it comes to the downstream signaling.

Currently, AP-1 is hypothesized to have a pathway

independent of MAPK or NF-kB and a TRAF-6 independent

pathway through MAPK which has not been elucidated yet

seems to also be able to induce T2 cytokine (145). Studies on

Tregs from the colon have also found a pathway involving

GATA3 and Foxp3 that culminates in promotion of ST2

receptor on the surface of Tregs and Th2 cells irrespective of

the presence of inflammation (147).

In short, IL-33/ST2 signaling is regulated by ST2 expression

of its two main isoforms, the membrane-bound ST2 (ST2) and

its free soluble ST2 (sST2). It is quite likely that, it is the actual

ratio of ST2/sST2 in a given area that determines IL-33/ST2

signaling outcomes. This ratio can itself be influenced by the
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ubiquitin-proteasome system, the type and number of cells in

the environment, certain cytokine levels such as, IL-4, IL-5, IL-6

or IL-13. The inhibitory effects of sST2 has led companies to look

further into creating competitive inhibitor to the heterodimer

ST2/IL-1RAcP to sequester IL-33 with the aim to reduce Th2

inflammation induced by IL-33.

IL-33 is capable of directly influencing both adaptive and

innate immune cells to promote inflammation. In the innate

immune system, IL-33 promotes the initiation of inflammation

by interacting with ILC2s, basophils, and NK cells to induce

secretion of T2 cytokines like IL-4, IL-5, and IL-13. In turn, these

pro-inflammatory cytokines activate the adaptive immune

system, recruit eosinophils, and initiate the process of airway

inflammation and remodeling. In the adaptive immune system,

IL-33 induces chemotaxis of Th2 cells and interacts with them to

promote their proliferation and enhance their survival (125,

148). The effects of IL-33 has been posited to possibly surpass IL-

25 in causing airway hyperreactivity by expanding the ILC2

population and inducing IL-13 to a greater degree than its

counterpart based on studies in mice deficient in either IL-25

or IL-33 (99). Mice deficient in IL-33 have also proven to be

resilient to HDM-induced allergic rhinitis as well as ragweed

pollen challenges (99, 149, 150). T2-independent airway

hyperreactivity is also linked to IL-33, where it was shown that

activated NKT cells could induce alveolar macrophages to
FIGURE 6

Membrane-anchored ST2/soluble ST2 isoforms functional differences in role and expression. Membrane-anchored ST2 (ST2) expression is
controlled by the distal promoter region through the promoters GATA1, GATA2 and PU.1. ST2 comprises the functional receptor in the IL-33/
ST2 signaling pathway. Soluble ST2 (sST2) expression is controlled by the proximal promoter region. Its promoters remain to be elucidated and
the isoform share the same extracellular domain which makes sST2 a competitive inhibitor of ST2 in the IL-33/ST2 signaling pathway.
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produce IL-33, which then induced IL-13 production by ILC2s

and activated NKT cells, creating a positive feedback loop (29,

117, 125). This innate T2 cytokine response was also observed in

a mouse model examining danger signals (63). In this study,

ATP release from damaged cells induced IL-33 production in

mouse lungs, which led to the activation of ILC2s, which then

produced IL-5 and IL-13 to initiate a T2 response (63). Studies

on chronic inflammation from smoking and COPD suggests the

continuous inflammatory signals increases tissue availability of

IL-33 which then contributes to the state of inflammation in a

feedback loop (107). Other studies on IL-33-induced airway

hyperreactivity demonstrated a link between IL-33 and mucus

overproduction, goblet cell hyperplasia, and eosinophilia, as well

as elevated chemokines and cytokines in the lungs (106). From

these findings, it has been determined that IL-33 is a central

mediator in inflammation in both the innate and adaptive

immune systems.

In addition, IL-33 can synergise with both IL-25 and TSLP to

promote cell migration and increase ILC2 activation (116). In

homeostasis, the role of IL-33 has been partially characterised

but less well understood. Studies suggest strategically positioned

Tregs that express a high level of IL1RL1 receptors are able to

bind IL-33 and activate highly anti-inflammatory Tregs, which

then secrete IL-10 (117). Additionally, IL-33 can promote a

subset of ILC2s and DCs that enhance Treg proliferation. These

findings suggest a model where excessive IL-33 can be

intercepted by these anti-inflammatory pathways to prevent

propagation in local immunity.
Perpetrators of the asthma
inflammatory response: Synergism
or redundancy?

As mentioned above, TSLP, IL-25 and IL-33, are designated

as alarmin cytokines because their release from microbial,

pollutant or allergen-perturbed epithelia heralds the onset of

inflammatory responses in asthma. Studies on the biology of

these cytokines indicate a role in tissue homeostasis under

steady-state conditions, which switches to the induction of

inflammatory mediators upon dysregulation or triggering by

environmental cues.

The ability of alarmin cytokines secreted by epithelial cells to

mediate similar downstream inflammatory responses indicates a

degree of redundancy in the production of T2 cytokines,

biomarkers and pathophysiological manifestations characteristic

of asthma. Consequently, studies have been carried out to identify

how individual alarmin cytokines contribute to the asthma

inflammatory responses. Observations from alarmin cytokine/

cytokine receptor-deficient mouse experiments indicate that

individual alarmins can elicit the infiltration of different of

immune cells and their corresponding responses depending on

the nature of the allergen. For instance, the accumulation of
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eosinophils and ILC2 cells were significantly reduced in the

BALF of TSLPR-deficient mice in an innate model of papain-

induced airway inflammation (151). This corresponded with

reduced levels of IL-5, IL-13 and reduced goblet cell hyperplasia

(151). Furthermore, the magnitude of T2 inflammation, indicated

by the numbers of eosinophils and ILC2s in the BALF of papain-

challenged basophil-specific TSLPR-deficient mice, was

significantly higher compared to lymphoid cell-specific TSLPR-

deficient mice (151). In contrast, IL-5 and IL-13 were mainly

produced by CD4+ T cells and not ILC2 cells in an OVA-induced

atopic march model. Also, reduced T2 responses exhibited by

conventional DC-specific TSLPR-deficient mice and lymphoid

cell-specific TSLPR-deficient mice in this model indicate that

TSLP acts directly on DCs and CD4+ T cells (151). However, a

recent study showed that individual ablation of TSLP, IL-25, or IL-

33/ST2 has no effect on the development of T2 dependent

inflammation driven by IL-4 and IL-13; while blockade of all

three cytokines greatly reduced eosinophilia in mouse models of

helminth-induced T2 inflammation and chronic allergic

inflammation (152). These results reflect specific mechanisms

which may be utilised by alarmin cytokines exhibiting a degree

of redundancy and facilitating T2 inflammation during early and

late stages of allergic asthma.

The deletion of IL-33 has also been shown to impact the

infiltration of eosinophils, neutrophils and CD4+ T cells in

chronic HDM-induced lung inflammation, which indicates its

critical role during the onset of asthmatic inflammation (153). In

a mouse model of asthma induced by prolonged HDM, targeting

IL-33 using a neutralizing antibody normalised established

eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration

and improved remodeling of both the lung epithelium and

parenchyma (146). Treatment with anti-IL-33 also restored the

presence of ciliated cells over mucus-producing cells and

decreased myofibroblast numbers, even in the context of

continuous allergen exposure, indicating a key role for IL-33

in lung remodelling (146).

IL-33, like IL-25, has been found to be associated with virus-

associated asthma exacerbations. However, unlike IL-25 that

promotes virus-linked asthma exacerbations by amplifying T2

responses, IL-33 can facilitate this process by hampering innate

and adaptive Th1 and cytotoxic responses (154). Targeting IL-33

secreted by bronchial ciliated cells and type II alveolar cells

resulted in the restoration of Th1 cytokine and chemokine levels

as well as IFN-b expression in structural and immune cells (154).

The mechanisms through which IL-33 and IL-25 differentially

counter anti-viral responses suggest that alarmin cytokines can

promote asthma severity culminating from various viral

infections, which can be harnessed as treatment strategies.

Studies indicate that IL-25, like IL-33 and TSLP, has a prime

position in promoting T2 asthma. Results from a recent study

show that targeting IL-25 can induce a more selective phenotype

compared to the broader effects of IL-33 (153). In a chronic

HDM-induced asthma model, IL-17RB-deficient mice exhibited
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altered tissue remodelling and airway hyperresponsiveness, but

not eosinophilia and mucus production (153). Also, IL-25 can

function in an autocrine manner by promoting epithelial cell

expression of TSLP (155). Data from mouse pre-clinical studies

indicate that targeting IL-25 using a neutralising antibody

resulted in reduced AHR, which was apparent after antibody

administration during ongoing T2 inflammatory responses in

the lungs (156).

Multiple studies described here and elsewhere specify that

the activities of TSLP, IL-25 and IL-33 serve as a bridge between

the epithelium and downstream airway inflammatory responses.

Observations from several studies have established that the

predominance of alarmin cytokines in promoting allergic airway

inflammation may depend on differing sensitization and

challenge protocols adopted in mouse preclinical studies.

Therefore, a logical approach would be to assess whether

alarmin cytokines act synergistically and if this can be targeted

as a strategy to alleviate airway inflammation and asthma

exacerbation. As expected, however, varying results have been

obtained from co-targeting studies using mouse pre-clinical

models. For instance, in a virus-induced HDM asthma

exacerbation study, targeting TSLP did not impact anti-ST2-

mediated reduction of airway inflammation (154). Instead, TSLP

synergised with IL-33 to mediate AHR at late time-points,

indicating the relevance of the IL-33/ST2 axis rather than

TSLP in facilitating airway inflammation at this late stage

of inflammation.

Results from a chronic HDM–induced allergic lung

inflammation study have indicated that combined targeting of

TSLP, IL-25 and IL-33 using antibodies does not further

decrease established inflammation or fibrosis (152). However,

treatment of TSLP/IL-33 double-knockout mice with anti-IL-25

antibody during the initiation of allergic airway inflammation

reduced inflammation, mucus production, and lung remodeling

in the chronic phase (152). Amongst the many conclusions

which can be drawn from this study it is evident that there is a

degree of redundancy in the roles of TSLP, IL-25 and IL-33 in

maintaining downstream T2 inflammatory responses and

pathology. In summary, co-targeting alarmins during the early

inflammation phase before the establishment of chronicity may

alleviate subsequent allergic airway manifestations.
Nipping the asthmatic cascade in
the bud: Targeting alarmin cytokines
as an asthma therapeutic strategy

With the increasing interest in alarmin cytokines and their

roles in inflammatory cascades in asthma, a growing number of

studies developing strategies to neutralize their upstream effects

on asthma have been ongoing for the last two decades. A

multitude of humanized monoclonal antibodies for asthma

treatment are currently undergoing clinical development,
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which include tezepelumab (targeting TSLP) as well as

etokimab, itepekimab, astegolimab (AMG 282), torzorakimab,

and melrilimab (GSK3772847) for IL-33 (Table 1). The effects of

tezepelumab are exerted by binding to circulating or interstitial

TSLP and preventing its interaction with the TSLP receptor

complex (157–162, 166, 167). Tezepelumab has already

successfully completed phase II and III clinical trials, with

results indicating a reduction in rates of asthma exacerbations,

improved FEV1, and a reduction of T2 inflammatory biomarkers

such as IL-5, IL-13 periostin, and IgE in both T2 high and T2 low

individuals with severe asthma, and without an increase in

adverse effects over those of placebo (157–162, 166). Results

from the phase 2 study PATHWAY trial with tezepelumab went

under post hoc analysis which indicated that annual asthma

exacerbation rates were reduced irrespective of blood

eosinophils counts, baseline body mass index (BMI) or

participants IgE levels (Th2-low asthma patients) (168),

suggesting that tezepelumab has broad efficacy across different

phenotypes of asthma (157, 159, 160). Results from the

NAVIGATOR trial using tezepelumab suggest that targeting

TSLP in patients with severe, uncontrolled asthma may prevent

exacerbations as well as improve lung function based on

improved prebronchodilator FEV1 values (169). Post hoc

analysis from these studies also revealed tezepelumab reduced

blood levels of IL-5, IL-13, periostin, and thymus and activation-

regulated chemokine (TARC) (157, 159, 169). Observations

from these clinical trials suggest that tezepelumab could be a

prospective therapeutic option to prevent severe asthma

exacerbations by targeting cytokine signals further upstream at

the level of the bronchial epithelium.

However, the SOURCE study, a phase 3 multicenter clinical

trial across seven countries with 150 participants, showed

different results with tezepelumab (162). The SOURCE study

found that tezepelumab had no effect in improving dose

reduction of oral corticosteroids compared to placebo. In

addition, participants with a blood eosinophil count > 150

cells per mL had an observable improvement with tezepelumab

(162). Thus, the findings from the SOURCE study contradict

earlier results from the PATHWAY study indicating that asthma

exacerbations were reduced irrespective of blood eosinophil

counts. Further studies on tezepelumab are required to

determine the nature of this discrepancy and identify

asthmatic populations best suited for its use as a treatment.

While prospects are promising for prevention of TSLP-

mediated inflammation through tezepelumab, therapies against

the other two alarmins, IL-25 and IL-33 are currently lagging as

effective treatments in asthma. Despite evidence that blockade of

IL-25 prevents airway hyperresponsiveness in numerous mouse

models of allergic asthma, such outcomes have not been

reproduced in clinical trials (116, 127, 152). Commercially

available biologics for IL-25 exist in the form of brodamulab

targeting the IL-25 receptor, IL-17 receptor A (IL-17RA),

although this is limited to treating plaque psoriasis (168).
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Another monoclonal antibody against IL-25 with encouraging

early clinical data is bimekizumab, which selectively neutralizes

IL-17A and IL-25 (IL17-F) (170). Still, like brodamulab, the extent

of bimekizumab use is currently limited to the treatment of

psoriasis, psoriatic arthritis, and ankylosing spondylitis,

according to early clinical data. Bimekizumab has been

proposed as a biologic treatment for asthma, although this

remains uncertain since this biologic was developed only recently.

IL-33 biologics have shown limited progress in exploring

their use for asthma treatment, despite having been tested in

more clinical trials than those of IL-25. Current therapeutic

strategies aim to neutralize IL-33 and prevent extensive

interaction with its associated receptor ST2 by three strategies:

neutralizing IL-33 directly, deploying soluble decoy receptors of

ST2 to competitively inhibit the receptor, or targeting the ST2

receptor (29, 136, 171). The mechanism of action of astegolimab

falls within the first strategy, consisting of a human mAb that

binds to IL-33 and prevents the interaction of IL-33 to ST2,

which is currently under phase I trial investigation (166, 172).

Results from the recent ZENYATTA study indicate that

astegolimab, a human IgG2 mAb which targets IL-33 receptor,

ST2, reduces asthma exacerbation rates in both eosinophil-high

and -low patients with inadequately controlled, severe asthma

(165). This study demonstrated that astegolimab reduced the

annualized asthma exacerbation rate by 43% relative to placebo

in patients with severe asthma for both eosinophil-low and

eosinophil-high patients, suggesting that this treatment may

benefit a wider spectrum of asthmatics than only those with

elevated blood eosinophils (165). Another biologic that directly

targets IL-33, itepekimab, was recently found to improve lung

function and lower the incidence of uncontrolled asthma events

in a monotherapy cohort of a phase II trial in asthma (164).

Itepekimab was found to improve FEV1, asthma control, and

quality of life compared with placebo in patients with moderate

to severe asthma compared with placebo (164). With both
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astegolimab and itepekimab continuing in clinical trials, there is

still opportunity for the development of effective IL-33 biologics

for treating asthma.

Other studies are under way now to investigate the efficacy of

targeting the IL-33 pathway in asthma including melrilimab,

which inhibits ST2, and tozorakimab, a phase II study with anti-

IL-33 which has been completed and the data are currently

under analysis.

Overall, the upstream positions of alarmin cytokines in

asthma render them as prime candidates for antibody

treatment, and these findings suggest that their inhibition may

provide a useful approach to manage outcomes in asthma.

Current studies are still under way to optimize treatment

strategies for patients with asthma, while tezepelumab has

received FDA approval for its use in severe asthma treatment

and has already been launched for clinical use in the USA. In the

meantime, other downstream effector cytokines, such as IL-4,

IL-5, and IL-13, remain the current best available targets for

biologic treatment of severe asthma with their associated

biologics such as dupilumab, an IL-4 receptor antagonist,

benralizumab, an IL-5R-binding antibody, reslizumab and

mepolizumab, an IgG1 and an IgG4 neutralizing IL-5 antibody,

and omalizumab, an anti-IgE antibody which binds to the Fc

region of free IgE (173–175).
Summary

Research on epithelial cell alarmin cytokines as frontline

mediators of the inflammatory response in asthma is still

ongoing, as is the development of new biologic therapies that

target this group of cytokines. The promising outcomes using

tezepelumab as a new therapy for both T1 and T2 inflammation

in asthma suggest that this could be a very useful treatment for

severe asthma. Future directions lie in understanding more
TABLE 1 Clinical trials of drugs targeting alarmins in asthma.

Treatment Monoclonal
antibody

Current clinical
phase

Intended application

Anti-TSLP Tezepelumab
(AMG157)

Phase III in asthma Asthma (36, 157–163)

Anti-IL-33 Etokimab
(ANB 020)

Phase II in
eosinophilic asthma

Asthma, allergy, atopic dermatitis, chronic rhinosinusitis with nasal polyps (study postponed
following lack of outcomes at week 8)

Itepekimab
(SAR440340)

Phase II in asthma Asthma (164) (study ongoing)

Tozorakimab
(MEDI3506)

Phase II in asthma Asthma (study completed, data under analysis)

Anti-IL-33 receptor
(IL1RL1/ST2)

Astegolimab
(AMG282)

Phase II in asthma Asthma, chronic rhinosinusitis with nasal polyps (165)

Melrilimab
(GSK3772847)

Phase II in asthma Asthma (study ongoing)
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about the expression profiles of sfTSLP and lfTSLP in epithelial

cells throughout the body, and how tezepelumab affects the

activities of these two isoforms during inflammation.
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