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Ultra‑low‑power switching 
circuits based on a binary pattern 
generator with spiking neurons
Takeaki Yajima

Research on various neuro-inspired technologies has received much attention. However, while 
higher-order neural functions such as recognition have been emphasized, the fundamental properties 
of neural circuits as advanced control systems have not been fully exploited. Here, we applied the 
functions of central pattern generators, biological neural circuits for motor control, to the control 
technology of switching circuits for extremely power-saving terminal edge devices. By simply applying 
a binary waveform with an arbitrary temporal pattern to the transistor gate, low-power and real-
time switching control can be achieved. This binary pattern generator consists of a specially designed 
spiking neuron circuit that generates spikes after a pre-programmed wait time in the six-order range, 
but consumes negligible power, with an experimental record of 1.2 pW per neuron. This control 
scheme has been successfully applied to voltage conversion circuits consuming only a few nanowatts, 
providing an ultra-low power technology for trillions of self-powered edge systems.

Due to the development of neuroscience and the success of machine learning technology, there has been increas-
ing interest in neuro-inspired technologies that focus on the neural circuits from an engineering viewpoint. The 
interest is not limited to algorithmic research, but also extends to hardware research, which aims to implement 
neuro-inspired circuits and systems with lower power consumption and low latency1–8. However, most of the 
current hardware research targets the understanding of biological processes or the implementation of machine 
learning algorithm, and may not fully exploit the tremendous potential of biological neural circuits.

In the engineering perspective, biological neural circuits are excellent control systems that control body 
movements with low power consumption and low latency. It compromises the trade-off between power consump-
tion and response time by automating and decentralizing individual motor control, rather than fast centralized 
feedback control of body movements. There are two types of such decentralized motor control: one using reflexes 
that show a fixed response to a specific sensory input, and the other using a central pattern generator that drives 
motor organs according to a programmed time pattern9,10. While the reflex circuit is a relatively simple input–out-
put system, the central pattern generator is a neuronal network that autonomously generates temporal patterns 
without input (Fig. 1a), and is responsible for complex and rhythmic motor control such as walking, chewing, 
breathing, and swallowing11,12. The central pattern generator generally uses spike signals that are heterogene-
ous with respect to time. This is essentially different from the clock signal in digital circuits that ticks at a fixed 
period independent of the environment. Compared with the temporally homogeneous clock signal, the spikes 
at heterogeneous timings can save redundancy, and hence, more suitable for real-time operation.

So far, several central pattern generators have been artificially fabricated in the form of electronic circuits 
for controlling robot actuators13–17, biological muscles18, and physiological systems19. However, there are few 
examples of their application to controlling more general electronic circuits, such as the switching circuits 
(Fig. 1b). The switching circuit consists of several transistor switches that are turned on and off rapidly to pro-
vide a fine-tuned averaged function. They are essential building blocks in various fields of electronics including 
the Internet of Things (IoT) devices. In parallel with the artificial central pattern generators for actuators and 
biological systems, the pattern generators for switching circuits have the potential to provide the real-time and 
energy-saving control scheme in the future IoT devices.

In this study, we constructed an artificial pattern generator that is optimized for switching circuits rather 
than for actuators or biological systems. The pattern generators in the previous studies often uses the spike rate 
coding, which convey analog information by spiking frequency. On the other hand, the switching circuits only 
needs timing information of the switching event, and therefore, it is more convenient to use temporal coding, 
which convey information as the timing of each spike. One of the essential components for temporal coding is 
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the waiting time generator, which generates a spike signal after a preprogrammed waiting time from the onset of 
the input voltage. In addition, a wide range of waiting times are needed because the switching circuits sometimes 
change rapidly on the order of nanoseconds while waiting for most of the time to save energy. In this study, we 
experimentally demonstrated this wide range of waiting times from 100 ns to 100 ms over six orders of magni-
tude. In order to generate the arbitrary waiting time and an output spike signal, a technique of spiking neuron 
circuits with integrate-and-fire function was adopted20–24. The spiking neuron circuits were optimized solely for 
the purpose of waiting time generation based on the complementary metal oxide semiconductor (CMOS) tech-
nology, and any other biological function was not implemented intentionally. As a result, they achieved extremely 
low energy consumption in the order of 100 fJ per spike, corresponding to the average power consumption of 1.2 
pW in minimum, which is the smallest ever among past experimental demonstrations20–24. For controlling the 
switching circuit, the input and the output of the above CMOS spiking neuron circuit were connected to a set-
reset latch circuit to generate a binary wave form with a length of the preprogrammed waiting time as shown in 
Fig. 1c,d. Then, this binary wave form was simply applied to the transistor gates to control the switching circuits 
asynchronously. This simple scheme of the “binary pattern generator” can be applied to a versatile switching 
circuits and can achieve real time control in an extremely low power. For demonstration, we used this binary 
pattern generator to control the DC-DC voltage conversion circuit, which is essential for IoT devices, and showed 
by simulation that it can generate a wide range of output power between 8.36 nW and 1.16 mW at approximately 
90% efficiency, with negligible control power consumption around three orders smaller than the output power. 
Thus, controlling switching circuits with a binary pattern generator provides a powerful means to alleviate the 
power constraints and realize various functions in self-powered IoT terminal devices.

In this paper, we first explain the detailed concept of the binary pattern generator, which is a specially designed 
pattern generator for controlling the switching circuits. Then, we visualize how it works in the demonstration of 
the switching circuit for DC-DC voltage conversion. Finally, the simulation and experiments are shown for the 
CMOS spiking neuron circuits that are the essential building blocks for the binary pattern generator.

Binary pattern generator.  Artificial central pattern generators have been previously studied in the field 
of robotics13–17. There, the information is conveyed as the analog value of the spike rate (spike rate coding), 
which can be used to control the actuators of robots. The power consumption is dominated by the driving power 

Figure 1.   Binary pattern generator. (a) A central pattern generator in the human neural network which 
controls biological motors. (b) A concept of an artificial pattern generator which controls switching circuits 
for DC-DC voltage conversion. (c) A binary pattern generator, a specially designed pattern generator for 
purpose of controlling switching circuits. It consists of a chain of waiting time generators with a wide range of 
preprogrammed waiting times. (d) The spike or bit output signals from the binary pattern generator. The length 
of the bit signal corresponds to the preprogrammed waiting time of each waiting time generator. This bit signal 
is directly used for the gate control in the switching circuits.
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of the actuators, and there is little need to reduce the control power consumption to the extreme. The control 
time scale is also determined by the motion speed of the robot, and so there is little need for a large range of 
control time down to nano seconds. On the other hand, if the artificial pattern generator is to be used for the 
switching circuits, it requires extremely low power consumption and a wide range of time scales down to nano 
seconds. Therefore, for controlling switching circuits, a novel artificial pattern generator is needed to meet all 
these demands.

To address this issue, a binary pattern generator was constructed based on the control scheme of temporal 
coding. Previously, the similar binary waveforms were also exploited in some of the studies on robot control13,14. 
To construct a binary patter generator, we used CMOS spiking neuron circuits with the integrate-and-fire func-
tion, which can generate a spike after a preprogrammed waiting time from the onset of the input step voltage. 
The details will be discussed in the later sections. Each spiking neuron circuit is combined with a set-reset latch 
circuit, a simplest memory circuit, as shown in Fig. 1c,d. When the latch circuit is turned on by an input spike 
signal, the latch circuit generates the output voltage of 1 V. Then, this output voltage is applied to the subsequent 
spiking neuron circuit, resulting in the output of a spike signal after a preprogrammed waiting time. This output 
spike from the spiking neuron circuit resets the initial latch circuit and simultaneously turns on the latch circuit 
of the next stage. By repeating this operation, spike signals are generated at arbitrary time intervals (VA , VC, and 
VE in Fig. 1c,d), and a binary pattern can be generated from the output of the latch circuits (VB and VD). This 
binary pattern can then be used to control transistor gates in the switching circuits. Here, a combination of a 
latch circuit and a spiking neuron circuit are referred to as a waiting time generator (dashed square in Fig. 1c). It 
should be noted the spiking neuron circuit in the binary pattern generator is directly connected to the set-reset 
latch circuit, and therefore, should be compatible with the CMOS logic circuits. Specifically, it should operate 
under the same 1 V power supply as the logic circuits, and it should output spikes with sufficiently short rise 
times and fall times on the scale of nano seconds. All these requirements are satisfied by a special design of CMOS 
spiking neuron circuits as shown later.

Application to voltage converter circuit.  In order to visualize how the binary pattern generator works 
in the practical system, a simulation of the switching circuit for DC-DC voltage conversion is shown in Fig. 2. 
The DC-DC voltage conversion is an essential component for power supply circuits, especially for an energy 
harvesting IoT device25, where the time-varying generated power is buck-boost converted via an inductor and 
stored in a capacitor at a certain voltage level (Fig. 2a). The circuit operation consists of two periods: the first 
period in which the switches of S1 and S3 are turned on (red arrow), and the second period in which only the 
switch S2 is turned on (green arrow). In the first period, the charge stored in the primary capacitor (C1) flows to 
ground through S1 and S3, and the electrostatic energy of C1 is converted to magnetic flux energy of the induc-
tor. In the second period, current flows from the ground to the secondary capacitor (C2) via S2, and the magnetic 
flux energy is converted into electrostatic energy of C2.

To control this switching operation, the binary voltages from the binary pattern generator were applied to 
the gate electrodes of the metal–oxide–semiconductor field effect transistors (MOSFETs) as shown in Fig. 2b. 
A binary pattern (VBIT2) was generated from the spike signals VSPK1 and VSPK2 as shown in Fig. 2c, and was used 
to control the gates of S1, S2 and S3. First, the VSPK1 is generated at a certain period, for example 300 μs, by the 
first-stage spiking neuron circuit, and the VSPK2 is generated 30 μs after VSPK1 by a waiting time generator. Then, 
the created binary pattern VBIT2 was inverted by an inverter and used for gate control of S2. At the same time, 
the voltage level of VBIT2 was raised from 1 to 2 V by a level shifter and used for gate control of S3. To control the 
gate voltage (VS1) of the S1, which is connected to the high voltage side in the circuit, a binary pattern (VBIT3) 
was generated from VSPK2 and an additional spike signal (VSPK3). When VBIT3 is turned on, VOFF is pulled down, 
VS1 is pulled up, and S1 is turned off (Fig. 2d). On the other hand, when VBIT2 is turned on, VS1 is pulled down 
and S1 is turned on. In this way, the voltage level of the binary pattern is properly converted and used for gate 
driving, which makes the switching circuit extremely simple and low power.

When the input power of this circuit was varied from 9.28 nW to 1.33 mW by changing the period of VSPK1 
from 3 s to 50 μs, the output power varied almost proportionally from 8.36 nW to 1.16 mW (Fig. 2e), and overall, 
the efficiency was around 90% (Fig. 2f). The comparison with the previous studies in Supplementary Note 1 
shows the converter with a binary pattern generator maintains a higher efficiency than the previous ones without 
degradation down to 8.36 nW output power. The high efficiency at low output power is mainly because the power 
consumption of the control circuit was 2–4 orders of magnitude smaller than the output power throughout the 
range, for example, 17.5 pW for the output power of 8.36 nW, and 114 nW for the output power of 1.16 mW 
(Fig. 2e). In actual IoT devices, various control circuits need to be implemented, but as long as they can be con-
trolled by the binary pattern generator, there may be no need to worry about the overhead of the control power 
even for an extremely low output power.

In order to clarify the cause of the low control power consumption, we examined the origins of the total 
control power of 2.23 nW when the input power was 84.4 μW (a point with a solid circle in Fig. 2e). The results 
in Fig. 2g show that the binary pattern generator operates at even lower power than the logic circuit, and this 
allows the control circuit as a whole to achieve very low power consumption. It should be noted the control 
power corresponds to the whole switching circuits but does not contains the power for the voltage detection on 
either side of the input or the output. This result suggests the possibility of the next-generation ultra-low power 
electronics, in which various functions can be implemented even with a very limited power of less than 1 μW if 
the control is based on a binary pattern generator.

Simulation of spiking neuron circuit.  The most essential building blocks for the binary pattern genera-
tor are the waiting time generators which consist of spiking neuron circuits. So far, various neuron circuits have 
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Figure 2.   Application example of the binary pattern generator. (a) A block diagram of the DC-DC voltage 
converter circuit that consists of an inductor and several switches. (b) A circuit diagram of the simulated 
DC-DC voltage converter circuit, where the switching operation is controlled by the binary pattern generator. 
The binary pattern generator consists of a spiking neuron circuit defining the switching period, and two waiting 
time generators for switching sequences. The topology of the DC-DC voltage converter circuit is a typical buck-
boost converter with a 200 mH inductor. (c) The voltage or current wave forms of the binary pattern generator 
and the DC-DC voltage converter circuit. (d) The wave forms of the binary pattern generator and the voltages 
around the S1 switch. The time span corresponds to the blue shadowed region in (c). (e) The simulated output 
power and the control power as a function of the input power when VC1 is around 3 V and VC2 is around 5 V. 
The input power is varied by changing the period of VSPK1 from 3 s to 50 μs. The control power is negligible, 
several orders smaller than the input or output power. (f) The simulated power conversion efficiency (the ratio 
of the output power to the input power) as a function of the output power, which remains a relatively high value 
down to an extremely low output power level. (g) The classification of the control power (2.23 nW) when the 
input power is 84 μW, which corresponds to a point with a solid circle in (e). The power consumption of the 
binary pattern generator (“Neurons”) is sufficiently small, even smaller than the logic circuit.
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been created with different purposes in reference to biological neurons. In biological neurons, the membrane 
potential increases with each input, and when the threshold potential is reached, the influx of Na ions and the 
efflux of K ions alternate26, generating a spiking potential (Fig. 3a). This is accurately described by the Hodgkin–
Huxley equation27, but a more simplified model is used in the design of neuron circuits28. In previous studies, 
relatively accurate analogue neuron circuits have been fabricated that implement the exponential behavior of ion 
channels in the subthreshold region of the transistor29,30. On the other hand, a further simplification of functions 
has been carried out in order to achieve large scale systems that includes a number of neuron circuits. Such sim-
plified models include a integrate-fire neuron which is the simplest version31, a leaky-integrate-fire neuron which 
ignores variation of neuron dynamics32, an Izhikevich neuron which treats the firing process algorithmically33, 
and a phase transition neuron which implements functions with material properties34,35. In these analogue neu-
ron circuits, there is a trade-off between accuracy and simplicity, but by focusing on the mathematical structure 
of the nonlinear neuron dynamics, a circuit that balances both has been devised36,37. Recently, circuits have also 
been proposed that reduce energy consumption to the utmost limit by lowering the supply voltage to a few hun-
dred mV or using an extremely small tunneling current23,24,38. These neuron circuits have been used for machine 
learning applications3, and also for optic, auditory, or other sensory signal processing39–41.

In this study, we fabricated a spiking neuron circuit, which is specially designed for waiting time generation 
in ultra-low power consumption. For the purpose of waiting time generation, the spiking neuron circuit imple-
ments the integrate-fire function while all the other biological functions were excluded intentionally. It is also 
designed to generate a nanosecond-width square pulse wave as the output spike for seamless connection with 
CMOS logic circuits with a common 1 V supply. The fabricated spiking neuron circuit consists of two parts: one 
part generates waiting time, and the other part generates a spike (Fig. 3b). In the former part, the input current is 
created by the ON current or subthreshold current of the transistor under the application of 1 V, and charges the 
capacitor with the approximately constant current. Then, after a waiting time that is determined by the ratio of 
the capacitance to the current, the capacitor potential (V1) reaches the threshold voltage of the inverter (around 
0.5 V) and activates the spike generation part as shown in Fig. 3c. The capacitance was designed to be as small as 
possible to suppress power consumption, and metal–oxide–semiconductor (MOS) capacitors of several tens of 
fF or even smaller capacitance which is parasitic to transistors and wiring were used. The spike generation part 
consists of CMOS circuit. When the V1 reaches a threshold, positive feedback and delayed feedback are activated 
in turn to generate a spike output. Generally speaking, to reduce the power consumption of integrate–fire neuron 
circuits, methods such as lowering the supply voltage or using capacitive feedback have been used23,24,42, but here, 
in order to use a 1 V supply and reduce the use of capacitors as much as possible, we used only CMOS circuits.

To elucidate a detailed operation of the spiking neuron circuit, simulations are shown for the spiking neuron 
circuit that generates a waiting time of approximately 100 ms as shown in Fig. 4a. Transistor with 5 V withstand 
voltage in the TSMC 0.18 μm process was used (see Supplementary Notes 2 and 3 for more details) because the 
5 V transistor under a 1 V supply leads to near-threshold computing and dramatically reduce power consump-
tion. As shown in Fig. 4b, when 1 V is applied to Vin (input voltage in gray color), the V1 gradually increases (red 
color), and the spike voltage is output as Vout (blue color). Here, after the V1 reaching the threshold potential, the 
positive feedback raises V1 close to 1 V (red color), which contributes to the steep rise of the Vout. Then, by reset-
ting V1 to 0 V with delayed feedback, the Vout falls steeply and the spike waveform is completed. An enlarged view 
of the firing process (Fig. 4c) shows that the rise or the fall of the waveform becomes steeper with each successive 
inverter, in the order of V1, V2, V3, V4, and Vout. Thus, by connecting CMOS inverters in multiple stages, a steep 
waveform can be obtained at the output side in a digitally compatible level, no matter how long the waiting time 
is at the input side. The energy consumption for a series of operations is sufficiently small, only 0.16 pJ per spike 
operation (Fig. 4d). This corresponds to an average power consumption of 1.7 pW, which is more than one order 
of magnitude lower than previous experimental demonstrations20–24. Here, to suppress energy consumption, 
diodes were inserted at the top and bottom of the first stage inverter (Fig. 4a), otherwise, the through current 
flows for a long time as the V1 approaches the inverter threshold and increases energy consumption. Simulation 
of a spiking neuron circuit with a shorter waiting time (approximately 1 μs) is also presented in Supplementary 
Note 4 and the simulations for all the other spiking neuron circuits are also summarized in Supplementary Note 5.

Figure 3.   CMOS spiking neuron circuit. (a) A schematic illustration of a biological neuron. (b) A CMOS 
spiking neuron circuit with the integrate-fire function, which is used for the waiting time generator. (c) A 
schematic illustration of VIN, V1, and VOUT in (b) as a function of time. A waiting time corresponds to the period 
between the onset of VIN and the output of VOUT. The details of all the spiking neuron circuits with different 
waiting times are presented in Supplementary Note 3.
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Experiments on spiking neuron circuits.  Based on the simulation, the spiking neuron circuits were 
experimentally fabricated using the TSMC 180 nm BCD process as shown in Fig. 5a,b. By controlling the input 
current of the spiking neuron circuit (Supplementary Note 3), different lengths of waiting time can be generated 
from an input voltage of 1 V, which were measured based on the experimental setting as shown in Fig. 5c. In 
Fig. 5d,e, we used the ON current of the PMOS transistor to generate a waiting time in the order of 100 ns. Here, 
since the ON current of the PMOS can be tuned down to 10 nA with the length and width of the channel, the 
waiting time as short as 100 ns can be generated with a parasitic capacitance of a few fF. In Fig. 5f,g, instead, the 
sub-pA OFF current of the lower-threshold PMOS transistor with the 2 V withstand voltage was used to gener-
ate a waiting time in the order of 100 ms. In this case, an additional MOS capacitor of 33 fF was also utilized 
to elongate the waiting time. In this way, we succeeded in experimentally generating an arbitrary waiting time 
spanning six orders of magnitude from 100 ns to 100 ms on the chip. The circuits and the device parameters for 
all the other waiting times are also summarized in Supplementary Note 3.

The waiting time in the simulation and the one obtained in the experiment were in general agreement 
throughout the six-order range of the waiting time (Fig. 6a and Supplementary Note 5). As shown in Fig. 6b, the 
output spike width was approximately 40 ns for the waiting time up to 100 μs, and approximately 400 ns for the 
longer waiting times due to the insertion of diodes at the first stage inverter as mentioned previously in Fig. 4a. 
This spike width can be converted to approximately 40 ns by using a spike width conversion circuit as shown in 
Supplementary Note 6. The steep rise and fall of the output spike guarantee the spike is compatible with CMOS 
logic circuits. The experimentally measured energy consumption per spike operation was found to be between 
60 and 120 fJ for all the waiting times (Fig. 6c). It is interesting to note that the past examples of a neuron circuit 
with a long spike interval in the order of 100 ms is limited, and our 100 ms neuron circuit has the lowest power 

Figure 4.   Simulation of the spiking neuron circuit. (a) The simulated spiking neuron circuit for the 100 ms 
waiting time. (b) The voltage wave forms at several different nodes in (a). The red shadowed region indicates 
the waiting time of this neuron circuit. (c) The magnification of (b) in the vicinity of the spike generation event, 
which is indicated by the grey shadow. (d) The simulated energy consumption of the spiking neuron circuit, 
which rapidly increases as approaching the spiking event due to the increase in the through current at the 
first-stage inverter. The detailed operation of the 1 μs spiking neuron circuit is also presented in Supplementary 
Note 4, and the simulations of all the spiking neuron circuits with different waiting times are presented in 
Supplementary Note 5.
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consumption of 1.2 pW among all the experimental demonstrations (Table 1). A comparison in Table 1 clearly 
shows the fabricated spiking neuron circuits have a unique feature of digital-circuit compatibility in the sense of 
the spike width and the supply voltage, and at the same time, a reasonably low energy consumption and a wide 
control range of the waiting time. It should be emphasized that all of these features are optimized for the waiting 
time generation inside a digital circuit and asynchronously controlling the switching circuits, rather than for 
the implementation of the biological functions or for the simple reduction of energy consumption in a single 
neuron circuit as in the case of previous studies21,23,24.

Conclusion
In this study, a binary pattern generator in analogy to the biological central pattern generator was first applied 
to controlling the switching circuits for IoT devices. We utilized spiking neuron circuits to generate an arbitrary 
waiting time from 100 ns to 100 ms, and constructed a binary pattern generator for a switching-circuit control 
with ultra-low power. The generated binary waveform with an arbitrary temporal pattern was used to drive the 
gates of the switching transistors, and it is shown that the DC-DC voltage conversion circuit can be controlled 
with only several nanowatt. This is due to an extremely low power consumption of the spiking neuron circuits, 

Figure 5.   Experiments of the spiking neuron circuit. (a) An optical micrograph of the fabricated chip for 
spiking neuron circuits with various waiting times between 100 ns and 100 ms. (b) The magnification of the chip 
region for the spiking neuron circuit with the 100 ms waiting time. The red dashed square indicates the whole 
spiking neuron circuit while the red solid square corresponds to the spike generation part and the membrane 
capacitor. (c) The experimental setting for the measurement of the spiking neuron circuits. VIN and VOUT are 
the voltages inside the I/O buffers, and VIN-EX and VOUT-EX are the voltages outside the I/O buffers, which were 
measured by the oscilloscope. (d) A circuit diagram of the fabricated spiking neuron circuit for the 100 ns 
waiting time (see Supplementary Note 3 for details). (e) Experimentally measured wave forms of VIN-EX and 
VOUT-EX for the 100 ns spiking neuron circuit in (d). The interval between spikes are approximately 100 ns. (f) 
A circuit diagram of the fabricated spiking neuron circuit for the 100 ms waiting time (see Supplementary Note 
3 for details). (g) Experimentally measured wave forms of VIN-EX and VOUT-EX for the 100 ms spiking neuron 
circuit in (f). The interval between spikes are approximately 100 ms. The experiments of all the spiking neuron 
circuits with different waiting times are presented in Supplementary Note 5.
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as small as 1.2 pW at minimum which is the lowest ever among experimentally demonstrated neuron circuits. 
The binary pattern generator allows various control functions to be implemented without worrying about the 
power overhead of the control circuit in self-powered devices. In particular, energy harvesting circuits often 
involve various types of switching operations25,43, which could be simply implemented by the binary pattern 
generator. Low-power sensing could also exploit the advantage of the binary pattern generator; for example, the 
self-heating gas sensors require fast switching operations to minimize heating power44. Finally, it may also be 
useful for low-power wireless communication especially the one based on the pulse signals, where the intermit-
tent pulse generation is the key to achieve extreme low power on average in the order of nanowatt45,46.

Data availability
The data that support the findings of this study are available from the authors on reasonable request.
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