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Abstract
Purpose: Coronavirus disease 2019 (COVID-19) has caused a serious global
health crisis. It has been proven that the deep learning method has great poten-
tial to assist doctors in diagnosing COVID-19 by automatically segmenting the
lesions in computed tomography (CT) slices. However, there are still several
challenges restricting the application of these methods, including high variation
in lesion characteristics and low contrast between lesion areas and healthy tis-
sues. Moreover, the lack of high-quality labeled samples and large number of
patients lead to the urgency to develop a high accuracy model, which performs
well not only under supervision but also with semi-supervised methods.
Methods: We propose a content-aware lung infection segmentation deep resid-
ual network (content-aware residual UNet (CARes-UNet)) to segment the lesion
areas of COVID-19 from the chest CT slices. In our CARes-UNet, the residual
connection was used in the convolutional block,which alleviated the degradation
problem during the training. Then, the content-aware upsampling modules were
introduced to improve the performance of the model while reducing the com-
putation cost. Moreover, to achieve faster convergence, an advanced optimizer
named Ranger was utilized to update the model’s parameters during training.
Finally, we employed a semi-supervised segmentation framework to deal with
the problem of lacking pixel-level labeled data.
Results: We evaluated our approach using three public datasets with multiple
metrics and compared its performance to several models. Our method outper-
forms other models in multiple indicators, for instance in terms of Dice coeffi-
cient on COVID-SemiSeg Dataset, CARes-UNet got the score 0.731, and semi-
CARes-UNet further boosted it to 0.776. More ablation studies were done and
validated the effectiveness of each key component of our proposed model.
Conclusions: Compared with the existing neural network methods applied to
the COVID-19 lesion segmentation tasks,our CARes-UNet can gain more accu-
rate segmentation results, and semi-CARes-UNet can further improve it using
semi-supervised learning methods while presenting a possible way to solve the
problem of lack of high-quality annotated samples.Our CARes-UNet and semi-
CARes-UNet can be used in artificial intelligence-empowered computer-aided
diagnosis system to improve diagnostic accuracy in this ongoing COVID-19 pan-
demic.
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1 INTRODUCTION

Since 2019, the world has been suffering from the pan-
demic of coronavirus disease 2019 (COVID-19), which
is caused by severe respiratory syndrome coronavirus
2 (SARS-CoV-2).1,2 A common and effective method
to diagnose COVID-19 is the reverse-transcriptase
molecular polymerase chain reaction (RT-PCR) test by
detecting the SARS-CoV-2 RNA.3 However, data from
several studies suggest that the RT-PCR test has low
sensitivity4 and accuracy due to little amounts of SARS-
CoV-2 virus concentration in patient samples. Chest
computed tomography (CT) radiography is another pow-
erful tool for the detection of pulmonary infection, which
plays a pivotal role in the COVID-19 diagnosis system
for low cost and is highly sensitive. However, manually
delineating the infected lung region of COVID-19 based
on chest CT images by radiologists is a labor-intensive
and highly subjective task. Besides, diagnosing patients
over time can lead to a serious decline in the judgment
of doctors because of the enormous and growing base
number.

Artificial intelligence (AI) is now being developed
rapidly to combine with CT to help radiologists and
clinicians improve diagnostic accuracy and working
efficiency. Recently Lessmann et al.5 developed and
validated the COVID-19 Reporting and Data Sys-
tem (CO-RADS) AI system, which correctly identified
COVID-19 patients using chest CT scans and assigned
CO-RADS and CT severity scores automatically. Zhang
et al.6 developed an AI system for novel coronavirus
pneumonia diagnosis with a large CT database from
3777 patients, which was clinically applicable to assist-
ing radiologists and physicians in performing a quick
diagnosis.

Computer-aided diagnoses of COVID-19 empowered
by AI techniques have been well-studied, which can be
mainly divided into two categories: COVID-19 diagnosis
and lesion segmentation.

The most common one is the automatic COVID-19
diagnostic based on CT slices or volumes.7–10 For
example, Bai et al.9 proposed an AI system for dif-
ferentiating COVID-19 and other pneumonia at chest
CT based on EfficientNet11 and concluded that AI
assistance improves radiologists’ performance in dis-
tinguishing different types of CT volume. Wang et al.10

proposed a weakly supervised framework for COVID-19
classification. In their method, the lung region was first
segmented using a weakly supervised method. Then
the segmented 3D lung region was fed into a 3D deep
neural network to predict the probability of COVID-19
infectious. Finally, the lesions were localized by a weakly
supervised lesion localization method. Wang et al.12

proposed a novel joint learning framework to improve
COVID-19 diagnosis by effectively learning from hetero-
geneous datasets with distribution discrepancy.Owais13

proposed a multilevel deep-aggregated boosted

network to spot COVID-19 infection from heteroge-
neous data including CT images.

Another category is the COVID-19 lesion segmenta-
tion. Since our work is more about lesion segmentation
in CT slices, we will discuss it more thoroughly. A large
number of image segmentation algorithms have been
developed in the literature,14 among which deep learn-
ing methods for COVID-19 segmentation have achieved
the most remarkable success. For example, traditional
U-Net15 and SegNet16 continue to shine in COVID-19
lesion segmentation. Saood et al17 compared U-Net
with SegNet in COVID-19 lung CT image segmentation
tasks. In their experiment, the Dice coefficient of SegNet
is higher than that of U-Net. Thus, they concluded that
SegNet shows a superior ability in segmentation tasks.
Bizopoulos et al.18 conducted extensive experiments
to present the comparison of various COVID-19 lesion
segmentation deep learning models. In their work, four
deep learning architectures (UNet, LinkNet, Feature
Pyramid Networks (FPN), Pyramid Scene Parsing
Network (PSPNet)) were tested, combined with 25 ran-
domly initialized and pre-trained encoders (variations of
VGG, DenseNet, ResNet, ResNext, Dual Path Network
(DPN), MobileNet, Xception, Inception-v4, EfficientNet),
for a total of 200 tested models.

Some recently proposed new network architectures
gain better segmentation results via elaborate architec-
ture design. For example, Fan et al.19 proposed Inf -Net
and a semi-supervised segmentation framework, which
was based on a randomly selected propagation strategy.
On COVID-SemiSeg Dataset, Inf -Net gained the best
performance, compared with other cutting-edge models
owing to three specially designed components: edge
attention module, parallel partial decoder, and reverse
attention module. Wang et al.20 proposed a noise-
robust framework for COVID-19 lesion segmentation
to tackle the inaccurate annotation caused by complex
appearances of pneumonia lesions and high inter- and
intra-observer variability. Zhou et al.21 proposed a
machine-agnostic segmentation and quantification
method for CT-based COVID-19 diagnosis. Gao et al.22

proposed a dual-branch combination network that
was able to perform diagnosis and lesion segmen-
tation simultaneously. Wu et al.23 developed a joint
classification and segmentation system to perform
real-time and explainable COVID-19 chest CT seg-
mentation and diagnosis. Yang et al.24 presented a
novel weakly supervised learning method based on a
generative adversarial network for lesion segmentation
with image-level labels only. Laradji et al.25 proposed a
weakly supervised consistency-based learning method
for COVID-19 segmentation in CT slices and demon-
strated that the weakly supervised learning method can
also lead to competitive results compared with the fully
supervised learning methods.

Although extensive research and advanced AI meth-
ods have been carried out focusing on accurate
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F IGURE 1 Network architecture of content-aware residual UNet (CARes-UNet)

prediction, COVID-19 infection detection in CT slices is
still a challenging work for several reasons. Training a
very deep neural network is hard due to the gradient
vanishing and unstable optimizing.Besides, the complex
boundary interactions, larger appearance variation, and
low tissue contrast result in difficulty to identify infected
regions. Moreover, because of the urgency of the
COVID-19 pandemic, it is hard to collect an enormous
amount of labeled data for deep learning.Finally,acquir-
ing high-quality pixel-level annotations of lung infection
in CT slices could be expensive and time-consuming.

In this study, we propose a content-aware residual
UNet15 (CARes-UNet) for lung infection segmentation
from CT slices to deal with the issues mentioned above.
To alleviate the lack of high-quality annotated samples,
we applied a semi-supervised framework to train the
model. We also conducted several comparisons and
ablation studies to prove the effectiveness of the pro-
posed CARes-UNet and semi-CARes-UNet.

2 METHODS

2.1 Overview of the network

The architecture of our CARes-UNet, which is built by
redesigning the traditional U-Net, is shown in Figure 1.
Our CARes-UNet comprises a downsampling path and
an upsampling path. The downsampling path enlarged
the receptive field while reducing computation cost. The
upsampling path recovered the lost resolution in the
downsampling path. The structure of our encoder block
and downsampling block is shown in Figure 2. Every
encoder block and downsampling block contained one
basic convolution operation and one resblock, which
was the same except that the basic convolution in the

downsampling block did not change the channels num-
ber. The basic convolution operation and resblock at
the same level in Figure 1 compose an encoder block
together with a downsampling operation next to it,which
are both explained in Figure 2. Batch normalization26

and the rectified linear unit were added after each con-
volution operation. In L1 (Figure 1), the first basic con-
volution block was to change the channels from 1 to 64,
and the resblock was used to extract features without
changing the channel numbers.27 After each downsam-
pling block, the matrix resolution was down-sampled by
applying a 3 × 3 × 3 convolution operation with stride 2
between each pair convolution block to preserve infor-
mation and reduce computation cost. Similarly, in other
layers from L2 to L5, a convolution operation was used
to transform the channels to 128, 256, 512, and finally
to 1024. When the channel number reaches 1024, the
feature map with minimal size was upsampled via a
content-aware upsampling operation. The features in
the downsampling path were concatenated with the fea-
tures in the upsampling path by skip connection to pro-
vide the added information without the downsampling
information abstraction.28 Finally, the channel number
was reduced to 64, and the final segmentation result
comes out through a 1 × 1 convolution operator followed
by a sigmoid layer to map the result into probability.Tech-
nical details of our network and loss function will be illus-
trated later.

2.2 Residual structure

The residual connection was applied in our model to
mitigate the degradation problem, which is shown in
Figures 1 and 2 as resblock with detailed explanation
in Figure 2. The degradation problem indicates that it
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F IGURE 2 The structure of encoder block and downsampling block. Both of them consist of one basic convolution operation and one
resblock. The meanings of colored arrows are the same as those in Figure 1

F IGURE 3 Residual connection

may be difficult for the solver to estimate the identity map
through multiple nonlinear layers.With the re-expression
of residual learning, the solver drives the weights of mul-
tiple nonlinear layers to zero to approximate the identity
map if the identity map is optimal. However, this is usu-
ally impractical. A simple but effective solution is using
the residual connection.

As shown in Figure 3, the original network fits F(X )
while the network fits F(X ) − X after introducing resid-
ual connection. When F (X ) = 0, the output of the
network H (X ) = X is an identity mapping, which is
complex for ordinary multi-layer nonlinear networks to
fit. After adding a residual connection, the fitting cost of

identity mapping is greatly reduced.To sum up,the resid-
ual block can simplify the fitting of the identity mapping,
solve the degradation problem, and greatly improve the
learning ability of the deep model.

2.3 Content-aware upsampling

Feature map upsampling is very important in segmen-
tation tasks. An ideal method of feature upsampling
should have at least three qualities. (1) Large receptive
field: With a larger receptive field, the outcome of fea-
ture upsampling will make better usage of the informa-
tion around. (2) Content-related: The upsampling filter
should be related to the content of the feature map so
that the method will provide us more appropriate infor-
mation. (3) Lightweight: The upsampling filters in a net-
work are important and,usually, very complicated,which
will make the training and convergence of a model very
difficult. So we expected our chosen upsampling filter to
be as light as possible.

Inspired by Wang et al.,29 we introduced a content-
aware upsampling module in our network. As shown
in Figure 4, reassembly kernels are generated by ker-
nel prediction. First, we used a convolution layer to
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F IGURE 4 Content-aware upsampling. Kernel prediction module generates reassembly kernels. Reassemble module upsamples the
feature map using predicted kernels. Unfold returns a view of the original tensor which contains all slices of size from tensor in the dimension
and the cross-product sign represents the matrix product of two tensors

compress the channels of the input feature map to
reduce computation. Next, we employed a 3 × 3 con-
volution layer to encode the feature map based on the
content of input features. Then, before upsampling, we
applied softmax to take a normalization step spatially to
make sure that the sum of kernel values equals 1. After
normalization, the operator would not rescale or change
the mean values of the feature map. All the operations
above are shown in Equations (1) and (2).

Xe = unfold (Conv3×3 (Conv1×1 (Xi))) , (1)

Kernel (w, h, k) =
eXe(w, h, k)
∑

eXe(w, h,k)
, (2)

where Convn×n is convolution with kernel sized n × n,
and Xe is the feature map after the encoding operation.

Finally, as shown in Equation (3)

X0 (w, h, k) = unfold (Kernel (w, h, :)) ⊗ x, (3)

the reassemble module used the predicted kernel gen-
erated in the kernel prediction module to upsample the
feature map, where Xo(w, h, k) is one pixel in the out-
put feature map Xo with position (w, h, k);Kernel(w, h, k),
defined analogously, is one pixel in the kernel with posi-
tion (w, h, k); operator ⊗ represents convolution; and x
is a rectangular area with a size of kup × kup in Xi from

Xi(
w

𝛿
, h

𝛿
, k) to Xi(

w

𝛿
+ kup, h

𝛿
+ kup, k) (𝛿 represents the

upsampling ratio).
With reassembly kernels,each pixel in the region con-

tributed to the upsampled pixel differently according to

the content of features, instead of distance.The content-
aware reassemble module automatically assigned more
weights to the important features, thus resulting in more
accurate lesion localization.

2.4 Ranger optimizer

Fast, effective, and stable optimizers are what all
researchers in various fields are pursuing.We employed
a Ranger optimizer for model training. Ranger opti-
mizer is a combination of rectified Adam (RAdam)30

and Lookahead.31 RAdam is a new variant of Adam,
which provides a dynamic heuristic to explicitly rectify
the variance of adaptive learning rate based on deriva-
tions and avoid manual tuning warm-up during training.
It can reduce variance during the early stage of train-
ing and compare superior with the heuristic warm-up.
Lookahead can improve learning stability and reduce
variance during training. Lookahead maintains a set
of slow weights and fast weights, which get synced
with the fast weights every k updates. It first updates
k times fast weight using inner loop optimizer and then
updates slow weight once in the direction of final fast
weight.

RAdam is more robust in terms of learning rate varia-
tions, which provides a dynamic warm-up, while Looka-
head lessens the need for extensive hyperparameter
tuning. Therefore, it is intuitive that combining RAdam
with Lookahead would result in a more powerful opti-
mizer. By combining RAdam with Lookahead, the model
can achieve higher performance and faster conver-
gence with minimal computation cost.
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F IGURE 5 Overview of our semi-supervised framework

2.5 Loss function

Motivated by Qiu et al.,28 we defined the loss function
Lseg as a combination of a weighted Dice loss Ldice and
a weighted binary cross-entropy loss LBCE for each seg-
mentation supervision, that is,

Lseg = Ldice + 𝜆LBCE, (4)

where 𝜆 is the weight, and we set it to 1 in our experi-
ments. The Ldice is

Ldice = 1 − dice
(
x̂, xgt

)
, (5)

where dice(a, b) is Dice coefficient between a and b, x̂
and xgt are the prediction result and the correspond-
ing ground-truth, respectively. Our experimental results
show that the combination of Ldice and LBCE is sufficient
to train our models.

2.6 Semi-CARes-UNet

As we mentioned above, the high-quality labeled data is
difficult to collect. In contrast, collecting a large amount
of unlabeled data is feasible and less expensive. To har-
ness the unlabeled samples in COVID-19 lung CT seg-
mentation task, we combined our CARes-UNet with a
semi-supervised learning method. An overview of our
semi-supervised framework is shown in Figure 5.Specif-
ically,we first trained CARes-UNet using 50 images with
gold standard and used it to generate the pseudo labels
of 1600 images without gold standard. Then, we uti-
lized these pseudo labels as masks of the unlabeled
data to train our semi-supervised model along with the
labeled data. It is worth noting that the predictive pseudo
labels may contain noise. The capacity of deep models
is so high that they can memorize these noisy labels
sooner or later during training.32 To tackle this prob-

lem, we calculated the average entropy of each pseudo
mask. We set the threshold of 0.6 manually to ensure
that a sample with a generated pseudo mask would be
selected only if its average entropy is lower than the
threshold, which could reduce the noise in the pseudo
labels. Similar threshold-based methods to filter noise
are also used in other literature.33,34 Also,we made sure
that the labeled samples were as many as the samples
with pseudo labels in every epoch during training.

Generally speaking, our semi-CARes-UNet has two
advantages. First, our method is easy to implement.
Using the trained supervised model, we can generate
pseudo labels and treat them as the masks of the unla-
beled CT slices. Second, the method can effectively
enlarge our dataset and reduce over-fitting, which was
confirmed by the recent study.35

3 RESULTS AND DISCUSSION

3.1 Datasets

Three datasets are used in our experiments, which are
COVID-SemiSeg Dataset, Dataset of COVID-19 Lung
CT Lesion Segmentation Challenge–2020, and UESTC-
COVID-19 Dataset.

COVID-SemiSeg Dataset is a semi-supervised
COVID-19 infection segmentation dataset built by Fan
et al.19 It consists of 1698 CT axial slices, in which 98 are
labeled and 1600 are unlabeled. This COVID-19 infec-
tion segmentation dataset is open-source and can be
accessed at https://github.com/DengPingFan/Inf-Net.
Since our model was trained for lesion segmentation,
we only made use of the lung infection dataset in
COVID-SemiSeg Dataset and excluded its multi-class
infection dataset. All the CT slices were collected by the
Italian Society of Medical and Interventional Radiology.
A radiologist segmented the CT images using different
labels for identifying lung infections. Each sample in

https://github.com/DengPingFan/Inf-Net
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the lung infection dataset is a grayscale image along
with a corresponding ground truth mask. All the images
have been preprocessed by the providers. In our experi-
ments on COVID-SemiSeg Dataset, we took 50 labeled
image slices for training and 48 labeled image slices
for testing in supervised learning. The remaining 1600
unlabeled CT images were used for semi-supervised
learning.

The Multi-national NIH Consortium for CT AI in
COVID-19 provides an open-source dataset36 for
COVID-19 lung CT lesion segmentation via the NCI
TCIA37 public website to be used in COVID-19 Lung
CT Lesion Segmentation Challenge–2020.38 The train-
ing and validation part of this dataset consists of chest
CTs from 199 and 50 patients, respectively, with positive
RT-PCR for SARS-CoV-2 and ground truth annotations
of COVID-19 lesions in the lung. Since the challenge
was over, we only got the training and validation part of
this dataset without the unseen testing samples. In our
experiments on this dataset,we randomly selected train-
ing and testing samples with a ratio of approximately
3:1 from the received dataset. More precisely, 10 147
CT slices were used for training, and 3558 CT slices
were used for testing. Before training, we cropped the
images according to the bounding box of the lung region,
resized to the same size, and normalized the images as
the inputs of networks.

UESTC-COVID-19 Dataset20 is used for lesion seg-
mentation, which contains CT scans in the form of a
3D volume of 120 patients diagnosed with COVID-19.
In our experiments on UESTC-COVID-19 Dataset, we
also divided it into training and testing sets with a ratio
of approximately 3:1. More precisely, 14 855 CT slices
were used for training and 4056 CT slices were used
for testing. All the images have been cropped by the
dataset providers based on the bounding box of the lung
region.In addition,the intensity has been normalized into
a number ranging from 0 to 1 using window width/level
of 1500/−650. Because the datasets of COVID-19
Lung CT Lesion Segmentation Challenge–2020 and
UESTC-COVID-19 Dataset are not designed for semi-
supervised learning and do not include unlabeled sam-
ples needed in semi-supervised learning method, we
only evaluate our proposed supervised method on these
two datasets.

3.2 Training details

All the models were implemented using Pytorch39 and
were trained on a PC equipped with GTX 2080Ti
GPU. In each control experiment, all the networks
shared the same training settings. Hyper-parameters
were tuned either based on related researches and
experiments27,29 or by performing k-fold validation on
the training set (two-fold validation on training set of
COVID-SemiSeg Dataset, five-fold validation on train-

ing dataset of COVID-19 Lung CT Lesion Segmentation
Challenge–2020, and five-fold validation on training set
of UESTC-COVID-19 Dataset). In our experiments on
COVID-SemiSeg Dataset, the initial learning rate was
set to 5 × 10−4 and the training process finished after
1200 epochs. We used a weight decay of 0.0001 and
a momentum of 0.9. In our experiments on the other
two datasets, models were trained for 60 epochs. The
initial learning rate was set to 5 × 10−4 too and was
decayed by a factor of 0.1 at the 30th and the 50th
epoch. Similarly, we also took a weight decay of 0.0001
and a momentum of 0.9. All the source code can be
found at https://github.com/zylye123/CARes-UNet.

3.3 Evaluation metrics

We used six different quantitative measurements,
namely, Dice coefficient (Dice), sensitivity (Sen),
specificity (Spe), structure measure (S𝛼), enhanced-
alignment measure (Emean

𝜙
), and mean absolute error

(MAE) to compare the segmentation results of the pro-
posed method and baselines. We denoted Sp as final
prediction after activated by a sigmoid function and G
as ground truth. Then all the evaluation metrics adopted
in our experiments could be formulated as follows:

1. Dice

Dice =
2 |||Sp ∩ G||||||Sp

||| + |G|
. (6)

2. Sensitivity

Sensitivity =
TP

TP + FN
. (7)

3. Specificity

Specificity =
TN

TN + FP
. (8)

4. Structure Measure (S𝛼)

S𝛼 = (1 − 𝛼) ∗ So
(
Sp, G

)
+ 𝛼 ∗ Sr

(
Sp, G

)
. (9)

5. Enhanced-alignment Measure (Emean
𝜙

)

E𝜙 =
1

w × h

w∑
x

h∑
y
𝜙
(
Sp (x, y) , G (x, y)

)
. (10)

6. Mean Absolute Error (MAE)

MAE =
1

w × h

w∑
x

h∑
y

|||Sp (x, y) − G (x, y)||| , (11)

https://github.com/zylye123/CARes-UNet
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TABLE 1 Model Comparison on coronavirus disease 2019 (COVID)-SemiSeg Dataset

Model Dice ↑ Sen. ↑ Spec. ↑ S𝜶 ↑ Emean
𝝓

↑ MAE ↓

FCN40 0.622 (0.17) 0.508 (0.18) 0.952 (0.01) 0.676 (0.09) 0.783 (0.13) 0.0772 (0.05)

SegNet16 0.645 (0.16) 0.702 (0.19) 0.916 (0.09) 0.677 (0.11) 0.852 (0.13) 0.1031 (0.08)

UNet15 0.639 (0.17) 0.641 (0.18) 0.943 (0.04) 0.675 (0.10) 0.865 (0.09) 0.0890 (0.05)

LinkNet+xception18 0.689 (0.15) 0.704 (0.18) 0.942 (0.06) 0.710 (0.10) 0.891 (0.06) 0.0770 (0.03)

FPN+efficientnet-b118 0.634 (0.15) 0.569 (0.19) 0.950 (0.05) 0.671 (0.08) 0.828 (0.07) 0.0830 (0.04)

PSPNet+vgg1318 0.685 (0.14) 0.661 (0.14) 0.954 (0.03) 0.710 (0.09) 0.889 (0.06) 0.0720 (0.05)

UNet+resnet3418 0.652 (0.12) 0.623 (0.15) 0.954 (0.07) 0.677 (0.10) 0.873 (0.08) 0.0860 (0.05)

Inf -Net19 0.682 0.692 0.943 0.781 0.838 0.082

Semi-Inf -Net19 0.739 0.725 0.960 0.800 0.894 0.064

CARes-UNet (ours) 0.731 (0.11) 0.738 (0.15) 0.955 (0.03) 0.746 (0.08) 0.913 (0.05) 0.0694 (0.05)

Semi-CARes-UNet (ours) 0.776 (0.10) 0.786 (0.13) 0.961 (0.02) 0.789 (0.07) 0.931 (0.04) 0.0561 (0.03)

Note: Average various metrics comparison of different models on COVID-SemiSeg Dataset. Red, blue, and cyan colors are used to indicate to first, second, third rank,
respectively.↑ indicates the metric is the higher the better while ↓ indicates the metric is the lower the better. Numbers in parentheses are standard deviations. Metrics
of Inf -Net and semi-Inf -Net are directly cited from Fan et al.19

Abbreviations: CARes-UNet, content-aware residual UNet; Emean
𝜙

, enhanced-alignment measure; Dice, Dice coefficient; MAE mean absolute error; Sen, sensitivity;
Spe, specificity, S𝛼 , structure measure.

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative between Sp
and G.

3.4 Baselines

The experiment baselines were set as follows. For a
more comprehensive comparison, we compared our
proposed CARes-UNet with U-Net,15 SegNet,16 FCN,40

several models perform best in the method by Bizopou-
los et al.,18 Inf -Net,19 and Semi-Inf -Net.19 Among all,
the Semi-Inf -Net achieved the best performance in the
COVID-19 infection segmentation task in all evalua-
tion metrics mentioned above.19 In our experiments
on COVID-SemiSeg Dataset, all the baseline models
shared the same training and testing scenario, which is
using 50 labeled image slices for training and 48 labeled
image slices for testing. But for Semi-Inf -Net, which was
trained in a semi-supervised way,1600 unlabeled image
slices were also used in training.Also, in our experiments
on the other two datasets,all the baseline models shared
the same training and testing scenario where the ratio of
the training and testing samples is approximately 3:1.

3.5 Experiment results

Quantitative results of baselines and our pro-
posed CARes-UNet and semi-CARes-UNet on the
COVID-SemiSeg Dataset are summarized in Table 1.
As shown in Table 1, semi-CARes-UNet outperforms
all the compared baselines in terms of Dice, sensitivity,
specificity,Emean

𝜙
,MAE.Compared with UNet,Res-UNet,

and UNet+resnet34, our CARes-UNet captured and
utilized plentiful CT slice content information during

upsampling and results in more accurate segmentation
accuracy. Compared with Inf -Net, our model achieved
better performance without the need of using complex
network architecture.

Moreover, we observed from Table 1 that the model
could gain from the semi-supervised learning method.
For instance, semi-CARes-UNet obtained up to 4.5%
improvement in terms of Dice, compared with CARes-
UNet. These results reveal that semi-supervised learn-
ing can reduce over-fitting and have a regularising effect.
However, only 4.5% improvement can be observed from
adding 1600 unlabeled images with pseudo labels. This
is because the pseudo labels may contain noise raised
from the model’s bias. Using the methods reported by
Lee and colleagues,41–43 dealing with the noisy labels
may further increase the model’s performance. In addi-
tion, the results also support the point raised by Castro
et al.44 that semi-supervised learning has limited bene-
fits in causal tasks like segmentation.

Quantitative results on the dataset of COVID-19 Lung
CT Lesion Segmentation Challenge–2020 and UESTC-
COVID-19 Dataset are presented in Tables 2 and 3,
respectively. On these two large datasets for COVID-19
lesion segmentation, our CARes-UNet also gained the
best results among all the models, especially in terms
of Dice, sensitivity, S𝛼 and Emean

𝜙
. These experimental

results show that though expanding the small dataset
to a relatively large dataset, our CARes-UNet could still
attain high COVID-19 lesion segmentation performance.

Qualitative results are shown in Figure 6.
Visually it reveals that CARes-UNet and semi-CARes-
UNet detected the COVID-19 lesion areas more pre-
cisely than any other baseline model. Our proposed
CARes-UNet and semi-CARes-UNet, compared with
other baseline models, could reduce the area of the
false negative regions while restricting the enlargement
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TABLE 2 Model Comparison on COVID-19 Lung CT Lesion Segmentation Challenge – 2020 dataset

Model Dice ↑ Sen. ↑ Spec. ↑ S𝜶 ↑ Emean
𝝓

↑ MAE ↓

FCN40 0.622 (0.17) 0.508 (0.18) 0.952 (0.01) 0.676 (0.09) 0.783 (0.13) 0.0772 (0.05)

SegNet16 0.645 (0.16) 0.702 (0.19) 0.916 (0.09) 0.677 (0.11) 0.852 (0.13) 0.1031 (0.08)

UNet15 0.639 (0.17) 0.641 (0.18) 0.943 (0.04) 0.675 (0.10) 0.865 (0.09) 0.0890 (0.05)

LinkNet+xception18 0.689 (0.15) 0.704 (0.18) 0.942 (0.06) 0.710 (0.10) 0.891 (0.06) 0.0770 (0.03)

FPN+efficientnet-b118 0.634 (0.15) 0.569 (0.19) 0.950 (0.05) 0.671 (0.08) 0.828 (0.07) 0.0830 (0.04)

PSPNet+vgg1318 0.685 (0.14) 0.661 (0.14) 0.954 (0.03) 0.710 (0.09) 0.889 (0.06) 0.0720 (0.05)

UNet+resnet3418 0.652 (0.12) 0.623 (0.15) 0.954 (0.07) 0.677 (0.10) 0.873 (0.08) 0.0860 (0.05)

Inf -Net19 0.682 0.692 0.943 0.781 0.838 0.082

semi-Inf -Net19 0.739 0.725 0.960 0.800 0.894 0.064

CARes-UNet (ours) 0.731 (0.11) 0.738 (0.15) 0.955 (0.03) 0.746 (0.08) 0.913 (0.05) 0.0694 (0.05)

semi-CARes-UNet (ours) 0.776 (0.10) 0.786 (0.13) 0.961 (0.02) 0.789 (0.07) 0.931 (0.04) 0.0561 (0.03)

Average various metrics comparison of different models on dataset of COVID-19 Lung CT Lesion Segmentation Challenge–2020.Red,blue,and cyan colors are used
to indicate top first, second, and third rank, respectively. ↑ indicates the metric is the higher the better while ↓ indicates the metric is the lower the better. Numbers in
parentheses are standard deviation.

TABLE 3 Model Comparison on UESTC-COVID-19 Dataset

Model Dice ↑ Sen. ↑ Spec. ↑ S𝜶 ↑ Emean
𝝓

↑ MAE ↓

FCN40 0.635 (0.48) 0.637 (0.48) 0.650 (0.48) 0.818 (0.24) 0.740 (0.35) 0.0141 (0.04)

SegNet16 0.668 (0.42) 0.682 (0.42) 0.773 (0.42) 0.852 (0.21) 0.821 (0.30) 0.0109 (0.03)

UNet15 0.652 (0.43) 0.658 (0.43) 0.724 (0.44) 0.899 (0.13) 0.900 (0.15) 0.0074 (0.01)

LinkNet+xception18 0.708 (0.39) 0.718 (0.40) 0.813 (0.39) 0.907 (0.16) 0.898 (0.16) 0.0075 (0.02)

FPN+efficientnet-b118 0.698 (0.37) 0.705 (0.38) 0.820 (0.37) 0.901 (0.16) 0.910 (0.20) 0.0077 (0.02)

PSPNet+vgg1318 0.712 (0.38) 0.715 (0.39) 0.826 (0.38) 0.910 (0.15) 0.901 (0.17) 0.0074 (0.02)

UNet+resnet3418 0.710 (0.37) 0.721 (0.38) 0.831 (0.37) 0.901 (0.15) 0.901 (0.20) 0.0073 (0.02)

CARes-UNet (ours) 0.755 (0.37) 0.741 (0.38) 0.835 (0.36) 0.911 (0.15) 0.925 (0.18) 0.0080 (0.02)

Note: Average various metrics comparison of different models on UESTC-COVID-19 Dataset. Red, blue, and cyan colors are used to indicate top first, second, and
third rank, respectively.↑ indicates the metric is the higher the better while ↓ indicates the metric is the lower the better.Numbers in parentheses are standard deviation.

of the false positive regions. Especially the outcomes
of semi-CARes-UNet are very close to the ground
truth with the smallest area of false negative and false
positive regions among all the results. We noticed that
UNet, FCN, and SegNet gave unsatisfying segmenta-
tion outcomes where they segmented most of the small
disconnected regions wrongly. This experimental result
reveals that the plain UNet architecture was insufficient
to capture the complex texture of chest CT images. Our
CARes-UNet tackled these drawbacks by redesign-
ing UNet architecture collaborated with an advanced
optimizer. Also, our semi-CARes-UNet further boosted
the performance using the semi-supervised learning
method.

3.6 Ablation study

In this subsection,we conducted several experiments on
COVID-SemiSeg Dataset to validate the effectiveness
of each key component of our proposed model, includ-
ing residual connection, content-aware upsampling, and
Ranger optimizer.

3.6.1 Efficacy of residual connection

To investigate the effectiveness of residual connection,
we designed two sets of controlled trials. We first set
up a baseline network without the residual connections
called CA-UNet. We then added residual connections
to the network and denoted it as CARes-UNet. The
results of two sets of controlled trials are summarized in
Figure 7. It reveals that Res-UNet performs much better
than plain UNet. Indeed, training a network with residual
connections can be thought of as training an ensemble
of different models on the dataset and getting the best
possible accuracy.

3.6.2 Efficacy of CARAFE

To verify the performance of CARAFE, we trained three
models: U-Net upsampling with deconvolution layer,
sub-pixel layer, and CARAFE. Quantitative results of
the experiments are shown in Figure 8. We observed
that U-Net with CARAFE outperforms U-Net with
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F IGURE 6 Qualitative analysis of different models. The first column on the left is the original computed tomography (CT) slices, and the first
column on the right is their corresponding ground truth masks. Columns between them are images of lesion areas predicted by different models.
White, red, blue, and black regions identify true positive, false positive, false negative, and true negative regions, respectively

deconvolution layer and U-Net with a sub-pixel layer
in terms of various metrics. These results suggest
that using CARAFE on UNet can improve the model’s
performance.

3.6.3 Efficacy of Ranger optimizer

We also investigated the importance of the Ranger opti-
mizer. As presented in Figure 9, though average Dice,
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F IGURE 7 Comparison of models with and without residual connection. (a) UNet. (b) CA-UNet. All metrics are the higher the better. Models
with residual connection are better than ones without residual connection

F IGURE 8 Comparison of UNet (without residual connection)
with different upsampling blocks. Different colors represent different
upsampling blocks and all metrics are the higher the better. The
number of asterisks indicates the statistical significance calculated
without outliers

S𝛼 and Emean
𝜙

on testing set of Ranger optimizer are
higher than average Dice, S𝛼, and Emean

𝜙
of SGD and

Adam optimizer, there will not be much significant differ-
ence if all the models are given enough training time to
converge. However, if we compare the time consumed
during the model convergence or performance on the
testing set given a limited training period, the Ranger
optimizer could perform better than the other optimizers.
Training and testing loss versus epochs of three opti-
mizers are depicted in Figure 10. It can be observed
that the Ranger and Adam optimizer has a faster
convergence than the SGD optimizer. The training loss
of all the optimizers decreased fast before 100 epochs
and then went up slowly, while the Ranger optimizer
decreased faster than the others. Ranger optimizer

F IGURE 9 Comparison of CARes-UNet with different optimizers
(learning rate is set to 5 × 10−4). Different colors represent different
optimizers, and all metrics are the higher the better. The number of
asterisks indicates the statistical significance calculated without
outliers. The test results were recorded after the models converged
given enough training period

showed less variance than Adam optimizer in testing
as shown in Figure 10b, which can be inferred that
the RAdam together with Lookahead strategy is able to
improve learning stability.

3.7 Discussion on parameters and
computational efficiency

We compared different models about their parameters
and computational efficiency. The results are shown
in Table 4. multiply-adds (MAdd) and floating-point
operations per second (FLOPs) represent the compu-
tational efficiency of a model. We observed that the
total amount of parameters, MAdd and Flops increases
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F IGURE 10 Comparison of convergence using different optimization algorithms (a) training curve of three optimizers. (b) Testing curve of
three optimizers. Different colors represent different optimizers. Ranger has a faster convergence and less variance than SGD and Adam
optimizer

TABLE 4 Comparison of models’ attributes

Model
Total
params

Total
memory

Total
multiply-adds
(MAdd)

Total
floating-point
operations per
second (FLOPs)

Total
MemR+W

FCN 23.61 M 147.25 MB 10.87 G 5.45 G 401.99 MB

MCFCN 23.61 M 149.50 MB 10.88 G 5.45 G 406.49 MB

SegNet 29.44 M 224.50 MB 80.07 G 40.06 G 561.07 MB

UNet 18.81 M 221.50 MB 58.14 G 24.26 G 474.59 MB

Inf-Net 31.07 M 190.15 MB 14.72 G 7.37 G 524.44 MB

Pix-UNet 9.48 M 194.50 MB 24.31 G 12.17 G 394.92 MB

CA-UNet 16.73 M 250.11 MB 60.62 G 30.34 G 644.48 MB

PixRes-UNet 40.97 M 467.00 MB 92.05 G 46.06 G 1.04 GB

Res-UNet 59.63 M 579.00 MB 159.74 G 75.08 G 1.31 GB

CARes-UNet (ours) 54.42 M 592.61 MB 157.38 G 78.75 G 1.44 GB

Note: Comparison of models about total params, memory, MAdd, FLOPs and MemR+W measured by torchstat, a lightweight neural network analyzer based on
Pytorch, in the same experimental setup. FLOPs and MAdd are units of measure for the computational performance.

inevitably when introducing residual structure into net-
works, leading to more total parameters and lower
computational efficiency. But these can be accepted
considering that the residual structure used in our pro-
posed method could effectively improve the lesion seg-
mentation results.

4 CONCLUSION

In this study, we present a content-aware deep resid-
ual UNet for lung infection segmentation of COVID-19
from CT slices. We redesigned the UNet architecture
by adding residual connection and replacing deconvo-
lution layers with content-aware upsampling layers to
deal with the within-class variation and between-class

similarity. We also employed the Ranger optimizer to
expedite convergence and improve learning stability. To
tackle the problem that high-quality labeled data is dif-
ficult to collect as well as to utilize a large amount of
existing unlabeled data,we applied the semi-supervised
learning method to our CARes-UNet called semi-
CARes-UNet. We conducted experiments and ablation
studies to prove the effectiveness and robustness of
our method. Results on three public datasets showed
that our method outperforms several state-of -the-art
methods.
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