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de Lille (CIIL)(INSERM),

France
Barbara Nikolajczyk,

University of Kentucky, United States

*Correspondence:
Wei Pan

panwei525@126.com
Yinghua Yu

yinghua@uow.edu.au

Specialty section:
This article was submitted to

Parasite Immunology,
a section of the journal

Frontiers in Immunology

Received: 02 December 2021
Accepted: 02 February 2022
Published: 25 February 2022

Citation:
Dai M, Yang X, Yu Y and Pan W (2022)

Helminth and Host Crosstalk: New
Insight Into Treatment of Obesity and
Its Associated Metabolic Syndromes.

Front. Immunol. 13:827486.
doi: 10.3389/fimmu.2022.827486

REVIEW
published: 25 February 2022

doi: 10.3389/fimmu.2022.827486
Helminth and Host Crosstalk: New
Insight Into Treatment of Obesity and
Its Associated Metabolic Syndromes
Mengyu Dai1,2,3, Xiaoying Yang1, Yinghua Yu1* and Wei Pan1*

1 Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical
University, Xuzhou, China, 2 The Second Clinical Medicine, Xuzhou Medical University, Xuzhou, China, 3 National
Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, China

Obesity and its associated Metabolic Syndromes (Mets) represent a global epidemic
health problem. Metabolic inflammation, lipid accumulation and insulin resistance
contribute to the progression of these diseases, thereby becoming targets for drug
development. Epidemiological data have showed that the rate of helminth infection
negatively correlates with the incidence of obesity and Mets. Correspondingly,
numerous animal experiments and a few of clinic trials in human demonstrate that
helminth infection or its derived molecules can mitigate obesity and Mets via induction
of macrophage M2 polarization, inhibition of adipogenesis, promotion of fat browning, and
improvement of glucose tolerance, insulin resistance and metabolic inflammation.
Interestingly, sporadic studies also uncover that several helminth infections can reshape
gut microbiota of hosts, which is intimately implicated in the pathogenesis of obesity and
Mets. Overall, these findings indicate that the crosstalk between helminth and hosts may
be a novel direction for obesity and Mets therapy. The present article reviews the
molecular mechanism of how helminth masters immunity and metabolism in obesity.

Keywords: parasite, obesity, metabolic inflammation, macrophages, fat browning, adipokine, insulin
resistance, microbiota
INTRODUCTION

Obesity, an epidemic and systemic metabolic disease, is characterized by excessive fat accumulation
and low-grade chronic inflammation. The prevalence of obesity is increasing at an alarming rate in
many parts of the world since 1975, arising public awareness (1). Notably, obesity is well recognized to
increase the risk of Metabolic Syndromes (Mets) including type 2 diabetes (T2DM), cardiovascular
diseases (CVD), non-alcoholic fatty liver diseases (NAFLD) and other metabolic disorders (2, 3).
Particularly, accumulating evidence links obesity as a crucial factor with neurodegenerative diseases
such as Alzheimer’s disease (AD) (4), which still lacks effective therapy, although numerous money
has been invested in this area (5). Considering the grave consequences, it is therefore imperative to
seek novel strategies against obesity and its associated Mets.

Inappropriate diets have been identified as the key factor for obesity and Mets. The findings from
animal experiments and population epidemiological investigations firmly support that the long-
term intake of western diet (WD) is closely associated with the incidence of obesity and Mets (6–8).
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As an extremely active endocrine organ in the body, adipose
tissue can release a large variety of adipokines that regulate
diverse biological processes such as glucolipid metabolism,
energy expenditure, appetite control, insulin sensitivity, and
inflammation (9). In obese state, excessive fat accumulation
produces multiple metabolites including palmitic acid (PA)
and adipokines, which activate pro-inflammatory pathways
and release inflammatory factors (10, 11). They can jointly
promote the progression of obesity and Mets. Interestingly,
recent studies have uncovered that gut microbiota is also
implicated in the pathogenesis of obesity, diabetes and
neurological disorders (12, 13). In view of the essential role of
these factors mentioned above in obesity and Mets,
reprogramming these key events therefore benefits for
development of intervention strategies.

Parasites are categorized into protozoa (Trypanosoma,
Toxoplasma, etc.) and helminths (cestodes, nematodes,
trematodes). As one of the relatively successful pathogens,
helminth infects approximately a quarter of the world’s
population, seriously endangering public health and causing
social and economic problems. However, the mortality due to
helminth infection is rare, suggesting a long evolutionary co-
adaptation between parasites and human. Helminth is
recognized to be the strongest natural stimuli of type-2
immune responses, which can down-regulate the anti-infective
immunity, thereby allowing the long-term survival of the
parasites in hosts (14–16). In recent years, epidemiological
evidence shows that there is an inverse correlation between the
exposure to helminth and the prevalence of obesity and Mets
(17–21). The Hygiene Hypothesis proposes that the fewer
infections (especially helminth infection) in early childhood
lead to the greater possibilities of developing allergic,
inflammatory and metabolic diseases in the future, which
implies the ability of helminths to master immunopathology
and the potential therapeutic effects on diseases (22, 23).
According to published studies, the infections of several
helminths have been reported to alleviate obesity and Mets via
inhibition of adipogenesis, improvement of glucose tolerance
and insulin resistance (IR) (24–27). Furthermore, accumulating
studies have showed that helminth derived molecules or
excretory-secretory products (ESPs) can act as key modulators
to exert metabolic and immune modifying functions (28). For
example, ES-62, a protein secreted by filarial nematode
Acanthocheilonema viteae, is reported to prevent metabolic
dysfunction via promotion of the recruitment of eosinophils
and M2 type macrophages in retroperitoneal adipose tissues of
infected mice (29–31). Notably, not all parasitic infection is
beneficial for improving metabolic disorders. Infection stage
and parasite species are the key factors that determine the
protective or harmful effect in the condition of obesity. It is
recently reported that Trypanosoma cruzi (T. cruzi) infection
induces adipogenic signaling and promotes the accumulation of
lipid in the hearts during the early chronic stage in infected mice
(32). Moreover, the parasite can exacerbate inflammation and
aggravate obesity related metabolic disorders (e.g. atherosclerosis
and NAFLD) during the acute phase of infection in obese mice,
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due to a high affinity for host cholesterol (33, 34). Since the
relationship between protozoa and adipose tissue has been
reviewed (25, 35), we herein did not have too much discussion
about it. In the present article, we mainly focused on the
underlying mechanism of how helminth infection or their
derived molecules reprogram metabolic inflammation, fat
browning, adipokine production, IR and gut microbiota in
WD-induced obesity, which could provide a basis for helminth
therapy against obesity and Mets.
HELMINTH-INDUCED M2 MACROPHAGE
POLARIZATION VIA METABOLIC
REPROGRAMMING CREATES AN ANTI-
INFLAMMATORY ENVIRONMENT

Macrophages, one of dominant immune cells in adipose tissues,
have the characteristics of pluripotency and plasticity that can
differentiate into different phenotypes after exposure to
endogenous or exogenous stimuli. In obese mice, PA,
lipopolysaccharide (LPS), and tumor necrosis factor-a (TNF-a)
can polarize macrophages towards “classically activated” phenotype
(M1 type) that releases pro-inflammatory cytokines (such as IL-6,
TNF-a, IL-1b) (10, 36, 37). In lean adipose tissues, resident
macrophages are alternatively activated, exhibiting an anti-
inflammatory and M2-like phenotype that involves in
homeostasis maintenance of adipose tissues (38). Macrophage
polarization is featured by the change of cell surface marker
expression. CD80 and CD86 are universally acknowledged
markers for M1 macrophages. In contrast, the level of arginase-1
(Arg-1), mannose receptor (CD206), and chemokine (C-C) motif
ligand 17 (CCL17) and CCL22 are significantly increased in M2
macrophages (39). M1 macrophages sense intracellular pathogens
mainly through the expression of toll-like receptors (TLRs) (40),
whereas M2 macrophages sense extracellular pathogens through
expression of scavenger receptors (41). In infected tissues, pro-
inflammatory M1 phenotype are first polarized to protect the host
against pathogens, followed by M2 polarization to form an anti-
inflammatory response and promote tissue repair. M2macrophages
are reported to participate in eliminating dead adipocytes for the
melioration of inflammatory milieu, and recruiting adipocyte
progenitors for the regulation of their proliferation and
differentiation, finally controlling fat hypertrophy as well as
effectively improving obesity (42). Therefore, targeting adipose
tissue inflammation and inducing M2 macrophages have emerged
as potential therapeutic strategies for obesity-related metabolic
disorders (43).

The helminth infection is accompanied by the setting of
complex metabolic reprogramming events and the induction of
macrophages M2 polarization in adipose tissues (44, 45), which
provides a basis for obesity intervention. Prior observations have
reported thatHeligmosomoides polygyrus (H. polygyrus) infection
induces polarization of M2 macrophages with upregulation of
anti-inflammatory cytokines (Arg1, IL-10), to resist metabolic
inflammation mediated by M1 macrophages in WD
February 2022 | Volume 13 | Article 827486

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dai et al. Helminth Infection-Obesity and Mets
fed mice (46, 47). Moreover, WD mice had less body weight gain
after administration of H. polygyrus-induced M2 macrophages
(46). Similarly, Cortes-Selva et al. found that Schistosoma
mansoni (S. mansoni) infection induces M2 polarization of
macrophages to improve hyperlipidemia and atherosclerosis
(48). Interestingly, acute T. cruzi infection potentiates adipose
tissue inflammation accompanied by M1macrophage infiltration
(49), whereas chronic T. cruzi infection can cause a shift in the
M2/M1 ratio towards an anti-inflammatory phenotype (35, 50).
Besides live parasite infection, their ESPs or derived molecules
can regulate macrophage polarization. Omega-1, one of major
immunomodulatory glycoproteins in the eggs of S. mansoni,
induces type 2 immune response, and improves metabolic
homeostasis through independent inhibition of food intake in
WD fed mice (51). Moreover, Hussaarts et al. reported that
chronic S. mansoni infection and its soluble egg antigens (SEA)
promote the infiltration of eosinophils and the accumulation of
M2 macrophages in adipose tissues, thereby ameliorating WD-
induced obesity (24).

As the component of ESPs released by helminth, extracellular
vesicles (EVs), a group of heterogeneous lipid-enclosed particles
derived from different cells ranging from nano to micrometer in
size, have emerged as a new mediator for intercellular
communication (52). Notably, EVs derived from helminths have
spurredanewparadigmin studyinghost-helminth interaction (53).
Several studies have showed that parasite derived EVs can regulate
pro- or anti-inflammatory responses and induce macrophage
polarization (54). For example, Echinococcus multilocularis EVs is
reported to trigger production of anti-inflammatory cytokines by
activation of M2 macrophages (55). Trichinella spiralis EVs can
improve colitis via induction of M2 macrophages infiltration (56).
Importantly, a growing body of findings highlight that adipose
tissue-secreted EVs can maintain metabolic homeostasis through
polarizingM2macrophages, inhibiting adipocyte hypertrophy and
promoting fat browning, which ameliorates obesity and Mets (57,
58). Thus, it is most likely that helminth EVs may be a novel
direction to discover intervention strategies for obesity and Mets.

In recent years, the emerging immunometabolism has attracted
considerable research interest (59, 60). The discipline shows that the
changes in intracellular metabolic pathways can determine the
differentiation and effector function of immune cells including
macrophages (61). M1 macrophages express high levels of
glycolysis and pentose phosphate pathways, whereas M2
macrophages depend on mitochondrial respiration and oxidative
phosphorylation (OXPHOS) for energy supply (62). During the
chronic or late stage of helminth infection, the host immune
response is characterized by type 2 immune response, in which
M2 macrophage is dominant. Helminth infection differentiates
macrophages into M2 phenotype through increasing expression
of IL-4 and maintaining the IL-4 signaling pathways (e.g. fatty acid
oxidation, FAO and OXPHOS) (63–65). It is well established that
LPS-induced M1 activated cells are characterized by elevated
glycolysis rate, enhanced pentose phosphate pathway, and
attenuated OXPHOS level (66). Interestingly, Trypanosoma.
brucei metabolite indolepyruvate can inhibit this effect mentioned
above, and decrease the pro-inflammatory cytokine IL-1b
Frontiers in Immunology | www.frontiersin.org 3
production in macrophages, thereby contributing to immune
evasion (67). Concurrently, we previously found that mice
infected with the larval Echinococcus granulosus (E. granulosus)
show enhanced lipolysis in adipose tissue, which is accompanied by
increased arginine metabolism (26). It is generally known that
arginine metabolism has an intimate association with M2
polarization. A recent study also discovers that blockage of
tricarboxylic acid cycle (TCA cycle) can reprogram metabolic
flux, resulting in the accumulation of metabolites such as
succinate and fumarate, which in turn act as metabolic signals to
modulate macrophage function (68). Succinate has been
demonstrated to hyperpolarize M2 macrophages via interacting
with its receptor succinate receptor 1 (SUCNR1) (69–71). It has
been reported that succinate level is elevated prior to host cells
invasion by T. cruzi (72), but the association between succinate in T.
cruzi infection and M2 macrophages polarization remains to be
elucidated. Succinate dehydrogenase (SDH) is recently
demonstrated to be a major energetic metabolic node and a
crucial regulator of activation of M1 macrophages. SDH
inhibition is found to cut off pro-inflammatory signal in
mitochondria, thereby driving anti-inflammatory phenotype (73).
For instance, Lampropoulou et al. found that itaconate, one of the
most easily induced metabolites in activated macrophages, exerts
anti-inflammatory effects by suppressing SDH-catalyzed oxidation
of succinate (74, 75). Of note, SDH enzyme activities were
significantly decreased after S. mansoni infection (76), causing
succinate accumulation followed by preventing the induction of a
range of pro-inflammatory factors (IL-1b) and enhancing a range of
anti-inflammatory factors (IL-1RA and IL-10) (73). Thus, helminth
infection may promote M2 polarization of macrophages by
reprogramming metabolism (Figure 1). Exploitation of M2
macrophages induced by parasitic infection to inhibit metabolic
inflammation and adipogenesis may provide a niche for the
intervention of obesity and Mets.
HELMINTH INFECTION MAY RECRUIT
OTHER IMMUNE CELLS TO REGULATE
HOMEOSTASIS OF METABOLISM
AND IMMUNITY

In adipose tissues, T cells, B cells and eosinophils are also important
mediators for homeostasis of metabolism and immunity. Generally,
T helper1 (Th1) cells, Th17 cells, CD8+ T cells and B2 cells are
responsible for the obesity-induced inflammation,while regulatoryT
cells (Tregs), regulatory B cells (Bregs), Th2 cells, B1 cells, and
eosinophils contribute to the anti-inflammatory response (77, 78).
However, the balance is often broken after long term intake of WD,
which is accompaniedby IR(79,80). Several studieshave showed that
helminth infection or ESPs can suppress the differentiation of Th1
andTh17, and promote the induction of Tregs andBregs to resist the
anti-infectious immunity (16, 81, 82). It is reported that S.mansoni
infection alleviates allergy airway inflammation via induction of Treg
population (83, 84). Moreover, induction of Bregs post Schistosoma
japonicum (S. japonicum) regulates the systematic inflammation
February 2022 | Volume 13 | Article 827486

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dai et al. Helminth Infection-Obesity and Mets
induced by WD (85). In addition, S. japonicum-activated Bregs can
control the levels of proinflammatory chemokines and cytokines by
IL-10 secretion to protect against the parasite induced liver
inflammation and fibrosis (86). Finally, chronic S. mansoni
infection and SEA injection promote eosinophil activation via IL-4
secretion tomaintainM2macrophages polarization in adipose tissue
(24) (Figure 2). Thus, it is rational that these anti-inflammatory cell
populations also contribute to the beneficial effect of helminth
infection on obesity and Mets, although the underlying mechanism
has not been investigated.
Frontiers in Immunology | www.frontiersin.org 4
HELMINTH INFECTION PROMOTES FAT
BROWNING VIA ELEVATION OF
UCP1 EXPRESSION

Adipose tissue, which can maintain a dynamic balance between
energy storage in the form of lipids and energy utilization (87), has
been traditionally subclassified into white adipose tissue (WAT)
and brown adipose tissue (BAT) based on morphological and
functional difference. WAT, the main site for the body to store
lipids, stores excess energy in the form of triglycerides; whereas,
FIGURE 1 | Helminth or its derived molecules induce M2 polarization of macrophages via metabolic reprogramming in obesity. Helminth infection or their derived
molecules can induce M2 macrophages polarization along with the setting of complex metabolic reprogramming events in adipose tissue of mice fed by western
diet, which provides therapeutic potential for obesity and Mets. PA, palmitic acid; LPS, lipopolysaccharide; GLUT, glucose transporter; G-6P, glucose-6-phosphate;
PPP, pentose phosphate pathway; FFA, free fatty acid; FAS, fatty acid synthesis; SDH, succinate dehydrogenase; ACOD1, aconitate decarboxylase 1; CAT, cis-
aconitate; EVs, extracellular vesicles; ESPs, excretory-secretory products; PKB, protein kinase B; AMPK, adenosine monophosphate (AMP)-activated protein kinase;
PPAR-g, peroxisome proliferator–activated receptor-g; FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation.
February 2022 | Volume 13 | Article 827486
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BAT plays an important role in regulating energy balance and
protecting against obesity by virtue of the capability for energy
expenditure through thermogenesis mediated by a BAT-specific
mitochondrial protein, uncoupling protein1 (UCP1) (88, 89).
Recent data suggest that there are two distinct types of BAT:
classical BAT derived from a myogenic factor 5 (myf-5) cellular
lineage, and “brown-like” cells that reside inWAT fromanon-myf-
5 lineage, also called beige or brite cells (90). When mice are
chronically exposed to cold environment, b3-adrenergic receptor
agonists or peroxisome proliferator–activated receptor (PPAR)-g
agonists (90), the pre-existing beige adipocytes will go through
phenotypic “transdifferentiation”, and “fat browning” (a switch
Frontiers in Immunology | www.frontiersin.org 5
from energy-storing white adipocytes to thermogenic brown fat-
like cells) will occur (91–93). In contrast to extremely low basal
expression of UCP1 within WAT, the UCP1 expression in beige
adipocytes after exposure to the same stimuli is upregulated to the
levels that can resemble classic brown adipocytes, which is
consistent with increased BAT and a greater capacity for energy
dissipation through thermogenesis. The potential contribution of
BAT thermogenesis and fat browning to whole body energy
expenditure, consequently, can be considered as a therapeutic
target to combat obesity and its related comorbidities (94, 95).

It is reported that H. polygyrus infection elevates UCP1
expression, promoting the browning of WAT in mice, by
FIGURE 2 | The underlying strategies of how helminth or its derived molecules modulate the tissue-specific homeostasis in obesity. Helminth infection or their
derived molecules can ameliorate western diet-induced obesity and its associated Mets through inducing M2 macrophage polarization, down-regulating metabolic
inflammation, promoting fat browning, attenuating lipid accumulation, ameliorating insulin resistance (through improving the impaired ability of glucose uptake and
promoting insulin binding to its receptors) and relieving the dysbiosis of gut microbiota. EVs, extracellular vesicles; ESPs, excretory-secretory products; UCP1,
uncoupling protein 1; AMPK, adenosine monophosphate (AMP)-activated protein kinase; PPAR-g, peroxisome proliferator–activated receptor-g;
LPS, lipopolysaccharide; SCFAs, short-chain fatty acids; ILC2, group 2 innate lymphoid cells.
February 2022 | Volume 13 | Article 827486
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which can increase energy expenditure and attenuate obesity in
mice (46). Moreover, S. mansoni egg-derived w1, a predominant
type 2-inducing molecule, induces systemic and localized release
of the type 2 initiator cytokine IL-33 that is involved in
maintaining glucose homeostasis and promoting browning of
WAT (96). In addition, group 2 innate lymphoid cells (ILC2s)
activated by IL-33 are demonstrated to produce methionine-
enkephalin peptides and catecholamines, which can directly
upregulate UCP1 expression in adipocytes, thereby enhancing
fat browning and improving metabolic parameters in obese mice
(97–99). Helminth infection, therefore, holds the promise for
increasing fat browning to ameliorate obesity (Figure 2).
HELMINTH INFECTION ALTERS THE
LEVELS OF ADIPOKINES AND THE
EXPRESSION OF ENZYMES IN
LIPID METABOLISM

Far from hormonally inert, adipose tissue has been, in recent years,
recognized as a major endocrine organ, as it produces a wide
spectrum of adipokines such as adiponectin, leptin and resistin that
play a role in glucolipid homeostasis and immune regulation (100–
103). Notably, leptin and resistin have pro-inflammatory effects via
increasing the production of IL-6 and other pro-inflammatory
factors, whilst adiponectin exerts anti-inflammatory properties
due to the inhibition of TNF-a (104). Leptin, a hormone that is
capable of effectively reducing food intake and body weight, was
initially considered for obesity treatment. Indeed, obese mice have
since been found to exhibit higher leptin mRNA levels, directly
associated with the increased adiposity (101). Due to defects in the
blood-brain barrier transduction pathway, obese mice often develop
hyperleptinemia and central leptin resistance (105, 106). The
inability of leptin to exert its anorexigenic effects in obese
individuals, and therefore, the lack of clinical utility of leptin in
obesity, is defined as leptin resistance (107). It has been reported
that chronic T.cruzi infection can improve leptin resistance in obese
mice (50, 106). Additionally, leptin and other adipocytokines can
jointly induce the recruitment and activation of immune cells
during WAT expansion in obese mice, create a pro-inflammatory
environment and promote the release of free fatty acids, so as to
exacerbate obesity-associated metabolic inflammation (50)
(Figure 2). When obese mice were infected with H. polygyrus, the
gene expression of leptin was markedly decreased (46), thereby
reducing the production of fatty acids and fighting against obesity.

The physiological function of adipose tissue depends on fat
synthesis and lipolysis, and both the progresses are strictly
manipulated by local adipokines (such as PPAR-g, adiponectin,
TNF-a) (108, 109). When mice were infected with T. cruzi at an
acute phase, adipose tissue displayed a significant decrease of lipid
accumulation, adipocyte size and fat mass, which was correlated
with increased expression of lipolytic enzymes (49). As a dominant
transcription factor of adipogenesis and a master modulator of
adipocyte differentiation, PPAR-g promotes lipid storage in
adipose tissue through stimulating the expression of lipogenic
enzymes and inhibits the secretion of inflammatory mediators
Frontiers in Immunology | www.frontiersin.org 6
when activated by the PPAR-g agonist (110). González FB et al.
showed that experimental acute T. cruzi infection downregulated
PPAR-g expression (50, 111), coming to a state compatible with
the adipose tissue atrophy andM1macrophage polarization (112).
Moreover, H. polygyrus infection may ameliorate diet-induced
obesity viamodulating gene expression of key transcription factors
in adipogenesis, such as PPAR-g and CCAAT enhancer-binding
proteins a (C/EBPa) (46). Nevertheless, Schistosomal-derived
lysophosphatidylcholine can induce M2 macrophage
polarization secondary to increased PPAR-g expression (113). It
is reported that adenosine monophosphate (AMP)- activated
protein kinase (AMPK), a potent cellular energy sensor for
maintenance of metabolism homeostasis, can favor FAO and
limit fatty acid synthesis to regulate lipid accumulation (114).
Xu et al. reported that S. japonicum infection can exert a strong
metabolic effect via activating the AMPK and protein kinase B
(PKB, also known as AKT) signaling molecules in S. japonicum
SEA-stimulated macrophages, which further promote FAO and
suppress fatty acid synthesis (115). Moreover, S. japonicum
infection induces upregulated expression of the FAO-related
genes while downregulating the expression of the genes
associated with fatty acid synthesis and lipid uptake, which is
consistent with SEA-induced anti-inflammatory M2 phenotype
(116, 117). It is reported that M2 macrophages shifts into FAO
and OXPHOS states, directed by signaling via IL-4 (118).
Therefore, parasite infection or its derived molecules may reduce
fat mass and improve obesity by regulating lipid metabolism in
infected hosts (Figure 2).
HELMINTH INFECTION AMELIORATES
INSULIN SENSITIVITY AND
INSULIN RESISTANCE

In obesity, abnormal adipokine secretion and excessive lipid
accumulation can cause a decrease in the expression or activity of
glucose transporter 4 (GLUT4) via phosphoinositide 3-kinase
(PI3K)/AKT signaling pathway. Alterations in GLUT4
translocation impair glucose uptake and insulin sensitivity, finally
contributing to IR (119–122) (Figure 2). IR is characterized by
glucose dysregulation with elevated serum insulin level, which
increases the risk for metabolic syndromes such as T2DM, CVD
and polycystic ovary syndrome (PCOS) (122–125). Recent data
have showed that in obese animals, proinflammatory mediators
(namely TNF-a, IL-6, and IL-1b) can damage the pancreatic b cells
insulin secretion function in autocrine and paracrine manners, and
down-regulate insulin sensitivity in liver and skeletal muscle, jointly
inducing the occurrence of IR that is closely related to the
development of T2DM (126–128).

Emerging evidence has demonstrated that parasitic infection
can improve IR and glucose tolerance in obese mice (129).
Eosinophils are reported to improve glucose homeostasis by
inducing macrophage M2 polarization in adipose tissue of obese
mice (130). In line with this, Nippostrongylus brasiliensis (N.
brasiliensis) infection can increase percentages of ILC2s and
accumulation of eosinophils in visceral adipose tissues to enhance
February 2022 | Volume 13 | Article 827486
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insulin sensitivity (131). Simultaneously, infection of obese mice
withN.brasiliensis canattenuatebodyweight gain, decreaseadipose
tissue mass, and ameliorate glucose metabolism and insulin
sensitivity, accompanied by a dramatic decline of insulin levels
(132). In addition, Filarial nematode Litomosoides sigmodontis (L.
sigmodontis) infection and L.sigmodontis antigen (LsAg)
administration is reported to increased numbers of eosinophils
and M2 macrophages within adipose tissues and improve glucose
tolerance in obese mice by the eosinophil-dependent mechanism
(133). Notably, LsAg administration can also increase the level of
adiponectin that related to insulin sensitization and inhibit the
expression of proinflammatory factor interferon-g (IFN-g) and IL-
17 to improve IR (134). Obese mice treated with LsAg injections
show significant upregulation of gene expression that are linked to
insulin sensitivity, such as GLUT4 and hexokinase 2 (HK2), which
may further support insulin signaling and improve IR (133).
Furthermore, administration of lacto-N-fucopentaose III
(LNFPIII), an immunomodulatory glycan derived from S.
mansoni SEA, is shown to improve insulin sensitivity and glucose
tolerance in obese mice, which is mediated partly via IL-10
production in macrophages and dendritic cells (51, 135). It is well
recognized that high level of IL-10 reduces the risk for Mets,
particularly T2DM (136). Correspondingly, a cross-sectional
study performed by Hays et al. showed a negative correlation
between the infection rate of Strongyloides stercoralis and the
occurrence of T2DM (137). As a consequence, helminth infection
can improve IR and prevent obesity-related Mets (Figure 2).
HELMINTH INFECTION RESHAPES THE
COMPOSITION OF GUT MICROBIOTA

The gut microbiota act as an important factor in the progression of
obesity viamaintenance of energy homeostasis and host immunity
(138, 139). It has been reported that the decrease in the richness and
diversity of gut microbiota in obese mice induced by WD is
accompanied by a reduction in expression of intestinal tight
junction proteins, which is linked to increased intestinal
permeability, thereby resulting in a malfunctioning gut barrier
(140) (Figure 2). Moreover, increased circulating LPS levels due
to a “leaky gut”, can induce an inflammatory state and metabolic
hyperendotoxinemia, eventually driving the development of
obesity-associated IR and cognitive impairment (141–143). The
association between the composition of the gut microbiota and
metabolic dysfunction is becoming clear and has been extensively
reported. Therefore, modulation of the gut microbiota may be a
potential therapeutic way for treating obesity and Mets (144).

H. polygyrus infection can induce significant alterations in gut
microbiome composition as evidenced by a marked increase in
Bacteroidetes and a decrease in Firmicutes (145). Similarly, Walk
ST et al. found a significant shift in the abundance and
relative distribution of bacterial species in the ileum of mice post
H. polygyrus infection (146). H. polygyrus-modulated microbiota
exhibit levels of short-chain fatty acids (SCFAs) and upregulate
expression of G protein coupled receptors (GPRs) (145). SCFAs
(mainly acetate, butyrate and propionate), the key bacterial
Frontiers in Immunology | www.frontiersin.org 7
metabolites, can participate in host energy homeostasis and
immune function, playing a beneficial role in preventing obesity
via interacting with GPRs. It is reported that acetate can improve
appetite control through the interaction with the central nervous
system (147), and that butyrate and propionate can not only induce
theproductionof gut hormones associatedwith the reductionoffood
intake, but also enhance gut epithelial barrier integrity as well as
promote an anti-inflammatory milieu (148–150). A recent study
also shows that SCFAs-induced protection against HFD-induced
obesity is mediated by down-regulation of PPARg, promoting a
switch from lipid synthesis to lipid oxidation (151). Moreover,
H. polygyrus affects the composition of the intestinal microbiota to
increase norepinephrine and then enhance UCP1 expression in
adipose tissues, which is responsible for limiting weight gain (152).
Infection with Strongyloides venezuelensis results in modifications of
the gut microbiota, most notably by increasing Lactobacillus spp.
Thesemodifications in themicrobiota may alter host metabolism by
switching macrophages from M1 to M2 in the adipose tissue,
increasing the levels of anti-inflammatory cytokines, upregulating
the expression of tight junction proteins (thereby reducing the
permeability) and decreasing LPS in the sera. Furthermore, these
changes correlate with improved insulin signaling and sensitivity,
suggesting that modulation of the microbiota by helminth infection
has a positive effect on the glucose homeostasis of hosts (153). In line
with others reports, our latest work showed that the ESPs
derived from the larval E. granulosus improves cognitive decline,
mitigates the gut microbiota dysbiosis, and reverses gut barrier
dysfunction in WD fed mice (154). Notably, ablation of gut
microbiota abolishes the effect of ESPs on brain and gut. This is the
first time to utilize parasite model to treat obesity induced cognitive
decline viamicrobiota-gut-brain axis (154). It is therefore proposed
that helminth or its derived molecules-induced alterations of
microbiota composition, and microbiota-produced metabolites
may play a vital but neglected role in the protective effects of
helminth infection on obesity (Figure 2).
SUMMARY AND PROSPECT

As one of relatively successful pathogens, parasites have coevolved
with human over millennia, developing elegant and intricate
immune escape mechanisms to manipulate the equilibrium of
immune and metabolism in hosts. Helminth infection or their
derived molecules (mainly ESPs) can lead to a broad range of
outcomes that ameliorate WD-induced obesity and metabolic
disorders, including M2 polarization of macrophages (Figure 1),
down-regulation of metabolic inflammation by triggering the
release of type 2 cytokines (such as IL-4, IL-10, and IL-13), the
increase of thermogenesis and energy consumption by promoting
fat browning, modification of adipokines and lipid metabolism,
improvement of insulin sensitivity and glucose tolerance, and
modulation of gut microbiota (Figure 2).

Fully understanding andharnessing characteristics of helminth-
driven immunomodulation may become an important therapeutic
insight for human diseases including obesity and Mets (155). In
2013, the safety and tolerability of Trichuris suis ova (TSO) have
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been confirmed in randomised clinical trials (156), and the United
States Food and Drug Administration has approved TSO to treat
patients with inflammatory bowel diseases (IBD). A recent
randomized, double-blind, placebo-controlled Phase 1b clinical
trial conducted by Pierce et al. (157), showed that it is safe and
well-tolerated to inject a certain dose of larvae III stage of Necator
americanus into patients with central obesity and metabolic
syndrome, identifying hookworm infection as a potentially
alternative therapy for obesity. Overall, these clinical trials lay a
foundation for further exploiting helminth-inspired therapies
against obesity and Mets.

However, helminth therapy also presents a challenge to the drug
development community. This results from the fact that live
parasitic administration has the possibility to increase the
infective risk and bring biosafety issues. Alternatively, animal
models have demonstrated that the ESPs released by parasites can
evoke type 2 immune responses, alleviate adipose tissue
inflammation and enhance glucose homeostasis, thereby reducing
the body weight of obese animals (155). The use of ESPs instead of
active helminth infection potentially addresses some of the
drawbacks and obstacles currently faced by experimental
helminth therapy. However, type 2 immunity induced by parasite
derived molecules may also have adverse effects. For example, a
higher occurrence rate of asthma is observed in obese individuals
(158, 159), while the tropomyosin of Ascaris lumbricoides is
reported to have strong allergenic activity (160). Administration
of such molecules is speculated to increase the incidence rate of
asthma in obesity. What’s more, it is well known that parasite
infection is closely associatedwith accumulation of eosinophils (24,
131), andeosinophil recruitment representsone of thepathogenesis
for asthma (161). Thus, to frame the possibility that helminth
derived molecules could be developed as drugs, more animals and
clinical trials should be tested.

Furthermore, a more elaborated description of the definitive
immunomodulatory components of helminth could facilitate a
more precise therapeutic approach against obesity and its
associated Mets. The molecular diversity of helminth products with
therapeutic potential is noticeable. As such, identifying specific
molecules, targeted receptors, and downstream signaling pathways
that work in therapy or prevention of obesity and its related Mets,
constitutes important future directions. Even if the molecules
involved in their immunometabolic effects are identified, immune
suppression to human should be avoided, in order to prevent other
complications. Of note, recombinant expression platform is
overwhelmingly vital for the production of developing helminth
biologics. Moreover, if helminthic therapy comes true as innovative
therapeutic avenues for obesity and its associated disorders, the drug
dose, the frequency and route of administration and duration of
treatment will be likely to be different in a therapeutic setting (155).
More experiments especially clinical trials are needed to determine
these parameters. Currently, on account of limited available
information of helminth therapy, many problems are not clear
such as whether other immune cells or cell subsets are involved in
immunomodulation, as well as how helminth-induced type 2
immunity affects metabolic organs other than adipose tissue,
including liver, skeletal muscle, gut and pancreas (162). Thus, there
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is a long way to clarify the mechanism and find more effective
strategies against obesity and its associated diseases.

In addition, the emerging immunometabolism, provides a novel
insight on addressing these scientific puzzles mentioned above.
Accumulating evidence has indicated that helminth or its derived
molecules can reprogram the metabolic events in macrophages of
host, thereby modulating the anti-infective immunity and
providing a moderate living environment for the growth and
development of helminth (163). Nevertheless, only sporadic
mechanistic investigations in the view of immunometabolism
have been reported (164, 165). Several metabolites may be
implicated in the inner workings of helminth infections and
immunity. For example, SUCNR1 has recently been reported to
increase the expression of the anti-inflammatorymarkers related to
M2 macrophages in WD induced obesity (70). The enzyme
aconitate decarboxylase 1 (ACOD1, originally named by immune
responsive gene 1, IRG-1), is responsible for itaconate production
through the decarboxylation of cis-aconitate in the TCA cycle. The
latest studies have uncovered that ACOD1/itaconate axis links
metabolism to immunity in macrophages (166), and has gained
lots of interests in immunometabolism field and inflammatory
diseasemodels (167, 168).Ofnote, our lncRNAmicroarray analysis
showed that larval E. granulosus infection can upregulate the
expression of SUCNR1 and ACOD1 in adipose tissues of mice
(26), which is paralleled with theM2macrophage polarization post
infection. Interestingly, a recent study reported that injection of
soluble egg derived from S. japonicum exhibited inhibitory effects
on the expression of lipogenesis-related genes inmice fedwithWD,
thereby contributing to the treatment for obesity-related fatty liver
disease (169). These studies emphasize the intimate crosstalk
between immune and metabolism of host and helminth or
derived molecules. It is believed that immunometabolism can
improve our understanding of the inherent mechanisms of host-
helminth/derivedmolecules interplay, promising to contribute to a
stream of innovative therapeutic avenues for obesity and its
related Mets.
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