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Abstract

FBXO7 encodes an F box containing protein that interacts with multiple partners to facilitate

numerous cellular processes and has a canonical role as part of an SCF E3 ubiquitin ligase

complex. Mutation of FBXO7 is responsible for an early onset Parkinsonian pyramidal syn-

drome and genome-wide association studies have linked variants in FBXO7 to erythroid

traits. A putative orthologue in Drosophila, nutcracker, has been shown to regulate the pro-

teasome, and deficiency of nutcracker results in male infertility. Therefore, we reasoned that

modulating Fbxo7 levels in a murine model could provide insights into the role of this protein

in mammals. We used a targeted gene trap model which retained 4–16% residual gene

expression and assessed the sensitivity of phenotypic traits to gene dosage. Fbxo7 hypo-

morphs showed regenerative anaemia associated with a shorter erythrocyte half-life, and

male mice were infertile. Alterations to T cell phenotypes were also observed, which intrigu-

ingly were both T cell intrinsic and extrinsic. Hypomorphic mice were also sensitive to

infection with Salmonella, succumbing to a normally sublethal challenge. Despite these phe-

notypes, Fbxo7 hypomorphs were produced at a normal Mendelian ratio with a normal life-

span and no evidence of neurological symptoms. These data suggest that erythrocyte

survival, T cell development and spermatogenesis are particularly sensitive to Fbxo7 gene

dosage.

Introduction

F box containing proteins form part of SCF E3 ubiquitin ligase complexes in addition to SKP1

and CULLIN. Within these complexes the F box subunits are essential for controlling the spec-

ificity of the targets proteins for ubiquitination [1]. FBXO7 is one such F box containing pro-

tein and within the SCF complex has been demonstrated to regulate ubiquitination of HURP

[2], cIAP1 [3] and TRAF2 [4]. In addition to their role in the SCF complex, certain F box pro-

teins can function via additional protein-protein interaction domains. Mutations in FBXO7
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have been linked with an early onset autosomal recessive Parkinsonian pyramidal syndrome

[5]. In addition to loss-of-function mutations, two genome-wide associations studies have

linked variants in FBXO7 with several erythrocyte and stem cell traits [6, 7].

FBXO7 has been shown to interact with the proteasome inhibitor, PI31 [8]. Proteasomal

regulation by the putative FBXO7 Drosophila orthologue, nutcracker, which was identified in a

screen for genes affecting male fertility [9], was demonstrated to alter caspase activation and

prevent spermatid individualisation [10]. Recently, FBXO7 has been demonstrated to alter

proteasome activity leading to neuronal dysfunction [11], which could in part underlie the

Parkinsonian pyramidal syndrome associated with loss-of-function mutations in FBXO7.
However, an alternative mechanism has been proposed whereby FBXO7 can recruit PARKIN

to the mitochondria and regulate mitophagy, such that mutated FBXO7 results in increased

dysfunctional mitochondria and neuronal cell dysregulation [12].

FBXO7 has also been implicated in cell cycle control and has been suggested to act as an

oncogene [13]. FBXO7 can interact with CDK6 to regulate the activity of CYCLIN D/CDK6

complexes [13]. In addition, FBXO7 can also interact with the cell cycle inhibitor, CDKN1B

(p27Kip1), and this regulation has been suggested to affect erythropoiesis in a murine model

[14]. Furthermore, FBXO7 can regulate apoptosis through interaction with the apoptosis

inhibitor cIAP1 and ubiquitination as part of the SCF complex [3].

Given the roles of FBXO7 within the SCF complex and its SCF-independent roles we

sought to investigate the physiological roles of FBXO7. To do this we generated a Fbxo7 hypo-

morphic allele, observing that male mice homozygous for this allele were infertile, similar to

Drosophila carrying mutations in nutcracker, however these mice showed no evidence of

shortened lifespan or any neurological symptoms. In addition, this hypomorphic allele

resulted in regenerative anaemia due to a shortened erythrocyte half-life in vivo that was

intrinsic to the haematopoietic lineage. These hypomorphic mice showed alterations to T cell

phenotypes and were also highly susceptible to systemic infection with Salmonella Typhimur-

ium, a phenotype that was neither T cell dependent nor regulated by other cells of the haema-

topoietic lineage. Thus, we confirm that erythrocytes and T lymphocytes are sensitive to Fbxo7
gene dosage. We also reveal that hypomorphic male mice are infertile due to strongly impaired

spermatogenesis, and highlight new roles for Fbxo7 in regulating susceptibility to bacterial

infection.

Materials and method

Mice

Generation of C57BL/6NTac Fbxo7tm1a(KOMP)Wtsi (hereafter referred to as Fbxo7tm1a) mice was

performed using ES cell clone EPD0622_3_D02 with genotyping performed as previously

described [15] and are openly available (EMMA ID EM:06827). Mice carrying the Fbxo7tm1b

allele (whereby the critical exon was deleted by Cre recombinase) were generated by treating

Fbxo7tm1a two-cell embryos with cell permeable Cre as previously reported [16]. The Fbxo7tm1a

allele was converted to the floxed (conditional) Fbxo7tm1c allele by crossing these mice with

those ubiquitously expressing Flp recombinase from the Rosa26 locus (FLPeR allele provided

by Philippe Soriano [17] and targeting performed in JM8/F6 (C57BL/6N) embryonic stem

cells to generate B6N-Gt(ROSA)26Sortm1(FLP1)Dym/Jmice). Fbxo7tm1cmice were then bred to

TgCD4Cre (B6.Cg-Tg(Cd4-cre)1Cwi/BfluJ, Jackson laboratory stock 022071) [18] in order to

generate a T cell-specific deletion of Fbxo7. Animals were housed at a density of 2 to 6 mice

per cage in polysulfone individually ventilated cages (Tecniplast) with sterilised Aspen bedding

substrate and standard environmental enrichment, in a specific pathogen-free unit. The light

cycle was maintained at 12h light/12h dark with lights off at 19:30 hours and no twilight
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period. Room temperature was 21 ± 2˚C and humidity was regulated at 55 ± 10%. Mice

received sterilized (vacuum packed and irradiated) diet (Lab Diets, 5021–3) from weaning and

had ad libitum access to autoclaved water and food. In order to assess the fertility of homozy-

gote (Fbxo7tm1a/tm1a) mice after confirmation of genotypes a single male was placed with a sin-

gle fertile female for 11–16 weeks and signs of pregnancy assessed. All experiments were

performed according to protocols approved by the UK Home Office regulations, UK Animals

(Scientific Procedures) Act of 1986 and were approved by the Wellcome Sanger Institute Ani-

mal Welfare and Ethical Review Board.

Gene expression and transcript sequence analysis

RNA was extracted from tissues using RNeasy fibrous or lipid kit (Qiagen Ltd, Manchester,

UK) according to the manufacturer’s instructions. Fbxo7 gene expression was assessed using

FAM-conjugated TaqMan assays (Mm00462692_m1 for exons 3–4 spanning the inserted cas-

sette for the tm1a allele or the downstream exon 5–6 assay Mm01240794_m1 for tm1b sam-

ples). Template RNA was added in duplex reactions in triplicate with endogenous control B2m
VIC primer limited probe (Mm00437762_m1), using the EXPRESS One-Step Superscript

qRT-PCR Kit (Thermo Scientific) and an Applied Biosystems Viia7 analyser. Relative gene

expression between endogenous control and target genes were analysed using the ΔΔCT

method [19]. For sequencing the targeted transcripts reverse transcriptase PCR was performed

on RNA isolated from the liver of Fbxo7tm1a/tm1a or Fbxo7tm1b/tm1bmice using the Superscript

IV one-step kit using the following primers Fbxo7_Exon3_F GGCCTAGTCAAAATGTTGAAGC
and Fbxo7_Exon7_R TCCACAGCAGTGGGTCATT. The resulting product was sent for Sanger

sequencing using the primers above.

Western blotting

Brain, liver, spleen, kidney and testis were collected from a male WT and a Fbxo7tm1a/tm1a

male mouse. These samples were homogenised in 1 ml (spleen, kidney and testis) or 2 ml

(brain and liver lobe) of radioimmunopreciptation assay buffer (10x stock from Merck) sup-

plemented with 0.1% w/v sodium lauryl sulfate and protease inhibitors (cOmplete, Roche,

Sigma-Aldrich, Poole, UK) in M tubes (Miltenyi Biotec, Bisley, UK) using a GentleMACS tis-

sue dissociator and program protein_01. Lysates were placed on ice for 10 min and then insol-

uble material cleared by centrifugation at 15,000 x g for 15 min at 4˚C. Protein levels in the

cleared lysate were determined by a bicinchoninic acid protein assay (Pierce, ThermoFisher

Scientific, Loughbourgh, UK) following the manufacturer’s protocol. A total of 50 μg protein

was prepared for electrophoresis with NuPAGE LDS sample buffer and NuPAGE sample

reducing agent (both Invitrogen, ThermoFisher Scientific) according to the manufacturer’s

guidelines. Proteins were separated on a NuPAGE 4–12% Bis-Tris cell using MOPS running

buffer together with Novex Sharp pre-stained protein ladder and MagicMark XP protein lad-

der and then transferred to PVDF membrane using the X-Cell II blot module and NuPAGE

transfer buffer according to the recommended settings (all reagents from Invitrogen). After

transfer the membrane was rinsed with tris buffered saline containing 0.05% Tween 20

(TBS-T) and blocked in 5% non-fat dried milk (Cell Signalling Technology, New England Bio-

labs (UK) Ltd, Hitchin, UK) prepared in TBS-T for 30 min at room temperature with gentle

mixing. Primary rabbit polyclonal anti-FBXO7 antibody (Sigma-Aldrich SAB2100794) was

diluted 1/500 in 2.5% non-fat dried milk in TBS-T and incubated overnight at 4˚C with gentle

mixing. The blot was washed with TBS-T prior to the addition of goat-anti rabbit IgG HRP

conjugated antibody (Abcam, Cambridge, UK, ab97051, 1/5000 dilution in 2.5% non-fat dried

milk in TBS-T) and incubated for 90 min at room temperature with gentle mixing. The blot
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was washed with TBS-T prior to application of chemiluminescent substrate (Western Bright

ECL Spray, Advansta, Labtech, Uckfield, UK) and image acquisition with a LAS-4000 (GE

Healthcare). The membrane was rinsed with TBS-T and incubated with stripping buffer

(Restore PLUS stripping buffer, Pierce) then blocked for 30 min 5% non-fat dried milk pre-

pared in TBS-T and cut between 60 and 80 kDa markers to be probed with two separate

endogenous control antibodies (anti-β-actin, clone C4, Santa Cruz Biotechnology, Heidelberg,

Germany, 1/500 or anti-vinculin, clone V284, Sigma-Aldrich, 1/10,000) for 90 min at room

temperature with gentle mixing. After washing with TBS-T the blot was incubated for 60 min

at room temperature with gentle mixing in secondary antibody (goat anti-mouse IgG HRP

conjugated antibody, Abcam, ab97023, 1/5000 dilution in 2.5% non-fat dried milk in TBS-T).

The blot was washed with TBS-T prior to image acquisition.

Blood collection and analysis

Retro-orbital, tail vein or cardiac blood was collected into EDTA-coated tubes for haematology

or heparinised tubes for plasma preparation (Kabe Labortechnik GmbH, Numbrecht, Ger-

many). Complete blood counts were determined using a Vetabc system to provide red blood

cell indices, white blood cell count and platelet count and volume parameters (Scil, Montpel-

lier, France). Plasma was analysed for bilirubin, iron, aspartate aminotransferase, alanine ami-

notransferase, ferritin, amylase or lipase using an Olympus AU400 analyser (Beckman Coulter

Ltd., High Wycombe, UK) with reagents supplied by Beckman Coulter or Randox (Randox

Laboratories Ltd., Crumlin, UK).

Bone marrow chimera generation

Wildtype (CD45.1 congenic B6.SJL-PtprcaPepcb/BoyJ, Jackson Laboratory strain ID

002014) mice were administered 2 x 5.4 Gy whole body irradiation from a gamma source

4 hours apart followed by tail vein administration of 4 x 106 bone marrow cells from

CD45.2 expressing wildtype or Fbxo7tm1a/tm1a mice. Six weeks post-transplant a tail vein

blood sample was taken from the mice to assess the relative proportions of CD45.1

(remaining host) versus CD45.2 (donor) cells by flow cytometry using PerCP-Cy5.5 con-

jugated anti-CD45.1 (clone A20, Biolegend, 0.4 μg/ml) and AlexaFluor 700 conjugated

anti-CD45.2 (clone 104, BD Biosciences, 0.5 μg/ml). Mice were analysed 10 weeks after

reconstitution.

Salmonella Typhimruium challenge

Mice were infected intravenously with 0.2ml Salmonella Typhimurium M525 (phoN::tetC)

containing 5x105 CFU of bacteria in sterile phosphate buffered saline (Sigma-Aldrich). At vari-

ous time points as indicated in the text, mice were sacrificed and the spleen and liver were har-

vested and blood collected via cardiac puncture under Isoflurane anaesthesia and placed into

heparin tubes for the isolation of plasma. Prior to analysis (as above) plasma was filtered

through 0.22 μm spin filters (Costar Spin-X) to eliminate any circulating bacteria. Organs

were homogenised in sterile water and bacteria enumerated by serial dilution and plating onto

agar plates (Oxoid). Mice were weighed daily throughout the infection and were humanely

sacrificed if they lost more than 20% of their starting weight or were demonstrating clinical

symptoms in accordance with UK Home Office regulations (United Kingdom Animals Scien-

tific Procedures Act 1986).
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Histological analysis

Spleen, thymus and epididymis were fixed in neutral buffered formalin, embedded in paraffin

and sections stained with haematoxylin and eosin according to standard methods. Spleen and

liver from Salmonella infected mice were processed as above. Testes were collected and fixed

in 4% paraformaldehyde (Sigma-Aldrich) prepared in 0.1M phosphate buffer pH 7.2 for 20

hours at 4˚C. Testes were then postfixed with 1% osmium tetroxide, dehydrated and embed-

ded in epoxy resin. Semithin sections (1 μm) were cut and stained with Toluidine Blue stain.

To prepare epididymis smears the cauda epididymis were carefully collected and trimmed of

adipose tissue. The epididymis was placed in a 35mm dish containing 0.5 ml of phosphate

buffer saline and a number of small cuts made in the epididymal membrane and the sperm

released with gentle swirling. The contents of the dish were visualised under a dissecting

microscope and smears were prepared by applying 10 μl of this solution to one end of a micro-

scope slide (Superfrost Plus, Thermo Scientifc) and using another slide at a 45o angle to gener-

ate the film along the slide. After air drying the smears were stained with a modified

Pappenheim stain (Hemacolor, Merck)

Erythropoiesis analysis

Staining of single cell suspensions of spleen, bone marrow and whole blood with CD71,

Ter119, CD45, Syto 16 and DAPI was performed as previously described [20]. In brief, single

cells from spleen and bone marrow or blood (2 μl of whole blood added to 23 μl of normal

0.9% saline) were stained for 30 minutes at 4˚C with the following antibodies: Ter119-APC

(0.33 μg/ml, TER-119, Biolegend); CD71-PE-Cy7 (0.1 μg/ml, RI7217, Biolegend); and

CD45-Alexa Fluor 700 (0.833 μg/ml, 30-F11, Biolegend) after blocking with 1 μg Mouse FC

block (2.4G2, BD Biosciences) for 10 minutes. After washing the samples were incubated for

15 minutes at room temperature in 0.5 μM Syto 16 and 0.2 μg/ml DAPI (both Invitrogen) pre-

pared in FACS buffer (Dulbecco’s phosphate buffered saline without calcium or magnesium

(D-PBS, Gibco), supplemented with 1% bovine serum albumin (Sigma-Aldrich)). Samples

were washed prior to acquisition on a BD LSRII instrument. Dead cells (DAPIhigh) and dou-

blets (FSC-A vs FSC-H and SSC-H vs SSC-W) were excluded. Erythroid cells were identified

as Ter119+ CD45-, with erythroblasts as CD71+ Syto 16high, reticulocytes as CD71+ Syto 16low

and mature erythrocytes as CD71- Syto 16neg.

In vivo clearance of erythrocytes

This was performed as described previously [21] with minor modifications. In brief, blood

(700 μl) was collected under terminal anaesthesia from the retro-orbital sinus into EDTA

coated tubes and washed twice with 14 ml of D-PBS. Blood from two mice of the same geno-

type were pooled and labelled with either 10 μM Vybrant CFDA (wild type) or 1 μM Cell-

Tracker Deep red (mutants, both Invitrogen) for 30 minutes at 37˚C with constant gentle

mixing by rotation. The reaction was quenched by the addition of 10 volumes of D-PBS con-

taining 5% fetal bovine serum (FBS, Sigma). Erythrocytes were pelleted and washed twice with

D-PBS prior to counting using a Vetabc system. Erythrocyte concentrations of each genotype

sample were adjusted with D-PBS to 2 x 106 erythrocytes/μl. The two genotypes were then

pooled and 200 μl was injected into C57BL/6N recipient mice (10 weeks old; female) to trans-

fuse 2 x 108 erythrocytes/genotype. Blood samples (2 μl) were collected from the tail vein at the

indicated time points and placed in 3 ml of flow cytometry buffer (D-PBS with 2mM EDTA

and 0.5% FBS). The samples were mixed and acquired on a BD LSRII instrument with CFDA

detected in the FITC channel (ex 488nm, em 530/30) and CellTracker Deep red in the APC

channel (ex 633, em 660/20). Gates were set around the CFDA or CellTracker Deep red single
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positive erythrocytes and the percentage of total erythrocytes was determined. A total of 5,000

labelled erythrocytes were acquired and application settings in BD FACSDiva software were

used to standardise the instrument voltage settings over the experiment duration. The percent-

age of the fluorescent erythrocytes was calculated as the percentage of the total labelled fraction

determined from the blood collected 60 minutes after injection.

T cell immunophenotyping

Blood was stained with titrated multicolour antibody panel for 20 minutes at room tempera-

ture prior to fixation with BD Cell Fix (BD Biosciences). Erythrocytes were lysed with BD

PharmLyse (BD Biosciences) prior to washing with FACS buffer (D-PBS without calcium or

magnesium, supplemented with 2mM EDTA, 0.5% fetal bovine serum and 0.1% sodium

azide) and acquisition. Single cell suspensions of spleen or thymus were prepared by mechani-

cal disruption using the frosted ends of microscope slides. Erythrocytes from spleen were

removed via treatment with BD PharmLyse and passed through a 30-micron cell strainer (Mil-

tenyi Biotec). Splenocytes or thymocytes were blocked with 1 μg Mouse FC block for 10 min-

utes at 4˚C followed by the addition of titrated multicolour antibody panels and incubation at

4˚C for 30 minutes. Samples were washed with D-PBS and viability staining with Fixable Via-

bilty Dye eFluor 455UV (Life Technologies) according to the manufacturer’s instructions.

Samples were washed twice with FACS buffer prior to acquisition. Compensation was per-

formed with antibody binding beads (UltraComp eBeads, eBioscience) and Amide Reactive

beads (ArC beads, Life Technologies) using the automated compensation calculation in BD

FACSDiva v8 using either a BD LSRII or BD LSRFortessa instrument. Samples were analysed

in a blinded manner in FlowJo X (FlowJo, LLC). Details of antibodies used and concentrations

are in S1 Table.

Experimental design

All experiments performed on mice were not blinded to genotype due to this information

being present on the cage cards. Experiments were performed in a randomised manner on a

cage basis with controls and mutant mice generally being co-housed. Blood and tissue samples

were processed in a blinded manner with the exception of the Salmonella counts. All analysis

of flow cytometry data was performed in a blinded manner as was the histopathology. No a
priori estimates were performed to calculate sample sizes for experiments and mice were allo-

cated to treatment group by random allocation (Mendelian inheritance or via a predetermined

allocation cage-based approach for bone marrow administration).

Statistical analysis

All data was analysed in Prism v6 (Graph Pad) with an unpaired two-tailed students t test with

Welch’s correction, unpaired two-tailed t test adjusted for multiple testing via the Holm-Sidak

method for a family wise error of 5%, or two-way ANOVA with post-hoc test, as indicated in

the figure legends.

Results

The Fbxo7tm1a allele is hypomorphic

We generated mice that were homozygous for a ‘knockout first targeted’ EUCOMM/KOMP

CSD tm1a allele of Fbxo7 (Fbxo7tm1a/tm1a; S1 Fig; [22]) and found there was between 4 and

16% residual Fbxo7 transcript present depending on the tissue tested (S1 Fig), indicating

incomplete ablation of gene expression. The hypomorphic nature of the allele agrees with
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previous reports [14, 23]. Immunoblotting was performed using a commercially available anti-

body and, in some tissues, in particular testis, there was a reduction in the intensity of bands in

the predicted size range for FBXO7 (S1 Fig). However, due to the numerous non-specific

bands present with this primary antibody it is not possible to accurately conclude the degree of

protein present in Fbxo7tm1a/tm1a tissues. Homozygote Fbxo7tm1a/tm1amice were born at the

expected Mendelian ratio (240 Fbxo7tm1a/tm1a out of 1138 offspring from Fbxo7tm1/a+ inter-

crosses) and had a normal life span (S2 Fig). We then performed Cre conversion of the

Fbxo7tm1a allele to generate the Fbxo7tm1b allele, in which the critical exon is excised, to pro-

duce a null allele [22]. Although Fbxo7tm1b/tm1b pups were present at post-natal day 14 (6/43

homozygotes produced from Fbxo7tm1b/+ intercrosses) none of these survived weaning in

agreement with a previous report using a similar allele [11].

Gene expression analysis of Fbxo7tm1b/tm1b tissues using a qPCR assay spanning exons 5–6,

downstream of the gene trap cassette, showed unexpected amplification of the target in liver

and kidney samples (S3 Fig) despite the deletion of exon 4. Further analysis using RT-PCR and

Sanger sequencing revealed that of the Fbxo7 transcripts that were not truncated the remaining

Fbxo7tm1b/tm1bmRNA was interrupted by a 115-nucleotide sequence derived from the En2

exon in the splice acceptor region of the cassette (S3 Fig), a phenomenon which has been

described previously using a similar IRES-βgeo gene trap cassette [24]. Although the removal

of exon 4 is predicted to generate a frameshift on analysis the sequence of this product the

inserted 115-nucleotides puts the resulting Fbxo7 transcript back into frame. This has the

potential to produce a protein lacking exon 4 and part of the annotated PI31 proteasome regu-

lator domain but retaining the F-box domain and the regions which interact with PINK1 and

CDK6 (S3 Fig), which could, in theory, have some dominant negative effect within cells. Simi-

lar analysis of RNA from Fbxo7tm1a/tm1a indicated the presence of an in-frame full length tran-

script (S3 Fig) as suggested from the gene expression analysis.

Fbxo7tm1a/tm1a mice are anaemic

Hypomorphic Fbxo7tm1a/tm1amice at 16 weeks of age showed a significantly reduced erythro-

cyte number, haemoglobin level and haematocrit with increased haemoglobin content and

size of the erythrocytes, as well as an increased red blood cell distribution width (Fig 1A–1F).

These altered erythrocyte indices indicate a macrocytic anaemia with anisocytosis that is

hyperchromic, similar to that previously reported [14].

Fbxo7tm1a/tm1amice presented with splenomegaly suggestive of compensatory extramedul-

lary haematopoiesis (Fig 1G). To quantify the extramedullary erythropoiesis in spleen we used

flow cytometry and found a significant increase in the percentage of more immature (CD71+)

cells. These immature cells were identified as both reticulocytes and erythroblasts (Fig 1H) and

was accompanied by a significant increase in the circulating reticulocyte number (Fig 1I).

The anaemia and resulting increased erythropoiesis could be the result of a failure of eryth-

rocyte development and/or due to shortened half-life of circulating erythrocytes. We assessed

the circulating bilirubin concentration as a biomarker of erythrocyte destruction and observed

that it was significantly increased in Fbxo7tm1a/tm1amice (Fig 2A) together with a decreased

plasma iron level (Fig 2B) suggestive of a shortened erythrocyte half-life. In order to determine

the actual erythrocyte half-life in vivo we adoptively transferred fluorescently labelled erythro-

cytes and observed a significantly reduced half-life of Fbxo7tm1a/tm1a erythrocytes (Fig 2C). To

eliminate possible environmental causes of the anaemia that were not intrinsic to the haemato-

poietic system we generated bone marrow chimeras and observed that these phenocopied

Fbxo7tm1a/tm1amice (Fig 2D–2H).
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Fbxo7tm1a/tm1a mice present with T cell abnormalities

Fbxo7tm1a/tm1amice showed a significant decrease in circulating T cells in the blood, both in

the CD4 and CD8 subsets (Fig 3A). The reduced number of T cells was accompanied by an

altered phenotype of the remaining T cells with an increase in those expressing high levels of
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corpuscular volume (MCV); (F) red blood cell distribution width (RDW); (G) spleen weight; (H) characterisation of
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https://doi.org/10.1371/journal.pone.0212481.g001
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CD44 and low levels of L selectin (CD62L), representing an effector memory status (Fig 3B).

The decreased number of T cells present in blood was also observed in the spleen (Fig 3C)

with the increase in activated/memory T cells (Fig 3D). We next aimed to determine if there

was a defect in T cell development as previously reported [25] and noticed severe thymic atro-

phy in Fbxo7tm1a/tm1amice, with the thymus virtually undetectable by 10 weeks of age. As

would be expected the cellularity was greatly decreased (Fig 3E and S4 Fig) with an increase in

most immature CD4/CD8 double negative T cells (Fig 3F), in agreement with the previous

report.

We next sought to determine the role of FBXO7 in a T cell intrinsic manner via conversion of

the tm1a allele into the floxed tm1c allele to allow for tissue specific ablation in T cells by crossing

with mice carrying Cre under the control of the CD4 gene (Fbxo7tm1c/tm1c;CD4-Cre +). Surpris-

ingly in mice where Fbxo7 was only deficient in the T cell lineage there was no evidence for thy-

mic atrophy (S4 Fig) or any alterations in T cell development within the thymus (Fig 4A). This
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https://doi.org/10.1371/journal.pone.0212481.g002
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could be associated with the fact that under the control of a CD4 transgene, Cre is known to be

expressed in the late double-negative stage [26] and thus there is likely to be insufficient time for

any thymic phenotype to be observed. In the spleen, there was a mild reduction in T cell number

in the mice where Fbxo7 was specifically deleted within T cells that was mainly driven by the

CD8 compartment which experienced a similar decrease as that of the whole body Fbxo7 defi-

cient (Fbxo7tm1a/tm1a) mice (Fig 4B). However, in contrast to the whole-body deficient animals

there was no alteration in the phenotype of the T cells in the specific T cell deletion (Fig 4C).

This would suggest that the thymic atrophy and T cell phenotypes are not regulated in a T cell

intrinsic manner.
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percentage in the spleen and (D) splenic T cell effector percentage. (E) total thymus cell number and (F) T cell
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https://doi.org/10.1371/journal.pone.0212481.g003
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Fbxo7tm1a/tm1a mice are susceptible to Salmonella infection

As part of a phenotype-screening programme, mice were given a systemic infection with Sal-
monella Typhimurium that is normally sublethal in wild-type C57BL6/N mice. In contrast, the

Fbxo7tm1a/tm1amice needed to be humanely sacrificed at an early time point (prior to day 11)

due to exacerbated weight loss (reached 20% limit) or displaying health concerns (Fig 5A and

5B). We repeated the assay collecting samples at various times post-infection and assessed bac-

terial burden. The splenomegaly present in uninfected mice was exacerbated by the infection

(Fig 5C). There was a slight increase in the bacterial burden in the spleen but this was not sig-

nificant with no difference in the liver at day 6 post-infection (Fig 5D). The livers of infected

Fbxo7tm1a/tm1amice presented with macroscopic alterations and histologically showed necro-

inflammatory foci with oval nodules of hepatocyte necrosis surrounded by inflammatory cell

infiltration (Fig 5E) that were not seen in infected control livers. T cells have been demon-

strated to have an important role in mediating the complete clearance of Salmonella infection

[27] and given the T cell abnormalities in these mice, we sought to determine the role of

FBXO7 within T cells. Using T cell-specific Fbxo7 deficient mice (Fbxo7tm1c/tm1c; CD4-Cre +)
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https://doi.org/10.1371/journal.pone.0212481.g004
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we repeated the Salmonella infection but observed no weight loss phenotype indicating that

there is no role of FBXO7 within mature peripheral T cells for the phenotype observed (Fig

5F). We next generated bone marrow chimeras to elucidate if the susceptibility to Salmonella
was driven by the haematopoietic system. The bone marrow chimeras had no overt phenotype

following Salmonella infection, except possibly a mild impairment in Salmonella clearance

from the liver at day 14 post infection (Fig 5G), suggesting the susceptibility is driven by a

non-haematopoietic lineage. With the histological changes, we investigated if the morbidity

was linked to a toxic response to Salmonella infection similar to that observed in mice deficient

in vitamin B12 through targeted mutation in gastric intrinsic factor [28]. Assessing plasma

concentrations of various constituents in homozygous Fbxo7tm1amice, we observed an

increase in circulating amylase and lipase (Fig 5H and 5I) suggestive of pancreatic damage.

This was accompanied by a trend to increased levels of hepatic enzymes, alanine aminotrans-

ferase (ALT, P = 0.0877, Fig 5J) and aspartate aminotransferase (AST, P = 0.0569, Fig 5K),

which are typically released after liver damage. There was also a striking increase in ferritin, an

acute phase protein (Fig 5L). Together these data suggest that FBXO7 is required for the nor-

mal response to systemic Salmonella infection.

Fbxo7tm1a/tm1a male mice are infertile

It has been suggested that Fbxo7 is the mammalian orthologue of theDrosophila, nutcracker.
Flies with a mutation in nutcracker are sterile due to a defect in spermatid individualisation [9]

associated with reduced proteasome activity [10]. Perhaps surprisingly given the hypomorphic

nature of the Fbxo7tm1a allele we observed a similar sterility in homozygous male mice with no

litters resulting from four Fbxo7tm1a/tm1amale mice paired with known fertile females. We

sought to determine if mature spermatozoa were released from the testis into the epididymis

and thus harvested the epididymis and isolated the contents. Visualising the contents of the epi-

didymis under a microscope showed a greatly reduced spermatozoa count from Fbxo7tm1a/tm1a

mice and the few spermatozoa that were present had an abnormal morphology (Fig 6A) with

no motility. On histological examination of the epididymis they were devoid of spermatozoa in

Fbxo7tm1a/tm1amice compared to WT mice (Fig 6B) In agreement with a developmental defect

the weight of the testis was reduced in Fbxo7tm1a/tm1amice (Fig 6C) and there was aberrant sper-

matogenesis with spermatid arrest and markedly reduced spermatozoa formation observed in

sections of the testis (Fig 6D).

Discussion

In studying a hypomorphic allele we have been able to investigate the pleiotropic functions of

FBXO7 in a murine model. With 4–16% residual gene expression remaining there is no evi-

dence of Parkinson’s-like symptoms or a shortened lifespan. However, a shortened erythrocyte

half-life with concomitant regenerative anaemia is observed, together with male infertility

due to a lack of normal mature spermatozoa. In addition, a T cell developmental defect is

present and the mice are susceptible to morbidity after systemic infection with Salmonella
Typhimurium.

controls (Fbxo7tm1c/tm1c;CD4-Cre—5 mice). (G) spleen and liver Salmonella counts at day 14 post infection from irradiated female mice reconstituted with

Fbxo7+/+ (10 mice) or Fbxo7tm1a/tm1a bone marrow (9 mice). (H-L) plasma clinical chemistry parameters at day 6 post infection from male mice (5 mice/

genotype) for plasma levels of amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and ferritin (P values calculated from

unpaired two-tailed students t tests with Welch’s correction). For panels C, D and G-L symbols represent individual mice with the line at the mean and error

bars representing the standard error of the mean (D and G) or standard deviation (C, H-L). For panel F symbols represent the mean with error bars

representing the standard error of the mean.

https://doi.org/10.1371/journal.pone.0212481.g005
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FBXO7 has been demonstrated to interact with numerous other proteins including SKP1

and CULLIN to form an E3 ubiquitin ligase complex, with Parkin and PINK1 to regulate mito-

phagy, with CDK6 and p27 to influence cell cycle progression and PI31 to regulate the protea-

some. It is believed that these different interactions can underlie the pleiotropic phenotypes

observed. The interaction with Parkin and PINK1 has been suggested to be critical to the

observed Parkinsonian pyramidal syndrome with a defect in mitophagy resulting in dopami-

nergic neuronal cell death [12]. However, recent studies also suggest that proteasomal regula-

tion by FBXO7 also contributes to neuronal cell survival [11]. This proteasomal regulation has

also been linked with the male infertility observed in nutcracker deficient flies, with nutcracker
suggested to be the Drosophila Fbxo7 orthologue. This reduced proteasome activity leads to a

build-up of dBruce, an inhibitor of caspase activity, that prevents the non-apoptotic caspase

activity required for the individualisation of mature spermatids within the testis and their

release as spermatozoa into the epididymis [10]. Similar to nutcracker flies we observed a
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https://doi.org/10.1371/journal.pone.0212481.g006
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similar defect in the hypomorphic Fbxo7tm1a/tm1amale mice, which were infertile due to a lack

of normal mature spermatozoa in the epididymis.

In contrast, the shorter erythrocyte in vivo half-life is more likely to be attributed to the

impaired mitochondrial activity observed in Fbxo7 deficient erythroid lineage cells leading to

increased cytosolic reactive oxygen species (ROS) [14]. Other mutations that result in

increased ROS, such as those affecting AMPK, have been demonstrated to give rise to short-

ened erythrocyte half-life and regenerative anaemia [29]. Given the shorter half-life it is hard

to disentangle if there is also a developmental defect within the erythroid lineage, which could

be possible given evidence that caspases play important roles in erythroid enucleation and ter-

minal differentiation [30]. Further, it has previously been demonstrated that FBXO7, via inter-

action with p27, can modulate erythroblast differentiation [14]. Genome wide association

studies have linked FBXO7 variants to mean corpuscular volume and mean corpuscular hae-

moglobin traits [6, 7] and this study adds further evidence to the potential mechanism by

which FBXO7 could regulate erythrocyte development, differentiation and survival.

Using a combination of ubiquitous targeting of Fbxo7 (Fbxo7tm1a/tm1a) and T cell-specific

deletion of Fbxo7 (TgCD4cre) we have investigated the role for FBXO7 within the T cell lineage.

When Fbxo7 is deficient ubiquitously the number of T cells is decreased and there is an

increase in T cells showing an activated phenotype. These mice also have severe thymic atro-

phy with the thymus undetectable after approximately 10 weeks of age. In contrast, while there

is a T cell intrinsic role for Fbxo7 with regard to determining the number of T cells, perhaps

through regulation of the cell cycle and proliferation, it however does not influence the pheno-

type of the cells. In contrast, the increased activated T cells could be linked to the shorter eryth-

rocyte half-life and regenerative anaemia as it is only present in the whole body Fbxo7tm1a

mice which would suggest it is triggered by the environment rather than an intrinsic role for

FBXO7 within T cells.

The phenotype after systemic infection with Salmonella is not likely to be attributed to a

defect in the ability to control the bacteria as although the burden within the spleen and liver

was increased it was not to the same degree as other murine models with an innate defect in

the control of intracellular pathogens [27]. This is supported by the fact that neither Fbxo7 T

cell deficient mice nor bone marrow chimeras show a similar phenotype, suggesting that this

effect is not mediated by a haematopoietic cell lineage. Instead, this is likely associated with a

toxic syndrome given the pathological and physiological alterations we observed, such as the

increased markers of liver and pancreatic damage with elevated levels of ALT, AST, amylase

and lipase. This could potentially be mediated by FBXO7 directed ubiquitination of cIAP1 and

TRAF2 and regulation of NF-κB signalling [4] or another via interaction between FBXO7 and

other binding partners.

In conclusion, this study has utilised a hypomorphic allele to elucidate the differential contri-

bution of FBXO7 in various cellular lineages. Given the phenotype observed in erythrocyte sur-

vival and spermatogenesis, it would appear that these cell types are more sensitive to a

reduction in cellular Fbxo7 expression levels where even 4–16% is not sufficient to maintain

normal function. In contrast, the lack of an overt neurological defect, in agreement with another

study [11], suggests that a complete ablation of Fbxo7 is required for the development of this

phenotype and that in this case, if not restricted to the neurons, results in post-natal lethality.

Supporting information

S1 Table. Details of fluorochrome conjugated antibodies used in the study for immuno-

phenotyping spleen, blood and thymus.

(XLSX)
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S1 Fig. Molecular characterisation of Fbxo7tm1a allele. (A) Diagrammatic representation of

the Fbxo7tm1a allele. (B) RNA expression of Fbxo7 in Fbxo7+/+ and Fbxo7tm1a/tm1a brain, liver,

spleen, kidney and testis samples. Data is presented as the relative expression of three samples

per genotype from male mice aged 18 weeks old, showing the mean and 95% confidence inter-

vals using a probe spanning exons 3–4. (C) Protein expression of FBXO7 and two endogenous

controls (VINCULIN and β-ACTIN) in brain, liver, spleen, kidney and testis tissue lysates

from 20-week-old Fbxo7+/+ and Fbxo7tm1a/tm1amale mice. The dotted box indicates the sug-

gested size of FBXO7 isoforms and � indicates endogenous immunoglobulin heavy and light

chain detected by the anti-mouse IgG-HRP conjugate.

(EPS)

S2 Fig. Survival of Fbxo7+/+ and Fbxo7tm1a/tm1a mice. Fbxo7+/+ (8 female and 15 male) and

Fbxo7tm1a/tm1amice (7 female and 14 male), P = 0.9409 Mantel-Cox test.

(EPS)

S3 Fig. Gene expression in Fbxo7tm1b/tm1b mice. (A) RNA was isolated and Fbxo7 expression

determined in kidney and liver from Fbxo7tm1b/tm1bmice and wild-type controls (three mice

per genotype) showing the mean and 95% confidence intervals using a probe spanning exons

5–6. (B) Schematic of Fbxo7tm1b allele. (C) RT-PCR and Sanger sequencing across the targeted

region. (D) Schematic of Fbxo7 exons and key protein domains from wild-type full length and

from the two transcripts generated in Fbxo7tm1b/tm1bmice. (E) Schematic of Fbxo7tm1a allele.

(F) RT-PCR and Sanger sequencing across the targeted region.

(EPS)

S4 Fig. Histology of thymus. (A) Fbxo7+/+ and Fbxo7tm1a/tm1amice (25 weeks old). (B)

Fbxo7tm1c/tm1c;CD4-Cre—(control) Fbxo7tm1c/tm1c;CD4-Cre + (T cell specific Fbxo7 deletion)

mice (20 weeks old). Images are representative of at least two mice per genotype.

(TIF)
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