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Experimental demonstration of 
a reconfigurable electro-optic 
directed logic circuit using cascaded 
carrier-injection micro-ring 
resonators
Yonghui Tian1, Zilong Liu1, Huifu Xiao1, Guolin Zhao1, Guipeng Liu1, Jianhong Yang1, Jianfeng 
Ding2, Lei Zhang2 & Lin Yang2

We experimentally demonstrate a reconfigurable electro-optic directed logic circuit which can perform 
any combinatorial logic operation using cascaded carrier-injection micro-ring resonators (MRRs), and 
the logic circuit is fabricated on the silicon-on-insulator (SOI) substrate with the standard commercial 
Complementary Metal-Oxide-Semiconductor (CMOS) fabrication process. PIN diodes embedded 
around MRRs are employed to achieve the carrier injection modulation. The operands are represented 
by electrical signals, which are applied to the corresponding MRRs to control their switching states. The 
operation result is directed to the output port in the form of light. For proof of principle, several logic 
operations of three-operand with the operation speed of 100 Mbps are demonstrated successfully.

Silicon photonics has attracted more and more attention in scientific community due to its natural advantages 
such as complementary metal-oxide-semiconductor-compatible (CMOS) fabrication process, high transmission 
speed, low latency, and parallel processing, etc1–6. Currently, silicon photonics has achieved great development 
in many fields, and various silicon-based optical devices have been demonstrated successfully such as filters7–9, 
routers10–12, lasers13–17, multiplexers18–22, sensors23–27, electro-optic modulators28–38 and optical logic devices39–45, 
etc. Being a kind of basic devices in the area of silicon photonics, micro-ring resonator (MRR) is widely used in 
high-performance computing and optical information processing due to its unique advantages such as sharp 
resonances for wavelength selectivity, compact size, low consumption, and large-scale integration.

Electro-optic directed logic is a novel paradigm which employs the optical switch networks to carry out 
Boolean logic operations, and the electrical signals regarded as logic operands are applied to the optical switches 
to control their switching states46–48. The operands of the Boolean logic operations determines the state of each 
optical switch whose operation is independent to the others in the optical switch network, and all optical switches 
can perform their operations almost simultaneously. Since the delay time of each switch will not accumulate, 
and the final operation result is directed to the output port in the form of light, the overall latency of the logic 
circuit is very low. In addition, as it is known to all, the advantage of electrical signal lies in its convenience of 
control, and that of the light signal is its adaptability to operation derived from the high propagation speed. The 
electro-optic directed logic combines the advantages of both electrical and light signals since its control signal 
is electron and operation signal is photon. Therefore, electro-optic directed logic is a highly appealing candidate 
for future high speed, bit-rate optical computing, networking system and highly integrated on-chip photonic 
system. Note that for the directed logic scheme, the logic operands are electrical signals, and the operation results 
are output in the form of light. The output signals (light signals) must be converted into electrical signals to drive 
the next level. Therefore, the integrated photo-detector is needed for the scalability. However, the most desired 
application occasion of directed logic is in on-chip optical network, in where the operation results can be applied 
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in next level directly rather than needed to be converted into electrical signals, and in this case, directed logic 
can provide ultrafast network routing functions that enable highly efficient packet-switched interconnections for 
high-performance computing. In a word, for some special application occasion where the operation results in the 
form of light can be directly applied in the next level, directed logic has more advantages over electrical logic by 
taking advantage of fast and low-loss propagation of light in a highly integrated on-chip photonic system.

Reconfigurable electro-optic directed logic plays a key role in optical information processing. Compared to 
most of electro-optic directed logic circuits, reconfigurable electro-optic directed logic circuit can perform any 
combinatorial logic operation, which can be applied in many occasions such as optical computing, packet routing, 
etc. For proof of concept, we have successfully demonstrated a reconfigurable electro-optic directed logic circuit 
which can perform any combinatorial logic operation with four-operand at the operation speed of 10 kbps based 
on the silicon thermo-optic effect in our previous work42. However, with the growing demand of high speed 
optical computing, the drawback of the device in ref. 42 has appeared. In this paper, we report a higher speed 
reconfigurable logic circuit using cascaded carrier-injection MRRs. Although relatively faster response time of 
reconfigurable electro-optic directed logic circuits has been reported43, 44, the Multiplexer (MUX)/Demultiplexer 
(DEMUX) and computing functions are achieved simultaneously by the proposed logic circuit, where the MUX/

Structure
Extra MUX/
DEMUX

Number of 
Operands

MRRs required in 
reconfigurable two-
operand operation Modulation scheme

Operation 
speed

2 × 2 Switches arraya YES 4 7 Forward biased PIN junction ~500 Mb/s

2 × 2 Switches arrayb YES 4 7 Reverse biased PN junction 3 Gb/s

1 × 4 Switches arrayc NO 4 2 Micro-heater 10 Kb/s

1 × 3 Switches arrayd NO 3 2 Forward biased PIN junction 100 Mb/s

Table 1.  A comparison of various reconfigurable electro-optic directed logic circuits. aTaken from ref. 43. 
bTaken from ref. 44. cTaken from ref. 42. dTaken from this work.

Figure 1.  (a) Single MRR with one waveguide (inset: the cross-section of the device including the quasi-TE 
fundamental mode and dimensions of waveguide), (b) a tunable MRR-based optical switch with a PIN junction 
embedded in the ring, (c) the transmission spectra of the optical switch in block/pass mode (the status of the 
optical switch is from OFF to ON) for light with the working wavelength, black line is the spectra when the 
logic signal is ‘0’, blue line is the spectra when the logic signal is ‘1’, λ0 marks the resonant wavelength without 
modulation, λ1 marks the resonant wavelength after modulation, (d) the transmission spectra of the switch in 
pass/block mode (the status of the optical switch is from ON to OFF).
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Figure 2.  The logic circuit with (a) one working wavelength and all MRRs work in the block/pass mode, (b) one 
working wavelength and all MRRs work in the pass/block mode, (c) one working wavelength and MRRs work in 
the pass/block or block/pass mode, and (d) the proposed reconfigurable logic circuit (the solid line ring denotes 
MRR working in the block/pass mode, the dot line ring denotes MRR working in the pass/block mode, MRRs 
with the same color work at the same working wavelength, EPS: electrical pulse sequences).

Figure 3.  Microscope image of the fabricated reconfigurable electro-optic directed logic circuit based on silicon 
MRRs.
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DEMUX are integrated with computing elements. Table 1 summarizes the comparison of various reconfigurable 
electro-optic directed logic circuits. In comparison, our logic circuit does not need additional MRRs to achieve 
MUX/DEMUX functions. Therefore, it is more compact than refs 43 and 44. We design and fabricate the logic cir-
cuit on Silicon-Oxide-Insulator (SOI) substrate using the standard complementary metal-oxide-semiconductor 
(CMOS) process, and several logic operations with the operation speed of 100 Mbps are finally demonstrated 
successfully.

Results
Device working principle, design and fabrication.  It is well known that any logic function can be 
expressed in the form of sum-of-product. For example, an arbitrary logic function Y can be expressed as 

= + + … …Y X X X Xn1 2 3 , and Xn denotes the product of a number of variables, such as = … …X a a a an n1 2 3
(an represents the opposite logic value of an). According to the logic expression, we propose a reconfigurable elec-
tro-optic directed logic circuit which can perform any combinatorial logic operation based on cascaded carri-
er-injection MRRs. As we know, MRR can be employed to construct the optical switch (Fig. 1(a)). In order to 
control the working state of the optical switch, we fabricate a PIN junction embedded around the ring (Fig. 1(b)), 
and thus the electrical signal can be applied to MRR through the PIN diodes to achieve a high speed 
modulation.

Generally speaking, there are two different operation modes for the optical switch. One is the block/pass mode, 
and the other is the pass/block mode. Figure 1(c,d) show the mechanisms to realize the two different operation 
modes of optical switch, respectively. The resonant wavelength without modulation and the resonant wavelength 
after modulation are represented by λ0 and λ1, respectively. When the working wavelength aligns with λ0 (see 
Fig. 1(c)), the switch works in the block/pass mode; while the working wavelength aligns with λ1 (see Fig. 1(d)), 
the switch works in the pass/block mode.

Figure 4.  Static response spectral of the device with no voltage applied to MRRs.

Figure 5.  (a) Resonance shift of the MRR with different driving voltages, as well as (b) the tuning efficiency of 
the heater.
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The structure of the proposed logic circuit is composed of N MRRs and one waveguide, which is illustrated in 
Fig. 2(d). In fact, the essence of the proposed logic circuit is an optical switch array consisting of N MRR-based 
optical switches. Monochromatic continuous light with the working wavelength of λ is coupled into the input 
ports of logic circuits (Fig. 2(a–c)), and then the light is modulated by the electrical pulse sequences (EPS) applied 
to MRR1, MRR2, MRR3, …, MRRn, respectively. The low and high levels of EPS represent logic ‘0’ and ‘1’ in elec-
trical domain, respectively; the low and high levels of the optical power at the output port represent logic ‘0’ and 
‘1’ in optical domain, respectively. As mentioned in our previous work42, the logic circuit of Fig. 2(a) can perform 
the AND operation of N operands when all MRRs work in the block/pass mode. The operation result X can be 
expressed as = … …X a a a an1 2 3 . Similarly, the logic circuit can also perform the AND operation of N inverse 
operands when all MRRs work in the pass/block mode. The operation result can be expressed as = …X a a a an1 2 3  
(Fig. 2(b)). The logic circuit can also perform the AND operation of N operands when some MRRs work in the 
pass/block mode and others work in the block/pass mode. For instance, we define MRR2 working in pass/block 
mode and the other MRRs working in block/pass mode in Fig. 2(c). The operation result X can be expressed as 

= … …X a a a an1 2 3 . In brief, if the continuous wave coupled into the logic circuit is monochromatic, the product 
of any N variables can be obtained at the output port in the form of light according to the definitions of MRR 
operation modes. As the circuit diagrams show in Fig. 2(d), MRRs in the logic circuit can be divided into several 
operation groups, where MRRs in one group work at the same wavelength. Multi-wavelength signal lights with 
the wavelength of λ1, λ2, λ λ… n3  are coupled into the input port simultaneously, and are separated and directed 
into different operation groups with the Wavelength Division Multiplexing (WDM) technology. Based on the 
above discussions, every operation group can perform the product of any variables. The operation results of all 

Figure 6.  Logic circuit diagrams of the device for different three-input logic operations (the solid line ring 
denotes MRR works in the block/pass mode, the dot line ring denotes MRR works in the pass/block mode, MRRs 
with the same color work at the same working wavelength).
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operation groups are finally multiplexed together. Therefore, the final operation result Y can be expressed as 
= + + … …Y X X X Xn1 2 3  (Xn denotes the product of any variables). Note that the amount of operation groups 

is equal to the amount of the working wavelengths, and the amount of operands in each term is equal to the 
amount of MRRs in the corresponding operation group. The proposed logic circuit is similar with the Field 
Programmable Gate Array (FPGA), and the resonant wavelengths of unused MRRs can be shifted far from the 
working wavelengths of the circuit through thermal tuning.

For a proof of principle, a reconfigurable electro-optic directed logic circuit consisting of three electro-optic 
tunable MRRs is fabricated on 8 in. (20.3 cm) silicon-on-insulator (SOI) wafer with 2-μm-buried SiO2 layer and 
220-nm-top silicon layer. The microscope image of the fabricated device is shown in Fig. 3, and the efficient foot-
print of the fabricated device is about 400 × 1100 μm2. The carrier-injection-based PIN modulation structure is 
used to achieve relatively high speed and high-efficiency modulation of the device. As we known, when the PIN 
junction is forward-biased, the carriers are injected into the core of the waveguide through the diffusion motion 
of the carriers, and then the refractive index of the waveguide is modulated. Generally, the carrier’s diffusion 
speed is far lower than its drift speed; therefore, the operation speed of the device based on the carrier-injection 
modulation scheme is lower than that’s the carrier-depletion modulation scheme. However, the number of the 

Figure 7.  Logic operation results of the device with three-operand ((a–c) represent the operands applied to 
MRRs, and (d–h) represent the logic operation results).
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carrier injected into the core of the waveguide can be very large when a small forward voltage is applied to the 
PIN junction; therefore, the forward-biased PIN modulation scheme has higher modulation efficiency compared 
to the reverse-biased PN modulation scheme. For some specific application occasion in which the modulation 
efficiency is more desired than the operation speed, the forward-biased PIN modulation scheme is a better choice. 
In fact, these two modulation schemes (forward-biased PIN junction and reverse-biased PN junction) are both 
based on the free carrier dispersion effect, and in here, we choose the PIN modulation scheme with the sim-
ple fabrication process to verify that the free carrier dispersion effect can also be employed in our proposed 
device. The device is fabricated in Institute of Microelectronics (IME), Singapore using the standard commercial 
Complementary Metal-Oxide-Semiconductor (CMOS) process, and the fabrication process is similar to our pre-
vious works40, 41. See Methods for full fabrication process.

Static Response Test.  In order to determine the working wavelengths of the device, an amplified spon-
taneous emission (ASE) source and an optical spectrum analyzer (OSA) are employed to measure the static 
response spectra of the device. The measured static response spectra with no voltage applied to the device is 
shown in Fig. 4. The insertion loss is about 5.3 dB which includes 5 dB coupling loss (about 2.5 dB for each end 
face) and 0.3 dB transmission loss; the resonant wavelengths of three cascaded MRRs are 1545.18 nm, 1548.10 nm, 
1550.73 nm, respectively. The extinction ratio of each MRR is nearly equal (18 dB), and the quality factor (Q 
factor) of each MRR is approximately 5,000. For carrier-injection modulation, high Q factors are desirable for 

Boolean operations A + B +A B C +A B C A + BC ABC

Supplied dynamic power consumption 23.26 mW 35.90 mW 36.61 mW 35.20 mW 35.20 mW

Supplied DC power consumption 0 mW 38.44 mW 38.44 mW 31.36 mW 97.54 mW

Supplied total power consumption 23.26 mW 74.34 mW 75.05 mW 66.56 mW 132.74 mW

Table 2.  Supplied power consumption for different Boolean operations.

Figure 8.  Processing flows of the device: (a,b) etching of the top Si layer by 150 nm and 70 nm, respectively, 
(c,d) p- and n- doping and through boron and phosphorus implantation, (e) deposition and etching of the 
TiN layer to form the microheater, (f,g) etching of the SiO2 layer to form the via holes to the PIN diodes and 
microheaters, (h) deposition and etching of the Al layer to form the wires and pads, (i) deep etching to form the 
end-face of the SSCs.
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low-voltage and low-power operation. High Q factor means small 3-dB bandwidth to some extent; therefore, 
small carrier concentration change can result in enough extinction ratios. However, the trade-off of Q factor 
should be taken into account since the higher the Q factor is, the more sensitive the MRR will be to the change 
of environmental temperature. In addition, a high Q factor means long photon lifetime, which will further limits 
the working speed of the MRR. Therefore, a moderate Q factor of 5,000 is suitable for the device demonstrated 
in this paper. Consequently, we use three electro-optic tunable MRR with suitable parameters to demonstrate 
the reconfigurable logic operations. Note that the Ω-shape heaters are integrated on the top of MRRs in order 
to control their resonant wavelength accurately, and the thermal tuning response spectral is shown in Fig. 5(a), 
from which we can see that the MRR’s resonant wavelength occurs red-shift with the increasing of applied voltage. 
The thermal tuning efficiency is about 8.353 mW/nm (as shown in Fig. 5(b)), which can be greatly improved by 
introducing air trench around MRR49. In addition, air trench can also decrease the crosstalk between adjacent 
MRRs and improve the thermal stabilization of MRR. Therefore, air trench issue is a main consideration for the 
optimization design of the device in future.

Dynamic Response Test.  As we all know, there are many different logic operations for the three-operand. 
However, for the purpose of proving the principle, only a few typical logic operations of them are demonstrated 
here. Firstly, three MMRs are divided into two operation groups, and the first group has one MRR while the sec-
ond group has two MRRs (Fig. 6). The first group is composed of MRR1, and the working wavelength is chosen as 
λ1. The second group is composed of MRR2 and MRR3, and the working wavelength is chosen as λ2. The different 
operation modes for MRR are defined to perform different logic operations. For example, two lasers with the 
wavelengths of λ1 and λ2 are coupled into the input port of the device simultaneously, if the MRR1 is controlled by 
operand A in the pass/block mode, the MRR2 is controlled by operand B in the pass/block mode and the MRR3 is 
controlled by operand C in the block/pass mode, and thus the device can perform the logic operation of +A BC 
(Fig. 6(c)). Analogously, other logic operations can also be achieved through the definitions of different operation 
modes of MRR, and several typical examples are shown in Fig. 6.

The measured dynamic response results of the device are shown in Fig. 7. A two-channel tunable laser (TL), 
three arbitrary function generators (AFGs), an oscilloscope (OSC), an erbium doped fiber amplifier (EDFA), an 
optical filter, and a photo-detector (PD) are employed to characterize the dynamic response of the device. (Note 
that those facilities were only used to characterize the device in our experiment, while in practical application, 
they are no needed and the logical function of the device can be used just like traditional electric transistors.) 
Three MRRs are firstly divided into two groups. The first group is only composed of MRR1, and its working 
wavelength is λ1. The second group includes MRR2 and MRR3, and its working wavelength is λ2. Continuous 
monochromatic lights with the wavelengths of λ1 and λ2 from a two-channel tunable laser are simultaneously 
coupled into polarization controllers and then the monochromatic light with TE polarization is coupled into the 
device through a 2 × 1 combiner. Three pseudo-random binary sequence (PRBS) non-return-to-zero signals with 
the speed of 100 Mbps generated by the AFGs are applied to MRRs through the PIN diodes embedded around 
MRRs, respectively. The voltage swing of the PRBS is 1.50 V. The DC bias voltages are −0.06 V in block/pass mode 
and −0.20 V in pass/block mode for MRR1, and the DC bias voltages for MRR2 and MRR3 are the same, which are 
−0.19 V in block/pass mode and −0.26 V in pass/block mode, respectively. Therefore, the operating voltages are 
different in different operation mode for the same MRR, and the operating voltages are 0.69 V in logic ‘1’ state and 
−0.81 V in logic ‘0’ state for MRR1 in block/pass mode, which means the operating voltage change from 0.69 V 
to −0.81 V when the logic signal change from logic ‘1’ to ‘0’, vice-versa; The operating voltages are 0.55 V in logic 
‘0’ state and −0.95 V in logic ‘1’ state for MRR1 in pass/block mode, which means the operating voltage change 
from 0.55 V to −0.95 V when the logic signal change from logic ‘0’ to ‘1’, vice-versa. The voltage swings and DC 
bias voltages are the same for MRR2 and MRR3, therefore, the operating voltages change from 0.56 V to −0.94 V 
for MRR2 and MRR3 in block/pass mode when the logic signals change from logic ‘1’ to ‘0’, vice-versa, and the 
operating voltages change from 0.49 V to −1.01 V for MRR2 and MRR3 in pass/block mode when the logic signals 
change from logic ‘0’ to ‘1’, vice-versa.

Finally, the output optical signal is coupled into a photo-detector, and the electrical signal transformed by the 
PD is fed into the OSC for observation. As proof of principle, several logic operations of three-operand with the 
operation speed of 100 Mbps are demonstrated successfully (Fig. 7). In fact, any logic operation of three-operand 
can be achieved by the proposed device through the alteration of the working wavelength numbers and the oper-
ation modes of optical switch. Definitely, we can increase the numbers of MRR in the logic circuit in order to 
achieve more complex logic operations. In a word, the proposed logic circuit can perform reconfigurable logic 
operations by using WDM technology. Note that although the high levels of the results are different attributed 
to the WDM technology, it does not affect the performance of the device since we can define the secondary high 
level as logic1 (Fig. 7(d)). In addition, some undesired small peaks and dips can be found in Fig. 7 resulting from 
the alteration of working status for the device, which has been discussed in detail in ref. 40. Note that the device 
can perform higher operation speed when the pre-emphasis electrical signals (logic operands) are used to reduce 
MRRs’ response time30. In fact, the modulation of the proposed device is to change the MRR’s resonant wave-
length, in other word, all modulation schemes which can change the refractive index of the waveguide can be 
employed in the design of the device. Therefore, other advanced modulating schemes such as the carrier-depletion 
modulation and the electric field effects can also be employed to modulate the MRRs to achieve a higher speed 
operation of the device. However, the modulation efficiency for the carrier-depletion modulation and the electric 
field effects is relatively low. In order to obtain the faster operation speed as well as higher modulation efficiency, 
the optimization of the device will be a potential challenge in future. The power consumption of the device is 
related to the specific logic operation, which means the power consumptions are different if the device performs 
different logic operations. The specific power consumptions of several logic operations demonstrated in the paper 
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are given in Table 2. In fact, the supplied DC power consumption can be greatly decreased by fabricating air 
trench around MRR. Therefore, the total power consumption can be further decreased, which has been left for 
our future works.

Conclusion
We report a reconfigurable electro-optic directed circuit which can implement any logic operation using cascaded 
MRRs, and in order to realize a high operation speed, the carrier injection scheme is employed to modulate the 
MRRs. As a proof of principle, a three-input reconfigurable logic circuit based on three cascaded carrier-injection 
MRRs is designed and fabricated, and several typical logic operations of three-operand with an operation speed 
of 100 Mbps are finally demonstrated successfully.

Methods
Device fabrication.  248-nm deep ultraviolet (UV) lithography is employed to define the waveguide pat-
terns, and Inductively Coupled Plasma (ICP) is employed to etch the top silicon layer (Fig. 8(a,b)). The bus and 
ring waveguides are formed by a submicron rib waveguide with a height of 220 nm, a width of 400 nm, and a slab 
thickness of 70 nm, which only supports quasi-TE fundamental mode (the quasi-TE fundamental mode of the 
waveguide is shown in inset in Fig. 1(a)). The radii of MRRs are designed to be 10.00 μm, 10.03 μm and 10.06 μm 
in order to induce slightly different initial resonant wavelengths to the three MRRs. The gaps between the ring 
and straight waveguides are chosen to be 260 nm to achieve high extinction ratios. In order to enhance the cou-
pling efficiency between the waveguide and the lensed fiber, the 200-μm-long linearly inversed nanotapers with 
180-nm-wide tip are fabricated on the input and output terminals. Following the silicon waveguides are formed, 
the p- and n-doping regions with phosphorus and boron concentrations of 5.5 × 1020 cm−3 are formed around 
ring waveguides to form PIN modulation structure which are employed to modulate MRRs. In order to achieve 
high modulation efficiency and low optical absorption loss, the edge-to-edge distance from the doped regions to 
the ring waveguides is designed about 500 nm (Fig. 8(c,d)). A 1.5-μm-thick SiO2 layer is deposited as the upper 
cladding layer using plasma-enhanced chemical vapor deposition (PECVD). After that, the 150-nm-thick TiN 
microheaters are fabricated on the top of MRRs using deep UV photolithography and dry etching (Fig. 8(e)) in 
order to control the resonant wavelengths of MRRs accurately. Via holes to PIN diodes and microheaters are 
formed through two step etching processes (Fig. 8(f,g)), and then a 1-μm-thick Al layer is sputtered and patterned 
to form printed tracks and pads to connect the PIN diodes and microheaters (Fig. 8(h)). Finally, the end-face of 
the SSC (spot size converter) is exposed by a 110-μm-deep etching process as the world-to-chip interface in order 
to improve the coupling efficiency between the SSC and lensed fiber (Fig. 8(i)).
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