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Abstract: The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure
to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give
rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal
biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear
reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at
modulating the global DNA methylation level and states of various histone protein modifications,
recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a
targeted manner. In this review, we describe—based on the growing number of reports published
during recent decades—in detail where, when, and how manipulations of the epigenome of donor
cells and reconstructed SCNT embryos can be performed to optimize the process of molecular
reprogramming and the outcome of nuclear transfer cloning.
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1. Introduction

The genome sequence includes the principal instructions to build, develop, and main-
tain an organism, but epigenetic mechanisms determine how this information is used in
specific cell types during development and differentiation as well as in physiological and
pathological processes. Whereas the DNA sequence is almost identical in all cells of an
organism, epigenetic determinants—summarized as the “epigenome”—vary widely across
different cell types and developmental stages and thereby modulate the cellular gene activ-
ity profile. Epigenetic mechanisms, i.e., DNA methylation, histone protein modifications,
and effects associated with non-coding RNAs, are influenced by endogenous physiological
and pathological stimuli, but also by exogenous environmental effects. Experimental stud-
ies in model organisms, but also epidemiological studies in humans indicate that epigenetic
mechanism are—at least in part—heritable (reviewed in [1]).

Nuclear transfer (NT) experiments were originally designed to answer one of the
most intriguing questions of developmental biology: is embryonic development and
differentiation and subsequent fetal growth associated with irreversible modifications in the
resulting somatic cells? NT experiments were first performed in amphibians, where transfer
of a differentiated cell into an enucleated oocyte resulted in the development of an adult
animal, demonstrating that totipotency of somatic cells can be restored [2]. In mammalian
species, the breakthrough result of somatic cell nuclear transfer (SCNT) was the sheep Dolly,
which was produced by transfer of an adult mammary epithelial cell to an enucleated
oocyte [3]. Over the last decades, SCNT became a standard methodology and there are now
thousands of clones around the world including 22 mammalian species: sheep, cow, goat,
pig, mouse, rat, rabbit, dog, wolf, domestic and wild cat, mouflon, mule, buffalo, horse,
gaur, red deer, ferret, camel, ibex goat, coyote, and macaque monkey (reviewed in [4,5]).
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Cloning offers great perspectives for agricultural and biomedical applications as well
as for basic research. In agriculture, cloning provides great possibilities to rescue endan-
gered species, to protect the genetic resources of commercially important species, and to
accelerate the propagation of breeding livestock (reviewed in [6,7]). In combination with
genome editing, SCNT can produce animals with desirable traits including rapid growth,
disease resistance, and improved product quality [8–10]. In biomedicine, the generation of
genetically engineered animals with various features relies on SCNT, including donors for
organ xenotransplantation [11,12], models for human diseases [13–15], and living bioreac-
tors to produce compounds for diagnostics and therapy [16]. SCNT can also be used to
generate isogenic embryonic stem cells (ntESCs), especially human ntESCs, thus providing
an important source for organ regeneration [17]. In basic research, SCNT is an excellent
model for understanding how cell memory can be fully reprogrammed to generate totipo-
tent cells [18] and to perform hypothesis-driven developmental studies in model organisms
other than mouse [19].

However, practical application of SCNT technology is hindered by its low efficiency.
Losses occur throughout preimplantation, postimplantation, and perinatal development.
Surviving animals often exhibit various abnormalities, such as large offspring syndrome
(LOS), enlarged placentas and organ defects (observed in cattle, sheep and mice), or obesity
in mouse and abnormal teat numbers and cleft lips in pigs [4,20–23]. The causes of these
abnormalities can be divided into four main categories: trauma during micromanipulation,
insufficient reprogramming competence of the used oocytes, resistance to reprogramming
of the used donor nuclei, and anomalies induced by in vitro culture of the reconstructed
SCNT embryos. These factors may result in abnormal epigenetic profiles and gene expres-
sion patterns in cloned embryos, which are considered to be the main barriers to normal
development [5,18,24].

Epigenetics refers to the modulation of gene expression through the physical and
biochemical properties of chromatin without changing the DNA sequence. Epigenetic
mechanisms include DNA methylation, post-translational modification of DNA-binding
proteins and the integration of chromatin-binding proteins to maintain chromatin in either
an active or repressed configuration [25]. During normal mammalian preimplantation
development, fundamental epigenetic changes take place to ultimately generate an or-
ganism from two differentiated gametes. The entire DNA methylome is erased—except
for imprinted regions—and later re-established [26]. For successful SCNT, the pattern
of epigenetic modifications in the differentiated nucleus of the donor cell must undergo
remodeling to become like the pattern present in the nucleus of a zygote. Incomplete epige-
netic remodeling and aberrant patterns of DNA methylation or histone acetylation in SCNT
embryos have been identified in numerous studies and all contribute to the inefficiency of
SCNT [24,27–29].

Many attempts have been made to improve the development of SCNT embryos by
manipulating their epigenome. In this review, we describe and discuss in detail where,
when and how these manipulations may occur and show examples of global and specific
manipulations of the epigenome of nuclear donor cells or SCNT embryos from the growing
number of reports published during the last decades. Finally, we discuss the future
perspectives of manipulating the epigenome for improving cloning efficiency.

2. Epigenetic Modulation of Gene Expression

DNA methylation within gene promoter regions is associated with a repressive tran-
scriptional state and plays a pivotal role in mammalian development. The most prominent
methylation site is the 5th carbon of cytosine (5mC). DNA methylation is established and
maintained by DNA methyltransferases (DNMTs). Demethylation occurs by ten-eleven
translocation (TET) protein-mediated oxidation [30].

Histone proteins are key players in nucleosome formation and DNA packaging.
They are subject to many post-translational modifications affecting mainly the N-terminal
tails of core histones, including acetylation (lysine), methylation (lysine and arginine), phos-
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phorylation (serine and threonine), ADP ribosylation, sumoylation (lysine), ubiquitylation
(lysine), butyrylation, citrullination, crotonylation, formylation, proline isomerization,
and propionylation [31].

Acetylation of histone tails loosens the histone-DNA interactions and enables gene
expression, whereas deacetylation of histone tails strengthens the interactions and is
generally associated with gene repression. Histone acetylation is regulated by the balanced
action of histone acetyltransferases (HATs) and histone deacetylases (HDACs) [32].

The effect of histone methylation depends on both the modified residue and the extent
of methylation. Histone lysine (K) methylation can exist in one of three states: mono-, di-
or tri-methylation. Di- and tri-methylations at H3K4, H3K36, and H3K79 are typically
gene-activating, with H3K4 tri-methylation (H3K4me3) marking promoters, and H3K36
and H3K79 methylations occurring primarily over gene bodies. Mono-methylation of
H3K4 is an activating mark unique to enhancers. H3K9 and H3K27 methylations are
generally gene-repressive, but serve unique functions. H3K27me3 is considered easily
reversible and marks dynamically regulated genes, rendering it especially important in
development, when genes need to be switched on and off in a highly dynamic fashion de-
pending on developmental signals. H3K9me3 is characteristic of heterochromatin, whereas
H3K9me2 is found more commonly at silent or lowly expressed genes in euchromatin. His-
tone K methylation is regulated by histone methyltransferases and histone demethylases
(reviewed in [33]).

3. Epigenetic Abnormalities in Embryos, Fetuses and Offspring Derived by SCNT

Embryos, fetuses and offspring generated by SCNT may suffer from a variety of
epigenetic abnormalities, which are attributed to insufficient or aberrant epigenetic repro-
gramming of the somatic donor nucleus. These epigenetic barriers to SCNT cloning are
summarized in Table 1.

The process of nuclear reprogramming by the recipient cytoplasm can be character-
ized as a conflict between the cytoplasm of oocytes and the donor cell nucleus, when the
transplanted nucleus is resistant to the reactivation of genes necessary for early develop-
ment, and switching off genes expressed in its former state is hampered (reviewed in [34]).
This conflict may cause abnormal gene expression in cloned embryos due to alterations
in embryonic genome activation (EGA) and in the degradation of maternal transcripts
from the oocyte [35]. The tightly regulated process of maternal-to-embryonic transition
during early development of the fertilized oocyte, which is timed in a species-specific
manner (reviewed in [36,37]), may be difficult to mimic by the SCNT technology. Specif-
ically, disturbed transcription by RNA polymerase I [38] and failure in reprogramming
specific DNase I hypersensitive sites of somatic donor nuclei, which prevents the bind-
ing of chromatin remodeling factors to regulate gene expression in cloned embryos [39],
have been observed. Studies of cloned mouse embryos revealed continued expression of
some somatic genes [40] and failed activation of important pluripotency genes such as
Oct4 [41] and Sox2 [42] even at the blastocyst stage.

In terms of epigenetic marks, SCNT embryos frequently fail to fully undergo the
wave of demethylation observed during normal embryonic development, resulting in
increased DNA methylation levels compared to embryos derived by fertilization [27,43–45].
Rapid deacetylation of histones as well as abnormal patterns of histone methylation in
cloned embryos are other consequences of SCNT [46,47]. Several histone variants also
exhibit abnormalities, such as the delayed change of H1FOO (oocyte-specific H1) to somatic
H1s [48] and the replacement of repressive H3 in donor cell nuclei by maternal H3.3 [49].
In addition to abnormalities in epigenetic marks, alterations in higher-order chromatin
structure were noted in SCNT embryos [50].

Analyses of transcriptome and epigenetic changes during SCNT reprogramming
using recently developed low-input RNA sequencing techniques have revealed molecular
defects and provided approaches to overcome critical barriers to epigenetic reprogramming
[51–54].
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Table 1. Epigenetic barriers to somatic cell nuclear transfer cloning.

Epigenetic Barrier Where Reference

Memory of an active transcriptional state Donor cells [55,56]

Imprinting disorder in donor cells Fibroblasts from abnormal
cloned fetuses [57]

Misregulation of mRNAs at the time of ZGA Early stage NT embryos [35]
Disturbed transcription by RNA polymerase

I around ZGA Early stage NT embryos [38]

Non-proper degradation of maternally
stored transcripts Early stage NT embryos [35]

Continuous expression of some somatic
genes around ZGA Early stage NT embryos [40]

Resistance to reprogramming of pluripotency
genes

Early to blastocyst stage
NT embryos [41,42]

Defective epigenetic reprogramming of DNA
and histones NT embryos [27,46,58]

Abnormal regulation of DNA
methyltransferase expression NT embryos [59]

Incomplete erasure of the somatic type of
DNA methylation and somatic cell-like

features
NT embryos [40,51,60]

Failure to reactivate X chromosome and
aberrant X chromosome inactivation (XCI) NT embryos [61,62]

Aberrant remethylation leading to
mis-expression of genes and

retrotransposons important for ZGA
NT embryos [63]

Disruption of imprinted gene methylation
and expression NT embryos [64,65]

Loss of imprinting NT embryos [53]
Defective trophoblast cell lineage

specification NT blastocysts [66,67]

Abnormal gene expression profiles in cloned
placenta Extra-embryonic tissues [68–70]

Abnormal imprinted gene expression and
methylation patterns in mid-gestation Cloned fetuses and placentas [57,71–76]

A high proportion of SCNT embryos fail to implant. Studies in bovine showed that the
endometrium responds differently to cloned embryos as compared to embryos produced
by in vitro fertilization (IVF), indicating abnormalities in embryo-maternal communication
and pregnancy recognition signaling [77,78]. Subsequent studies revealed dysregulation of
genes involved in cell signaling and placental development [79,80].

Many of the pathologies observed in cloned conceptuses reflect problems with pla-
cental function. Among the earliest abnormalities in cloned blastocysts is DNA hyperme-
thylation in the trophectoderm. Several imprinted genes have been found to be normally
expressed in cloned fetuses but abnormally expressed in the placentas. X chromosome
inactivation (XCI) seemed to be normal in the embryo proper, while aberrant expression of
X-linked genes has been observed in the placenta (reviewed in [81]). The authors concluded
relatively normal reprogramming in the embryonic lineage of cloned embryos but aberrant
reprogramming in their trophectoderm. In relation to this, abnormal expression of Xist has
been documented in cloned embryos of both sexes, leading to a decreased expression of
X-linked genes and abnormal development [82].

Abnormalities in DNA methylation of SCNT embryos during preimplantation de-
velopment may be maintained throughout development and were discovered in cloned
bovine fetuses [83]. Significant DNA hypermethylation was detected in liver tissue of
cloned bovine fetuses and correlated with fetal overgrowth [84]. Alterations in DNA
methylation levels, including hypermethylation and hypomethylation, either global or at
specific gene sequences, have been observed in abnormal or dead bovine SCNT fetuses
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or calves, compared with either conventionally produced controls or apparently normal
clones [83]. Even phenotypically healthy bovine clones showed DNA hypermethylation
and a much higher variability in DNA methylation levels compared to monozygotic twins
generated by embryo splitting [85].

Abnormal patterns of gene expression observed in preimplantation SCNT embryos
may persist throughout fetal development up to birth. Genes aberrantly expressed in
blastocysts were also aberrantly expressed in the organs of clones that died shortly after
birth (reviewed in [86]).

4. Non-Specific Modulators of the Epigenome

The inhibition of DNA methyltransferases using chemical compounds (DNMTi) tar-
gets the entire chromatin landscape and globally reduces the amount of repressive DNA or
histone methylation marks. Although effectively inducing hypomethylation in donor cells,
the DNMTi 5-aza-2-deoxycytidine (5-aza-dC) had no beneficial effect on the development
of cloned embryos when applied during embryo culture [87–90]. In contrast, treatment of
donor cells with another globally acting hypomethylating agent—S-adenosyl homocys-
teine (SAH)–significantly improved the development of bovine SCNT embryos. This was
attributed to a lower cytotoxicity of SAH allowing the use of higher concentrations and to
SAH mediated demethylation of one X chromosome and increased telomerase activity [91].

Other globally acting agents are histone deacetylase inhibitors (HDACi). They prevent
the removal of acetyl groups from lysine residues of histone proteins and thus maintain
a gene expression permissive histone mark. Trichostatin A (TSA) is a prominent HDACi,
which has been mostly used to treat cloned embryos. It improved cloning efficiencies in
several species, including mouse [29,92,93], cattle [22,94,95], pig [96,97], and rabbit [98].
Treatment of cloned embryos with TSA facilitated serial recloning of mice for up to 25 gen-
erations [99]. Nevertheless, other studies reported no improvement of TSA regarding
full-term development of bovine SCNT embryos [100,101] or even detrimental effects
on rabbit SCNT embryos [102], which could be due to ineffective or toxic doses of TSA,
respectively. TSA is known to be teratogenic [103] and can result in a significant reduc-
tion of embryo development [104,105] as well as severe placentomegaly [93] when the
concentration is too high or the exposure too long. The effect of TSA treatment of somatic
donor cells has only been investigated in bovine and increased cloning efficiencies at
adequate concentration and duration of treatment. Treated cells were synchronized at
G0/G1 stage and showed hyperacetylation of H3K9 as well as decreased DNA methylation
levels [88,90,94,106,107].

Further studies have refined earlier efforts and applied the less-toxic HDACi Scriptaid
(6-(1,3-dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide). At appro-
priate doses and exposures times, it improved the cloning efficiency of highly inbred
miniature pigs [47,108] and of inbred mice [104].

The HDACi compounds suberoylanilide hydroxamic acid (SAHA) and oxamflatin
improved the full-term development of cloned mice [109]. This group treated cumulus cell-
derived mouse SCNT embryos with SAHA or TSA and achieved up to 16% development to
term. In pig cloning, treatment of SCNT embryos with SAHA or 4-iodo-SAHA after fusion
and activation resulted in healthy pigs from donor cells that had a particularly high rate of
postnatal mortality when using Scriptaid [110]. Treatment of cloned mouse embryos with
psammaplin A (PsA), another HDACi, increased full-term development four-fold when
cytochalasin B (CB) was used during activation. CB prevents pseudo-second polar body
extrusion by inhibiting actin polymerization, which can be also achieved using latrunculin
A (LatA). Interestingly, the combination of PsA and LatA was more potent, increasing
development 11.5-fold [111].

A non-chemical approach to modulate the donor cell’s epigenome relies on the manip-
ulation of their metabolism. Folic acid (folate) is a critical player in methylation reactions.
Deprivation of folate altered the DNA methylation pattern of bovine fetal fibroblasts, result-
ing in two-fold improved development to blastocyst when these cells were used for SCNT.
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Gene expression and epigenome signatures of SCNT blastocysts from folate-deprived
donor cells were more similar to blastocysts derived by in vitro fertilization than those of
control SCNT blastocysts from folate-exposed donor cells [112].

5. Specific Attempts to Modulate the Epigenome
5.1. Manipulation of Methyl-CpG-Binding Domain Proteins and Transcription Factors

Methyl-CpG-binding domain proteins (MBPs) connect DNA methylation to histone
modification and change fundamentally during somatic cell reprogramming. Overex-
pression of methyl-CpG–binding protein 2 (MECP2) in mouse donor cells increased the
oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), the expression
of pluripotency genes, and the developmental capacity of cloned blastocysts [113]. The au-
thors speculated that MECP2 activates TET3, which contributes to demethylation of both
the paternal and maternal genome [114]. Similar to MECP2, overexpression of TET3 in
donor cells also resulted in an increased level of 5hmC and expression of pluripotency
genes along with an improvement of the development of goat [115] and bovine [116] SCNT
embryos. These studies indicate that TET3 activity is crucial for reprogramming after SCNT
and for the development of the resulting cloned embryos.

Overexpression of methyl-CpG-binding domain protein 3 (MBD3), a core component
of the nucleosome remodeling and deacetylase complex, in porcine SCNT embryos in-
creased blastocyst rate and decreased the DNA methylation of NANOG, OCT4, and LINE1,
and thus upregulated their expression levels close to those found in in vivo fertilized
embryos [117].

Transient overexpression of the double homeobox transcription factor (DUX), a key
inducer of EGA, in cloned mouse embryos improved their full-term development. More-
over, transcriptome profiling revealed that DUX expressing cloned embryos are similar to
fertilized embryos. Furthermore, overexpression of DUX combined with knockdown of
DNMTs promoted the full-term of cloned embryos [118].

Hypoxia inducible factor 1 subunit alpha (HIF1A), a transcription factor that allows for
cell survival at low oxygen tension, promotes a metabolic switch from somatic cell specific
oxidative phosphorylation to glycolysis used by early embryos [119,120]. Stabilization
of HIF1A by treatment of donor cells with cobalt chloride (CoCl2) upregulated mRNA
abundances of glycolytic enzymes and improved development of porcine cloned embryos
to the blastocyst stage [121]. Shifting the metabolism of donor cells toward glycolysis can
thus be a simple way for improving cloning efficiency.

5.2. Transcriptional and Epigenetic Modulation of Xist

X chromosome inactivation (XCI) is a mechanism of dosage compensation, where
one X chromosome is transcriptionally silenced in every diploid cell of a female organism
during early embryonic development. Untranslated Xist RNA originating from the X
chromosome that will be inactivated coats the chromosome and thus leads to silencing [122].
Increased expression of Xist from the active X chromosome has been documented in cloned
embryos of both sexes, leading to a decreased expression of X-linked genes and abnormal
development [82]. Therefore, blocking of abnormal Xist expression using small interfering
RNAs (siRNAs), knockout of the maternal Xist allele, or epigenetic modification of the Xist
locus are strategies to improve development of cloned embryos.

Blocking of Xist expression via injection of an Xist-specific siRNA into early male
mouse SCNT embryos resulted in a 10-fold increased blastocyst rate and an increased
rate of development to term [123]. However, the knockdown of Xist could only enhance
the developmental competence of male but not female mouse cloned embryos; it was
hypothesized that in the latter siRNA injection did not consistently reduce Xist expression
to normal levels [124]. On the other hand, knockout of Xist on the active X chromosome
normalized Xist expression in cloned embryos, leading to remarkable improvements in
birth rates of both male and female offspring [61].
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Recently, Yang, et al. [125] demonstrated that injection of an anti-XIST shRNA expres-
sion plasmid but not anti-XIST siRNA at the two-cell stage reduced XIST RNA levels at the
blastocyst stage and enhanced developmental ability of male pig SCNT embryos. This was
most likely due to a prolonged gene silencing effect of plasmid-expressed shRNA (over
five days vs. 2–5 days with siRNA). Knockout of XIST in male porcine donor cells resulted
in suppression of ectopic XIST expression and a global reduction of H3K9me3. The quality
of preimplantation stage SCNT embryos and their development to term was significantly
improved [62].

A recent study in mouse embryonic fibroblasts (MEFs) demonstrated an epigenetic
role of Xist that is independent of Xist expression. Zhang, et al. [126] tested transcriptional-
activator-like effector-based designer transcriptional repressors (R-dTFs) and activators
(A-dTFs) for several regions of the Xist gene. An R-dTF specific for the Xist inton 1 enhancer
region did not alter Xist expression, but improved the generation of induced pluripotent
stem cells (iPSCs) and the development of SCNT embryos from MEFs expressing this R-dTF.
These effects were more pronounced with male than with female donor MEFs. In contrast,
expression of an A-dTF specific for the same region of Xist decreased the success of iPSC
generation and development of SCNT embryos. The positive effect of the Xist intron 1 R-
dTF was explained by a local enrichment of H3K9me3 followed by X-chomosome opening,
repression of X-linked genes and eventually the activation of pluripotency genes [126].

5.3. Modulation of Histone Methylation

In cloned mouse embryos, reprogramming resistant regions (RRRs) high in H3K9me3
were identified, which could be reactivated by overexpression of Kdm4d encoding lysine
demethylase 4D, simultaneously improving SCNT efficiency [52]. In a single-cell RNA-
sequencing approach, Liu, et al. [51] identified inactivation of Kdm4b and Kdm5b (encoding
demethylases preferentially acting on H3K9me3/2 and H3K4me3/2/1, respectively) as
causal for developmental arrest of mouse SCNT embryos at the two- and four-cell stage,
respectively. Co-injection of Kdm5b and Kdm4b mRNAs into the recipient oocytes be-
fore SCNT restored the transcriptional profiles of cloned embryos and greatly improved
blastocyst rate to over 95%, as well as the production of cloned mice.

Modulation of H3K9 methylation was also used to improve the efficiency of SCNT
in bovine. Liu, et al. [54] reported that global hypermethylation of H3K9 in bovine eight-
cell SCNT embryos is linked to a deficient expression of two H3K9-specific demethylases,
KDM4D and KDM4E. Overexpression of the more crucial KDM4E normalized the transcrip-
tome profile of SCNT embryos and improved cloning efficiency, indicating that KDM4E is
an essential epigenetic regulator of embryonic genome activation and that its deficiency in
SCNT embryos results in persistent H3K9me3/2 barriers to successful reprogramming.

Another study found H3K4me3 hypermethylation and an increase in 5mC/5hmC
as well as an abnormal transcriptional profile in bovine SCNT embryos. Injection of
H3K4me3-specific demethylase 5B (KDM5B) encoding mRNA increased the blastocyst rate
significantly and rescued transcription of aberrantly silenced genes while the memory of
past donor cell transcriptional activity was repressed [56].

H3K27me3 in the donor cell chromatin is an epigenetic barrier to EGA in SCNT
embryos. Yang, et al. [127] observed that Kdm6a and Kdm6b (encoding H3K27me3-specific
demethylases) were not adequately activated in cloned mouse embryos. Using donor cell
lines with fluorescent reporter genes, the authors addressed the question if supplementation
of these KDMs can expedite EGA and improve development of mouse SCNT embryos.
The injection of Kdm6a mRNA into enucleated oocytes improved EGA and preimplantation
but not full-term development of SCNT embryos. In contrast, injection of Kdm6b mRNA
had a negative effect on development. Interestingly, knockdown of Kdm6b (which resulted
in increased Kdm6a mRNA levels) not only facilitated EGA and improved development to
the blastocyst stage, but also increased development to offspring [127].
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Injection of an antibody against the H3K9/H3K27 methyltransferase EZH2 into recipi-
ent oocytes reduced the H3K27me3 levels of porcine SCNT embryos and improved their
development significantly [128].

A different approach to modulate the histone methylation pattern is the use of chemical
inhibitors of histone methyltransferases, such as GSK126 for EZH2, BIX-01294 for the H3K9
methyltransferase G9A, or chaetocin for the suv39 family of H3K9 methyltransferases.
Incubation of porcine SCNT embryos with these compounds reduced the levels of the
respective epigenetic marks and improved cloning efficiency [128–131]. Incubation of
cloned mouse embryos with GSK126 or BIX-01294 corrected some abnormal epigenetic
modifications, but had no effect on preimplantation development [132].

5.4. Modulation of Genomic Imprinting

Genomic imprinting, which is the silencing of one parental allele mediated by DNA
methylation and histone modifications, plays a crucial role in fetal growth and devel-
opment [81]. In SCNT, a great proportion of cloned embryos is lost after implantation.
Complete loss of H3K27me3 imprinting was found in mouse preimplantation cloned em-
bryos [53]. However, loss-of-imprinting of H3K27me3 genes was not observed in porcine
and bovine post-implantation cloned embryos, indicating that the H3K27me3-imprinting
system may not be conserved across species [74]. Loss-of-imprinting in Sfmbt2 was found to
contribute to the placenta overgrowth phenotype of cloned mouse embryos, while SFMBT2
is not imprinted in pig, bovine, or human [133].

Monoallelic deletion of four H3K27me3-imprinted genes (Sfmbt2, Jade1, Gab1, and Smoc1)
in donor cells normalized their expression patterns in mouse SCNT embryos, increased the
cloning efficiency to 14%, and prevented placental defects and fetal overgrowth. Among the
four genes, deletion of Sfmbt2 was the most effective in improving SCNT efficiency [134].
Deletion of the entire Sfmbt2 miRNA cluster improved the birth rates of clones more than
twofold and ameliorated placental overgrowth [75].

Silencing of the retrotransposon-derived imprinted gene RTL1 was suggested as a
principal cause of pregnancy failure after transfer of SCNT embryos to recipients [79,135].
Restoration of RTL1 expression in pig donor iPSCs rescued the loss of cloned fetuses [74].

Primordial germ cell 7 (PGC7), a gene that maintains the methylation levels of im-
printed genes, is often abnormally imprinted in cloned embryos. Overexpression of PGC7
in fetal goat donor cells corrected the expression levels of the insulin-like growth factor
2 receptor (IGF2R) gene and of XIST in SCNT embryos, which significantly improved
development to live offspring [76].

5.5. Transcriptional Manipulation and Epigenome Editing Using dCas9

The genome editing toolbox of Cas9 nuclease and clustered regularly interspaced
palindromic repeats (CRISPR) did not only enable researchers to edit the genome precisely.
Methods have been developed to also repress or activate transcription as well as to edit
the epigenome. Catalytically inactive Cas9 (dCas9), that cannot induce DNA double
strand breaks, is able to repress transcription at a specific locus by binding to the DNA
target sequence. When dCas9 is fused to a transcriptional regulator, repression is either
enhanced or, in contrast, transcription is activated. Precisely editing the epigenome is
enabled by dCas9 fused to methyltransferase or the catalytic domain of TET proteins,
depositing or removing DNA methylation marks, respectively. Additionally, histone
modifications may be altered by a versatile array of tools, depositing or removing histone
methylation and acetylation (reviewed in [136]). Epigenome editing in mouse oocytes was
successfully used to manipulate coat color-related phenotypes and to correct imprinting
disorders [137]. In addition, the first imprinting disease models were created by targeted
DNA demethylation in zygotes [138]. Many target genes, whose repression or activation
may improve the efficiency of SCNT, are known and inducible CRISPR/dCas9 targeting
approaches allow their modulation in a spatially and temporally controlled manner. Precise
epigenome editing using dTFs has been performed to modify the Xist locus in fibroblasts
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(see Section 5.2) [126] and is an excellent example, of how the more flexible and easier-to-
handle dCas9 technology can influence reprogramming procedures.

6. Combined Approaches for Manipulating the Epigenome

It is reasonable to speculate that simultaneous manipulation of several key players in
the process of nuclear remodeling and reprogramming using a combination of approaches
might provide a better option for removing multiple epigenetic barriers and for improv-
ing the developmental competence of cloned embryos. The combined manipulation or
treatment can be performed by various means, including treatment of donor cells and/or
cloned embryos with different compounds affecting more than one epigenetic modifica-
tion simultaneously to obtain a synergistic effect on the development of cloned embryos
(Figure 1).

Figure 1. Epigenome Manipulation in Somatic Cell Nuclear Transfer (SCNT): possibilities to improve
the outcome of SCNT experiments in the different steps of the procedure. HDACi: histone deacetylase
inhibitors; DNMTi: DNA methyl-transferase inhibitors; MECP2: methyl-CpG–binding protein 2;
TET3: tet methylcytosine dioxygenase 3; PGC7: primordial germ cell 7; RTL1: retrotransposon Gag
like 1; XIST: X inactive specific transcript; H3K27me3: tri-methylation of histone-H3 lysine 27; DUX:
double homeobox.

In rabbits, treatment of cloned embryos with the combination of two HDACis, TSA
and Scriptaid, was more beneficial than the use of a single HDACi for improving cloning
efficiency [139].

Treatment of donor cells with 5-aza-dC and TSA improved cloning efficiency in
pigs [140], but not in cattle [100]. Such treatment for both donor cells and early cloned
embryos was beneficial in bovine [141] and buffalo [142] cloning.

Combination of DNMTi and HDACi, RG108 and Scriptaid [143], Zebularine and
Scriptaid [144], as well as BIX-01294 and Scriptaid [129] or TSA [145] improved porcine and
sheep cloning efficiency after treatment of donor cells or cloned embryos. The expression
levels of OCT4, SOX2, H19, IGF2, and DNMT1 genes in treated cloned embryos were more
similar to IVF embryos than without treatment.

Xist KO donor cells coupled with Kdm4d mRNA injection resulted in very high
efficiencies (up to more than 20%) of mouse cloning with different types of donor cells.
However, many of the cloned embryos still suffered from postimplantation developmental
arrest and surviving embryos had an abnormally large placenta [55].

A study of Mizutani, et al. [146] presents an exciting example for cloning mice from
“unclonable” adult neurons with the combination of two epigenetic approaches, the use
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of donor cells with reduced amounts of repressive epigenetic marks and treatment of
cloned embryos with HDACi. First, using a specific antibody, they identified cells with
reduced amounts of the repressive histone mark H3K9me, i.e., CA1 pyramidal cells in
the hippocampus and Purkinje cells in the cerebellum. After SCNT, the reconstructed
embryos were treated with TSA. Using CA1 cells, cloned offspring were obtained at high
rates, reaching 10.2% and 4.6% for male and female donors, respectively. This study
demonstrated that reduced amounts of H3K9me2 and increased histone acetylation act
synergistically to improve the efficiency of SCNT.

One of the most efficient mouse cloning protocols used the combination of TSA and
antioxidant vitamin C in culture medium with deionized bovine serum albumin. This re-
sulted in activation of reprogramming-resistant genes, demethylation of H3K9me3/2/1
and in 15% of cloned embryos developing to term, indicating that this treatment can
overcome major epigenetic barriers to successful nuclear reprogramming [147].

Aberrant DNA methylation as a critical epigenetic barrier to mouse cloned embryo
development can be rescued by inactivation of DNMTs, resulting in improved cloning
efficiency, which is further enhanced by simultaneous removal of additional epigenetic
barriers. Combining inhibition of DNMTs by siRNAs for Dnmt3a and Dnmt3b with overex-
pression of histone demethylases by injecting enucleated oocytes with Kdm4b and Kdm5b
mRNAs led to stronger reductions in inappropriate DNA methylation and synergistic
enhancement of full-term development of cloned embryos [63].

Cynomolgus monkeys (Macaca fascicularis) have been successfully cloned by NT using
fetal fibroblasts and injection of H3K9me3 demethylase and KDM4D mRNA together with
TSA treatment at the one-cell stage [148].

7. Concluding Remarks and Future Perspectives

Manipulating the epigenome of donor cells or cloned embryos by a single approach
or by the combination of several approaches can overcome some biological barriers to
epigenetic reprogramming during SCNT resulting in a significant improvement of this
process. Czernik, et al. [149] argued that the most promising strategies are those acting on
the entire genome, such as the forced expression of histone demethylases or conversion
of the chromatin structure typical for somatic cells to a spermatid-like structure. How-
ever, none of the approaches seems to be perfect due to the inherent dynamic nature of
epigenetic modifications. Epigenetic states, once corrected, may revert to the original state
because of the reversible nature of epigenetic modifications [150]. Some genes that escape
or resist reprogramming may not respond to epigenome modifying agents. Specific epige-
netic modifications, such as repressive histone lysine methylation marks, are very stable
and difficult to reprogram; alterations may not persist in the reconstructed embryos and
can be rapidly restored to the levels in donor cells [151].

Pharmacological tools currently available for manipulation of the epigenome operate
globally at their target enzymes and can generate significant side effects. In addition,
these drugs (i.e., HDACi and DNMTi) may silence as many genes as they activate, likely
due to direct and indirect effects on other transcriptional regulators and cell signaling
pathways [152,153].

A second group of tools involves the use of traditional genetic knockout/knock-in,
transgenic, viral, and/or RNA interference (RNAi) technologies to manipulate specific
epigenetic enzymes. While these approaches typically allow improved substrate specificity,
including isoforms or subclasses and even limited cellular specificity, they still operate
universally within a given cell and therefore lack the ability to modulate the epigenome in
specific ways [154]. Thus, the major shortcoming of current pharmacological and genetic
tools is that they lack the specificity to direct epigenetic changes at specific sequences
within DNA, or even at specific genes.

New tools and strategies to promote gene-specific epigenetic modifications, referred
to as epigenome editing, are now available and open the perspective of precisely targeting
epigenetic deregulations. This allows the development of new hypotheses regarding
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epigenetic function and drastically reduces undesired side effects. Epigenome editing
would perfectly complement recent developments in genomic, proteomic, and metabolomic
profiling of embryos to link their viability and reproductive potential to specific signatures.
Application of spectroscopy and bioinformatics for noninvasive metabolomic profiling of
embryo culture media revealed a unique footprint for embryos with high reproductive
potential compared to those failing to implant. Future efforts should focus on associating
specific metabolomic or proteomic signatures with normal patterns of epigenetic marks
in in vitro culture models, which will greatly impact our ability to identify and generate
embryos with high reproductive potential (reviewed in [155]).

As a concluding remark, NT cloning will have enormous benefits for basic research,
preservation, and multiplication of desired genotypes, and for the generation of tailored
animal models for human diseases.
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