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Background: In recent years, with the acceleration of life rhythm and increased
pressure, the problem of sleep disorders has become more and more serious. It affects
people’s quality of life and reduces work efficiency, so the monitoring and evaluation of
sleep quality is of great significance. Sleep staging has an important reference value in
sleep quality assessment. This article starts with the study of sleep staging to detect and
analyze sleep quality. For the purpose of sleep quality detection, this article proposes a
sleep quality detection method based on electroencephalography (EEG) signals.

Materials and Methods: This method first preprocesses the EEG signals and then
uses the discrete wavelet transform (DWT) for feature extraction. Finally, the transfer
support vector machine (TSVM) algorithm is used to classify the feature data.

Results: The proposed algorithm was tested using 60 pieces of data from the National
Sleep Research Resource Library of the United States, and sleep quality was evaluated
using three indicators: sensitivity, specificity, and accuracy. Experimental results show
that the classification performance of the TSVM classifier is significantly higher than
those of other comparison algorithms. This further validated the effectiveness of the
proposed sleep quality detection method.

Keywords: sleep quality detection, EEG signal, discrete wavelet transform, transfer support vector machine,
national sleep research resource library

INTRODUCTION

As an important physiological phenomenon and a necessary physiological process, sleep is
considered to be a resting state with a greatly reduced response capacity (Siegel, 2005). The body
eliminates fatigue through sleep, restores mental and physical strength, and maintains a good state.
At present, the pace of social life is fast, and sleep disorders have become an increasingly common
problem. The problem of sleep disturbance will have a negative impact on the body’s alertness
and attention, causing patients to have adverse consequences due to reduced alertness. Many
physiological functions change during sleep, such as decreased skeletal muscle tension, slower
breathing, and decreased visual, auditory, tactile, and other sensory sensitivities. These changes also
vary in different sleep stages. Changes in physiological functions during sleep lead to corresponding
changes in electrophysiological signals, and sleep research has also been carried out.

Sleep quality assessment is an important branch of sleep research and an integral part of sleep
neurobiology research. Because sleep neurobiology is closely related to cognitive neuroscience,
sleep quality assessment also helps in studying various neurocognitive functions such as learning
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and memory. This shows that sleep quality assessment plays
an important role in sleep research. Surveys indicate that
most people suffer from poor sleep quality due to physical
or psychological problems. And poor sleep quality will
produce further positive feedback on the original physical
and psychological problems, which will continue to deteriorate.
At present, the burden on doctors for the diagnosis and
detection of such diseases is relatively heavy. Especially for the
acquisition and processing of patients’ night sleep data, the
help of automation and digital technology is very much needed.
Therefore, the research in this paper will have irreplaceable
clinical value and practical significance. At present, the research
direction of sleep quality mainly focuses on the study of
sleep staging. With the continuous development of computer
technology, many machine learning methods had been proposed
and used in the medical applications (Bezdek, 1980, 1981; Hall
et al., 1992; Ahmed et al., 2002; Pedrycz, 2002; Chen and Zhang,
2004; Chuang et al., 2006; Weijer and Gevers, 2006; Jing et al.,
2007; Cleuziou et al., 2009; Gu and Zhou, 2009; Zhu et al., 2009;
Krinidis and Chatzis, 2010; Hall and Goldgof, 2011; Ji et al.,
2011; Jiang et al., 2012, 2014, 2020; Yu et al., 2012; Chen et al.,
2013; Gong et al., 2013; Thanh and Wu, 2013; Li et al., 2014;
Elazab et al., 2015; Okita et al., 2015; Qian et al., 2015; Wang
et al., 2015, 2019; Zheng et al., 2015; Devi and Setty, 2018; Lee
et al., 2018; Rosati et al., 2018; Cai et al., 2019; Gu et al., 2019;
Chrobak et al., 2020; Kumar et al., 2020; Liu et al., 2020; Singh
et al., 2020; Sunjana and Azizah, 2020; Yin et al., 2020; Zhang
et al., 2020). The sleep staging method has evolved from the
traditional visual observation method to the automatic staging
method based on extracting physiological signal features. The
accuracy and efficiency of sleep staging are greatly improved. The
process of automatic sleep staging algorithm mainly includes
signal preprocessing, feature extraction, sleep stage classification,
and result output. The commonly used models for sleep stage
classification are machine learning algorithms such as support
vector machine (SVM) (Doroshenkov et al., 2007; Hsu and
Yang, 2013; Qian et al., 2016a,b, 2017, 2018a,b, 2020; Jiang et al.,
2017a,b, 2019; Xia et al., 2019). The methods commonly used
to extract the characteristic parameters of sleep staging from
electroencephalography (EEG) data mainly include wavelet
transform and other methods (Alessandro et al., 2001; Kannathal
et al., 2005; Srinivasan et al., 2005; Mohseni et al., 2006; Subasi,
2007; Bruzzo et al., 2008; Albayrak and Koklukaya, 2009; Yuen
et al., 2009; Fathima et al., 2010; Geng et al., 2011; Gandhi et al.,
2012; Sen and Peker, 2013). Table 1 shows the progress of sleep
staging research in recent years.

In this study, EEG signals were selected. After preprocessing
and feature extraction, the signals were classified using
the transfer support vector machine (TSVM) classifier. The
performance of the algorithm is evaluated from the three
indicators of sensitivity, specificity, and accuracy. The work of
this paper is summarized as follows:

(1) The transfer mechanism is introduced into the classic
SVM algorithm to obtain the transfer learning SVM (TL-
SVM) classification model. Since the model can use the
source domain dataset to guide the classification of the

TABLE 1 | Research progress in sleep staging.

References Type of
data

Characteristic
parameters

Classification
model

Huang et al. (2014) EEG STFT RVM

Fraiwan et al. (2010) EEG Multiwavelet
time–frequency entropy

LDA

Fraiwan et al. (2012) EEG Time–frequency
analysis

RF

Baja and Pachori (2013) EEG Pseudo Wigner–Ville
distribution

LS-SVM

Long et al. (2014) EEG Viewable SVM

Koch and Christensen
(2014)

Respiratory
signal

Amplitude, depth
characteristics

LDA

Kayikcioglu et al. (2015) EEG, EOG Dirichlet distribution SVM

Hassan and Bhuiyan
(2016)

EEG AR coefficient PLS

Hassan and Bhuiyan
(2016)

EEG EMD AdaBoost

Lajnef et al. (2015) EMG, EOG Energy characteristics SVM

EEG, electroencephalography; EOG, electrooculography; EMG, electromyography;
STFT, short-time Fourier transform; AR, autoregressive; EMD, empirical mode
decomposition; RVM, relevance vector machine; LDA, linear discriminant analysis;
RF, radiofrequency; LS-SVM, least squares support vector machine; PLS, partial
least squares.

target domain dataset, the accuracy of the classification is
improved to a certain extent.

(2) A sleep EEG recognition method based on TL-SVM is
proposed. Experiments show that this method is feasible
and effective for sleep quality detection.

BACKGROUND

Introduction to Sleep Staging
This article selects EEG signals for the study of sleep quality;
therefore, here, we focus on analyzing the role of EEG in sleep
staging. We mainly describe sleep staging and the relationship
between EEG and sleep.

According to the American Academy of Sleep Medicine
(AASM) staging criteria, a normal sleep cycle can be divided
into two stages, namely, the non-rapid eye movement (NREM)
period and the rapid eye movement (REM) period. According
to the depth of sleep, NREM is further divided into stages I–III.
The above-mentioned stages recur periodically during sleep of
normal people all night. When going to sleep, a normal person’s
sleep stage first enters the NREM stage, gradually transitioning
from stage I to III, and then enters the REM stage at stage II
or III of NREM. The sleep stage enters the REM stage from
the NREM stage, representing a complete sleep cycle. Normal
adults have about four to six sleep cycles all night. Under normal
circumstances, the sleep time of stage I in normal adults accounts
for about 5% of a whole night’s sleep, stage III in NRE accounts
for about 50%, stage II in NRE accounts for 20%, and the
REM stage accounts for 25%. Figure 1 is a normal adult sleep
structure diagram.

The red area in Figure 1 represents the NREMIII stage,
which is the stage of deep sleep. The yellow area is the REM
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FIGURE 1 | Adult sleep structure diagram.

period where “dreams” often appear. As the black line drops, it
means deeper sleep. The higher the position of the black line,
the lighter the sleep. During the sleep cycle, EEG will change
correspondingly with the change of sleep stage.

Sleep EEG Signal
During sleep, the brain often has rhythm, amplitude, frequency,
and other EEG rhythms. The thalamus is the generating part
of the EEG rhythm. Its main function is to receive excitement
from the brain stem to form a thalamus cortical circuit, thereby
regulating the level of neuron excitement. Thalamic neurons have
low-threshold calcium channels. During human sleep, thalamic
afferent stimulation is low and membrane potential is low,
causing calcium channel opening, a large amount of calcium
ion influx, forming a short excitatory postsynaptic potential
(EPSP). Because a large number of inhibitory neurons in the
thalamus block the afferent stimulation, a series of longer
inhibitory postsynaptic potentials (IPSP) will follow the EPSP to
form a group of EPSP–IPSP. This goes on repeatedly to form
the EEG rhythm. The EEG rhythm with typical characteristics
during sleep can be used as a basis for judging the sleep stage
and diagnosing sleep diseases. Taking adults as an example,
Table 2 shows five typical rhythms. It can be seen from these
five types of rhythms that different EEG rhythms have large
differences in frequency, amplitude, shape, etc., which is a good
electrophysiological basis for sleep staging.

SLEEP QUALITY DETECTION BASED ON
EEG SIGNALS

Sleep Quality Testing Process
The core of sleep quality detection lies in sleep staging. Being able
to design a highly accurate sleep staging algorithm can effectively
promote the inspection of sleep quality. The flow of the sleep
staging method is shown in Figure 2. In this study, EEG signals
were selected as the input signal source, and preprocessing and

feature extraction were performed on the EEG signals. Finally, the
TSVM classifier and preliminary staging results were corrected to
complete the sleep staging.

Brainwave Pretreatment
EEG is an electrophysiological signal with weak amplitude
and is extremely susceptible to noise interference. Therefore,
before signal analysis, it needs to be preprocessed to reduce
high-frequency noise, baseline drift, and artifact interference. The
signal preprocessing process is shown in Figure 3.

TABLE 2 | Introduction to five types of rhythm.

Slow wave 2 During the transition period from just falling asleep to light sleep,
slow-wave 2 activity repeatedly bursts. And, often adjacent to
the top wave, there is no specific shape standard. The average
frequency is generally 5–7 Hz, and it appears more in the center
of the head and in the top area.

Top wave The top wave is a sign of the N1 phase, which can be extended
to the N2 phase. The maximum amplitude often appears in the
cranial region, and the frequency is generally 3–8 Hz. A typical
top wave is symmetrically synchronized on both sides and has
a sharp shape.

σ rhythm The σ rhythm is a sign of the N2 period and can be continued
to the N3 period, which lasts more than 0.5 s. Its maximum
amplitude often appears in the cranial area and can reach the
frontal area, central area, and apical area on both sides of the
head. The σ rhythm is generally a 12- to 14-Hz spindle-shaped
wave, so it is also called a spindle wave.

κ synthetic wave κ synthetic waves often appear in the N2 phase and can
continue to the N3 phase, mainly distributed in the apical or
frontal area of the head. The waveform is similar to the top
wave, but is wider. It is a steep negative wave followed by a
positive wave, often followed by a series of 12- to 14-Hz σ

rhythms. Synthetic waves are often induced by external stimuli
such as sound and touch.

α rhythm The α rhythm is a symbolic rhythm of awake state. It often
appears in the back of the head and can spread to the central
region, the middle temporal region, or the troubled roof. The α

rhythm is generally 9–11 Hz.
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FIGURE 2 | Flowchart of the sleep staging method.

FIGURE 3 | Signal preprocessing flowchart.

Brain Wave Feature Extraction
This study uses discrete wavelet transform (DWT) for feature
extraction. When extracting, the artificial sleep staging results
obtained according to the AASM rules are used as the reference
standards. When DWT analyzes the EEG signals, the main

FIGURE 4 | Frequency range of the sub-bands obtained by a four-layer
discrete wavelet transform (DWT) decomposition.

problem to be solved is the choice of decomposition layers and
wavelet basis, where the decomposition layers are determined
by the original signal frequency. The power of the EEG signal
is mainly concentrated in the range of 0–30 Hz, so the
decomposition frequency is set to 4 to extract all the characteristic
frequency bands of the EEG signal. The signal is decomposed
into D1–D4 components with detailed information and A4
components with low-frequency information.

Figure 4 shows the frequency range of the sub-band obtained
by a four-layer DWT decomposition of the EEG signal. It can
be seen from the figure that the A4 component contains the
δ frequency band (0–4 Hz), the D4 component contains the θ

frequency band (4–8 Hz), the D3 component contains the α

frequency band (8–13 Hz) and part of the β frequency band, and
the D2 component contains the β frequency band (13–30 Hz).
The D1 component has frequency information higher than 30 Hz,
which basically contains no information about the EEG signal.
Therefore, in this study, the D2–D4 detailed component and the
low-frequency component A4 are used.

In this paper, the db4 wavelet is used to decompose the EEG
signal into four layers, and the mean and standard deviation
of the absolute values of the D2–D4 and A4 components are
counted. Because of the particularity of wavelet decomposition,
first calculate the wavelet coefficients on the 25-s timescale and
then use the sliding window to obtain the parameters of 80, 140,
and 200 s by calculating the mean. In this paper, the four-layer
wavelet decomposition of the db4 wavelet is used to process the
EEG signals, and the wavelet coefficients of the four frequency
bands shown in Table 3 are extracted.

Sleep Brain Wave Classifier Training
The classifier used in this paper is TSVM. It uses relevant
knowledge of the source domain to assist the target domain in
establishing a classification model. Among them, a large number
of labeled sample sets (Ts) in the source domain are similar to the
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TABLE 3 | Correlation between wavelet components and the EEG
signal frequency band.

Component Frequency range (Hz)

A4 δ frequency band

D2 β frequency band

D3 α and part of β frequency band

D4 θ frequency band

target domain test set (Test), and a small number of the labeled
sample sets in the target domain (Tt) are the same as the Test.
By “transferring” Ts’s knowledge, ws, to Tt, a classification model
was obtained, f :X→ Y, so that f could correctly classify Test.

The SVM classifier consists of (w, b), the discriminant function
is f (x) = wTx +b, and the classification decision function is
L(x) = sign(f (x)). The theoretical basis of the algorithm in
this paper is that, if the two domains are related, the respective
values of the two domain classifiers should be similar. By adding
µ ‖ wt − ws ‖

2 to the SVM objective formula, transfer learning
between the two domains can be achieved, where ‖ wt − ws ‖

2

represents the degree of difference between the two-domain
classifiers. The larger the value, the greater the difference between
the classifiers. Parameter µ controls the penalty level. The
principle of TSVM can be expressed in Figure 5.

There is a source domain SVM classifier (ws, bs). Use the
source domain classifier knowledge, ws, to carry out transfer
learning on the target domain. The optimization goal problem
is as follows:

min
wt,bt

1
2
‖ wt ‖

2
+Ct

n∑
i=1

ξ t
i + µ ‖ wt − ws ‖

2

s.t. yt
i
((

wt · xt
i
)
+ bt

)
≥ 1− ξ t

i , i = 1, 2, . . . , n
ξ t

i ≥ 0, i = 1, 2, . . . n.

(1)

where β = (β1, β2,..., βn)T and γ = (γ1, γ2,..., γn)T are the Lagrange
multiplier column vectors. Find the partial derivatives of the

FIGURE 5 | Transfer support vector machine (TSVM) principle diagram.

original variables wt, ξt
i , and bt and set to 0.

∂L
∂ξ t

i
= Ct − βi − λi = 0⇒ 0 ≤ βi ≤ Ct (2)

∂L
∂wt
= 0⇒ wt =

2µws +
∑n

i=1 βi
(
yt

i · x
t
i
)

2µ+ 1
(3)

∂L
∂bt
= 0⇒

n∑
i=1

βiyt
i = 0 (4)

Substituting Equations (3, 4) into the objective function (1),
the dual form of the original problem is

min
β

1
2 (2µ+ 1)

n∑
i=1

n∑
j=1

βiβjyt
i y

t
j

(
xt

i · x
t
j

)
+

n∑
i=1

(
2µyt

i
(
xt

i · ws
)

2µ+ 1
− 1

)
βi −

µ

2µ+ 1
‖ ws ‖

2

s.t. 0 ≤ βi ≤ Ct,
∑n

i=1 βiyt
i = 0, i = 1, 2, . . . , n.

(5)

The specific algorithm of the transfer learning target domain
classifier is as follows:

TABLE 4 | Evaluation indicators.

Index Index calculation formula Description

True positive rate (recall) TPR = TP
TP+FN TP: true positive

TN: true negative
FP: false positive
FN: false negative

True negative rate (specificity) TNR = TN
TN+FP

Precision precision = TP
TP+FP

TABLE 5 | TPR indicators of the different classifiers on the test dataset (in percent).

Number model SVM BC DT TCA JDA TSVM

200070 87.71 81.20 78.73 91.32 91.56 90.57

200071 83.39 77.88 80.21 90.74 93.91 93.20

200072 82.81 78.70 77.75 86.51 86.67 85.70

200073 82.78 82.32 83.31 85.93 86.38 87.11

200077 83.22 58.98 81.23 89.39 89.51 88.87

200076 87.35 78.87 75.32 86.63 85.22 85.05

200077 83.57 83.38 80.27 90.12 87.09 86.18

200078 82.83 80.20 79.57 86.78 86.43 87.20

200078 83.21 72.32 83.53 84.35 87.58 86.78

200079 83.20 78.57 81.10 88.96 87.77 87.00

200080 82.87 80.55 83.37 89.23 88.80 87.27

200081 83.57 81.79 87.38 87.10 89.92 89.85

200082 87.78 75.37 75.77 86.54 89.53 90.33

200083 87.79 57.94 57.73 87.96 91.22 91.78

200084 83.52 81.18 78.75 88.92 92.81 90.80

200085 82.27 78.78 81.33 88.61 87.62 87.07

200086 83.72 81.10 82.10 87.43 86.32 88.17

200087 82.51 78.75 78.75 82.89 84.46 83.37

200088 83.23 81.52 78.80 86.37 86.59 85.78

200089 83.78 77.88 87.23 86.66 88.11 89.00

Mean 84.06 77.36 79.61 87.62 88.38 88.05

TPR, true positive rate; SVM, support vector machine; BC, Bayes classifier; DT,
decision tree; TCA, transfer component analysis; JDA, joint distribution adaptation;
TSVM, transfer support vector machine.
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(1) Gain knowledge of the source domain ws, choose the
appropriate penalty parameters Ct, µ.

(2) Construct Equation (5) convex quadratic programming
problem, obtain the solution β∗ = (β1

∗,β2
∗,..., βn

∗)T , and
obtain wt

∗ by Equation (3).
(3) Select the β∗ component βj

∗ in the open interval (0, Ct) and
calculate bt

∗ = yj
t – (wt

∗
· xt

j).
(4) Construct a hyperplane (wt

∗
· xt) + bt

∗ = 0. From this,
the decision function f (xe) = sign(g(xe)) is obtained, where
g(xe) = (wt

∗
· xe)+ b∗.

EXPERIMENTAL VERIFICATION AND
RESULTS ANALYSIS

Experimental Data
The experimental data for this study come from the National
Sleep Research Resource Library (NSRR). The resource library
provides a large number of physiological signal data of clinical
trials. The collected physiological signal data from The Sleep
Heart Health Study (SHHS) implemented by the National Heart
Lung & Blood Institute (NHLBI) of the United States are shared
by the resource library. The samples of the polysomnography
(PSG) experiment in the Sleep Heart Health Study (SHHS)
dataset originated from 6, 441 individuals collected from 1995 to
1998. The subjects were all over 40 years old and in good health.
In this paper, the first 60 sets of samples in the Sleep Heart Health
Study (SHHS) dataset will be used as the experimental test data.

TABLE 6 | TNR indicators of the different classifiers on the test
dataset (in percent).

Number model SVM BC DT TCA JDA TSVM

200070 91.12 92.20 91.03 95.82 95.95 94.55

200071 93.39 89.99 91.21 94.91 95.03 96.22

200072 92.91 93.10 91.15 93.23 93.56 95.00

200073 90.29 92.32 92.30 93.68 95.11 94.18

200077 91.20 89.99 90.26 93.85 97.36 96.91

200076 92.35 92.91 94.32 96.35 96.94 97.05

200077 93.55 94.39 92.51 97.10 96.12 96.17

200078 95.43 94.27 93.51 98.51 98.79 96.20

200078 93.21 91.32 93.43 96.56 97.20 97.57

200079 94.20 89.51 90.00 96.02 97.46 96.00

200080 92.91 90.55 93.22 95.44 98.02 97.21

200081 93.52 92.17 91.47 93.87 95.33 96.95

200082 90.59 94.31 93.11 94.67 96.63 96.33

200083 91.37 92.94 91.13 94.90 95.35 95.19

200084 93.52 91.16 93.15 95.34 95.76 96.90

200085 92.20 94.19 94.03 95.89 96.54 97.01

200086 93.12 91.10 92.30 94.17 96.10 95.11

200087 92.51 89.15 92.15 94.63 97.27 96.31

200088 95.23 91.50 93.90 93.43 96.21 95.19

200089 93.19 90.99 91.53 96.14 95.92 96.06

Mean 92.79 91.90 92.29 95.23 96.33 96.11

TNR, true negative rate; SVM, support vector machine; BC, Bayes classifier; DT,
decision tree; TCA, transfer component analysis; JDA, joint distribution adaptation;
TSVM, transfer support vector machine.

We randomly selected 40 as the training set and the remaining 20
as the test set.

Evaluation Index
The evaluation indicators used in this article are shown in
Table 4.

Experimental Results and Analysis
In order to verify the effectiveness of the sleep staging method
proposed in this paper, we used the DWT feature extraction
method. The comparative classifiers used are SVM (Melgani
and Bruzzone, 2004), Bayes classifier (BC) (Moraes et al.,
2020), decision tree (DT) classifier (Friedl and Brodley,
1997), transfer component analysis (TCA) (Abid et al.,
2016), and joint distribution adaptation (JDA) (Xie et al.,
2018). The parameters of the TCA algorithm are set as:
regularization parameter λ ∈{0.01,..., 100} and dimension
parameter dim ∈{10,..., 100}. The parameters of the JDA
algorithm are set as: regularization parameter λ ∈{0.01,..., 100},
dimension parameter dim ∈{10,..., 100}, and iteration parameter
iter = {1,3,5}. The value range of the parameter µ in the TSVM
algorithm is {0.001, 0.005, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. Tables 5–
7 are comparisons of the evaluation indexes TPR, TNR, and
precision of the test dataset under different classifiers. Only some
use cases are given in each table.

An algorithm with excellent performance should have higher
TPR, TNR, and precision. As can be seen from the data in
Tables 5–7, on the indicator TPR, the TSVM algorithm improves

TABLE 7 | Precision indicators of different classifiers on the test
dataset (in percent).

Number model SVM BC DT TCA JDA TSVM

200070 72.45 71.20 67.43 74.60 73.47 73.54

200071 73.10 69.78 70.21 73.75 74.07 74.20

200072 72.71 68.90 69.65 72.08 72.84 73.90

200073 72.67 72.32 73.31 72.43 75.85 74.11

200077 73.22 58.67 71.23 73.66 74.11 74.89

200076 74.35 68.89 65.32 75.28 75.23 75.05

200077 73.56 73.37 70.26 73.60 74.81 75.17

200078 72.73 70.20 69.56 73.98 75.92 74.20

200078 73.21 62.32 73.53 75.73 72.35 74.98

200079 73.20 68.59 71.10 73.68 74.22 75.00

200080 72.76 80.56 73.34 73.52 75.02 74.29

200081 73.54 71.44 74.38 73.80 74.33 74.85

200082 76.48 65.34 65.94 75.74 76.94 78.33

200083 76.64 59.69 59.43 75.47 78.90 77.97

200084 73.52 71.17 68.65 76.38 75.87 75.80

200085 72.19 68.98 71.33 74.11 75.68 74.09

200086 73.92 81.10 72.10 75.92 75.05 76.16

200087 72.41 68.65 67.45 74.22 74.88 73.39

200088 73.26 71.52 68.80 74.26 76.43 75.98

200089 73.48 69.78 74.23 75.89 77.31 76.00

Mean 73.47 69.62 69.86 74.41 75.16 75.10

SVM, support vector machine; BC, Bayes classifier; DT, decision tree; TCA, transfer
component analysis; JDA, joint distribution adaptation; TSVM, transfer support
vector machine.
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the traditional SVM, BC, and DT by 4.7, 13.8, and 11.0%,
respectively. On the indicator TNR, it increased by 3.6, 4.6, and
4.1%, respectively. On the indicator precision, it increased by
2.2, 7.9, and 5.2%, respectively. The performance of the SVM
algorithm is more stable and better than those of the BC and DT
algorithms, which is why we chose SVM as the basic algorithm.
The performance of the TSVM algorithm used in this article
is ahead of the comparison algorithm in all three evaluation
indicators. This is because the introduction of the transfer
mechanism can effectively utilize useful information from the
source domain data and improve the classification performance.

Comparing the three migration learning algorithms TCA,
JDA, and TSVM, the performance gap of each algorithm is
not big. Among them, the performance of the JDA algorithm
is the best, the TSVM used in this article is the second, and
TCA is the worst. The reasons for choosing TSVM in this
article are as follows: firstly, the TSVM algorithm is more widely
used, and the mathematical principles and implementation
process are relatively simple. Secondly, compared with other
migration algorithms, TSVM has little performance gap, and the
recognition results based on TSVM can fully meet the needs
of reality. Thirdly, TSVM needs to optimize and set a few
parameters, but JDA, which has the best classification effect,
needs to optimize and set many parameters. If the parameters
are selected differently, the final operation effect of the algorithm
will be very different. Based on the above reasons, it is feasible to
choose TSVM as the final classifier in this paper.

CONCLUSION

In order to check the quality of sleep, this paper mainly carried
out research work on sleep staging. The innovation of this
research lies in the introduction of a transfer learning classifier,

which can effectively improve the classification performance of
the data. The transfer learning classifier introduces the transfer
learning mechanism based on the traditional SVM classifier. The
introduction of the transfer learning mechanism can effectively
use the knowledge of the source domain to guide the classification
task of the target domain. In sleep staging research work,
the EEG signal is first preprocessed, then DWT is used for
feature extraction, and, finally, the TSVM with transfer learning
mechanism is used to classify the feature data. The experimental
results on the public dataset show that the method in this
paper has greatly improved the performance of classification
and can achieve the detection of sleep quality to a certain
extent. However, this article only uses EEG signals for research,
which has limitations. The research on sleep quality based on
multimodal physiological signals can be expanded in the future.
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