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Abstract

A major challenge in disease ecology is to understand the role of individual variation of infection load on disease
transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will
improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-
pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20%
of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account
for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received
relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) – pathogen
(RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data
followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0%
(0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the
Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host,
such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including
age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be
used to better parameterize epidemiological models and understand transmission dynamics.
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Introduction

In the last century, there has been an unprecedented increase in

the numbers of emerging infectious diseases (EIDs), which pose

significant risks to wild and domestic animal and human

populations [1]. The goal and biggest challenge to health

professionals is to predict and slow the course of a disease

epidemic and minimize the number of affected individuals.

Predicting the spread of a disease and changes in the number of

infected individuals within a population is typically performed

using epidemiological models, [2,3] which track the number of

susceptible, infected, and recovered individuals. However, these

models frequently assume a homogeneous population in which the

‘infected’ are equally infectious. Yet, we know that populations are

heterogeneous and that individuals vary in their ability to maintain

pathogens, with some individuals exhibiting high pathogen loads

(i.e. ‘supershedders’, [4]) while others maintain average or low

pathogen loads.

The importance of transmission heterogeneity to the spread of

disease is becoming increasingly recognized [5–7]. Nevertheless,

our understanding is limited because it is not well studied [8]. The

best illustration of the importance of heterogeneity in host

response to pathogens is the incidence of superspreaders [2,9],

in which 20% of a host population contributes to 80% of

transmission. Pathogen superspreading can be linked to dispro-

portionate contact rates, heterogeneous pathogen load, or an

interaction between these factors. However, to date, evidence for

superspreaders has been primarily associated with an increase in

contact rates and behavior of the individuals [10], rather than

variation in a host’s infection intensity. Yet, given the same

exposure rate we know that individuals vary in the ultimate

pathogen load that they develop [7,11,12].

Quantitative information concerning the heterogeneity of viral

load across infected individuals in a population would be the first

step to establishing a link between supershedders and super-

spreaders. In this paper, we comprehensively evaluated the

inequality of viral load and present a meta-analysis of 24 avian-

virus experimental infection studies, which included 17 species of

birds and five RNA viruses of three different families, Orthomyx-

oviridae, low and high pathogenic avian influenza virus (LP- and

HPAIV); Flaviviridae, West Nile virus (WNV) and St. Louis

encephalitis virus (SLEV); and Togaviridae, eastern equine

encephalitis virus (EEEV) and western equine encephalitis virus

(WEEV). RNA viruses in particular, are thought to be the

causative agent for approximately 30% of the identified EIDs

[13,14].

The role of birds in the ecology of a variety of diseases of public

health concern is well documented [15,16]. Birds account for

10.3% of zoonotic and 18.4% of emerging zoonotic diseases [17]

and serve as the natural reservoir for several pathogens of

economic and public health importance, including the above

agents and Japanese encephalitis virus [9,13,18]. Birds can also

contribute to the geographic spread of pathogens through
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migration [16,19,20]. Thus, an understanding of bird-virus

interactions not only informs basic questions concerning host-

pathogen biology, but will also aid in understanding the risk of

disease to humans.

The specific goals for this paper were to: (I) test the hypothesis

that viral load in birds is consistently heterogeneous by (a)

determining which data distribution function best fit viral load

data (e.g., Weibull or Pareto) and (b) measuring the degree of

inequality (via Gini coefficients) of viral load across individuals

within an experimental study population; (II) evaluate factors

associated with high viral shedding (supershedding); and, (III)

indicate how our observations can be used to further understand

and control avian-borne viral zoonotic diseases. We have found

heterogeneous viral shedding patterns to be consistent across all 24

datasets evaluated. Based on our findings, we identify future

research directions to understand the mechanisms driving these

patterns as well as potential ways to link these findings with disease

prevention and control strategies.

Materials and Methods

Experimental Viral Infection Studies
We identified experimental infection studies from a variety of

host-pathogen (bird-virus) systems that satisfied the following

criteria: (a) individuals in each experiment were infected with a

known dose of a viral pathogen (i.e., exposure was controlled), (b)

the experimental birds were wild-type or wild-caught, so as to

represent natural genetic variation, (c) pathogen load in the avian

host was monitored for the entire infectious period, and (d) host

pathogen load was measured at an anatomic site most relevant to

transmission for a given host-pathogen system. The data represent

a variety of published studies (mean n = 20.7 SEM 3.3) that were

conducted by different laboratories and individuals (see cited

papers for experimental methodology; but, see Nemeth et al. [21]

for WNV inoculation and viral plaque methods used in the

budgerigar (Melopsittacus undulates) study). We use the term

‘shedding’ to reflect the transmissible fraction of virus burden,

whether it is circulating virus in the blood (viremia) or actively

deposited virus into the environment.

Data Analysis
To quantify an individual’s relative pathogen load, we analyzed

the data in the following manner: for a given experiment, we

performed calculations of individual and group pathogen load and

plotted as an empirical CDF according to Lorenz [22]. We define

individual pathogen load as the total number of pathogen particles

(e.g., one plaque forming unit (PFU)/ml for live virus or one copy

of viral RNA) detected in an experimental subject throughout the

duration of the infection period, while the group’s pathogen load is

simply a summation of individual pathogen loads. In a Lorenz

curve, the x-axis is the percent cumulative birds and the y-axis is

the percent cumulative group virus.

We first identified studies (four) with greater than 30 subjects to

evaluate the distribution of the data as described below. The

remaining 20 datasets with fewer than 30 subjects were not used

for distribution fitting. These data were then analyzed using R (R

Foundation for Statistical Computing, 2.15.1) for their probability

distribution and degree of inequality as follows.

(I) Determination of distribution functions and parameter

estimates: The distribution functions for each of the four

studies having greater than 30 subjects were determined by

maximum likelihood estimation methods. Candidate prob-

ability distributions were Pareto, Weibull, Generalized

Extreme Value (GEV), and exponential (EXP). These

distributions each model long-tailed data via differing

distribution functions and parameters. Using the ‘fitdistr’

function library ‘MASS’ in R [23], the scale, shape, or

location parameters were estimated as appropriate given

the distribution being tested (Weibull, GEV or EXP). The

shape parameter estimate (âa) for the Pareto distribution was

calculated manually as âa~n7
P

i log xið Þ{ log x̂xmð Þ
� �

, in

which n is the sample size, xi is a vector of data, and x̂xm is

the minimum value for a given empirical distribution (i.e.,

the location parameter). Using the generated parameter

estimates each dataset was visually checked for fit against

each statistical distribution by quantile plots and this was

followed by the calculation of the Anderson-Darling

goodness of fit statistic, which is biased towards the tails

of data and thus appropriate for the current analysis. The

‘ad.test’ function in package ‘ADGofTest’ in R [24] was

used for this task. After the best statistical distribution was

determined with the four studies (n.30), parameter

estimates (shape and scale) were generated for all remaining

20 datasets (n,30).

(II) Inequality of infection: We quantified the inequality of

infection via the Gini coefficient using the ‘gini’ function

in the ‘reldist’ package in R [25]. The Gini coefficient

is commonly used to quantify inequality of income

across different human populations but has also been

used to quantity the differential reproductive success

of parasites in wildlife [26,27]. It is a standardized

index, which compares the area under the curve (AUC)

of Lorenz (cumulative distribution) curves [22] drawn

under the assumption of perfect equality of a resource

across individuals or groups to the AUC of the curve for the

distribution under investigation. It is calculated as,

Gini = AUCequality{AUCsample

� �
7AUCequality: There-

fore, for a population under study, a value of 0.0 indicates

perfect equality and a value of 1.0 indicates a maximum

concentration of a substance.

(III) Lastly, to facilitate an intuitive understanding of these

results, we determined 50th, 80th and 90th virus shedding

percentiles for each host-pathogen system.

We next evaluated factors associated with the inequality of

infection (i.e., Gini coefficient). The effect of anatomic site in

which virus was measured, host species, virus species, or the

number of individuals in the experimental infection study were

evaluated for their effect on Gini (Wilcoxon or Kruskal-Wallis for

one or multiple levels of a factor, respectively) in SAS JMP 8.0

(Cary, NC). Finally, we binned birds according to their relative

virus shedding quantity (, or $80th percentile, the latter were

then classed as ‘‘supershedders’’, see Discussion) and then tested

for the effect of intrinsic (sex, age, migratory status) and extrinsic

(virus dose, exogenous corticosterone treatment, food availability)

factors on their status as a supershedder (yes or no) by logistic

regression using SAS JMP 8.0. Odds ratios were estimated when a

factor was determined to be statistically significant (P,0.05) for its

effect on a bird’s classification as a supershedder.

Results

Across all 24 datasets and 20 unique avian-virus systems, we

found that avian viral loads were not equally distributed across

individuals and best fit a long-tailed data distribution function

(Figure 1). The distribution of the data of the four avian viral

infection datasets tested (i.e., those studies with n $30) best fit the

The Inequality of Viral Infection
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Weibull distribution (Anderson–Darling goodness of fit test,

P.0.05). These data followed no other distribution that we

evaluated (i.e., Pareto, exponential, or generalized extreme value).

We subsequently estimated the scale (i.e., the spread of the data)

and shape (i.e., slope of the line) parameters for these and each of

the 20 remaining datasets (i.e., those studies with n ,30) (Table 1).

The estimated shape parameter âa was less than 1.0 (mean 0.66

SEM 0.08), indicating that most of the virus was shed by a few

individuals. The parameter estimate âa was not sensitive to the

mean viral count or sample size (linear regression with log-normal

errors, P.0.05).

Given that parameter estimation can be unstable for small

sample sizes, we further quantified the inequality of viral load by

constructing Lorenz curves and calculating Gini coefficients for

each of the 24 datasets. The mean Gini coefficient was

0.68760.036 SEM indicating a high degree of inequality of viral

load and an adherence to the Pareto Principle in which ,20% of

the individuals (i.e., birds) in a population account (i.e., shed) for

,80% of a material (i.e., virus) [9,28]. Providing further support

for the adherence to the Pareto principle, we calculated the 50th,

80th and 90th percentiles and found that a mean of 22.0% 60.90

SEM of the birds accounted for 80% of the virus in an

experimentally infected population (Table 1).

No factor tested statistically significantly affected Gini (Table 2).

However, when AIV was sampled in the oral cavity, the Gini

coefficient was 0.307 lower than when compared to the cloacal

viral counts, irrespective of host species, but this was not

statistically significant (x2 = 3.43, df = 1, P = 0.064; Figure 1).

The mean Gini for all studies of oral virus was 0.563 SEM 0.099

and 0.870 SEM 0.030 for cloacal virus. The other factors tested

(sample size, host species, virus, treatment with extrinsic factor) did

not statistically significantly affect Gini (Table 2). For instance,

although the number of individuals in each study (sample size)

varied widely across experiments (n = 6 to 59) it did not influence

Gini coefficients, including two studies conducted by the same

Table 1. Quantitative description of unequal virus shedding across 24 avian-virus infection datasets.

Avian host* Virus{ Site n k`
k
(SEM) l1 l (SEM) Gini" 50th=| 80th 90th Reference

American kestrel HPAIV cloaca 16 0.48 0.13 10937170.0 16777.2 0.903 50.0 12.5 12.5 [35]

Brewer’s sparrow WEEV Serum 9 0.22 0.05 433.9 681.6 0.878 44.4 22.2 11.1 [59]

House sparrow WEEV Serum 9 0.22 0.05 352500.0 NA 0.871 44.4 22.2 11.1 [59]

Budgerigar WNV serum 28 0.32 0.04 20.9 13.3 0.867 25.0 18.0 7.0 (Bowen R & Nemeth
N, personal comm.)

Gambel’s quail WEEV serum 7 0.23 0.06 583.7 969.6 0.853 42.9 28.6 14.3 [59]

Dunlin HPAIV cloaca 20 0.38 0.06 61.7 38.4 0.836 45.0 20.0 10.0 [34]

Mallard LPAIV cloaca+oral 40 0.26 0.03 52790.9 NA 0.831 50.0 20.0 10.0 [31]

Northern Cardinal WNV serum 19 1.07 0.13 0.9 0.1 0.812 47.4 21.1 10.5 [60]

Gray catbird EEEV serum 58 0.57 0.05 3217000.0 5932.0 0.808 50.0 20.7 10.3 [61]

House sparrow LPAIV oral 36 0.47 0.06 94.1 35.3 0.775 50.0 19.4 11.1 [62]

Gray catbird WNV serum 59 0.42 0.06 258981.0 34006.0 0.758 50.0 20.7 10.3 [29]

House sparrow WEEV serum 7 0.48 0.13 10936000.0 16780.0 0.732 42.9 28.6 14.3 [59]

Mourning dove WEEV serum 7 0.43 0.13 442112.7 16778.3 0.684 42.9 28.6 14.3 [59]

Chicken WNV serum 40 0.62 0.08 13566.0 3555.0 0.673 50.0 20.0 10.0 [42]

Swainson’s thrush WNV serum 18 0.64 0.11 965300.0 8389.0 0.648 50.0 22.2 11.1 [19]

White-crowned sparrow SLEV serum 6 0.73 0.00 521064.3 NA 0.640 50.0 16.7 16.7 [59]

Gray catbird WNV serum 17 0.59 0.00 547670.0 NA 0.628 47.1 23.5 11.8 [19]

Dunlin HPAIV oral 17 0.76 0.14 7565.1 2525.0 0.604 47.1 23.5 11.8 [34]

Song sparrow WEEV serum 7 0.55 0.00 106950.3 NA 0.601 42.9 28.6 14.3 [59]

European starling LPAIV oral 36 0.88 0.11 1082.20 214.4 0.573 50.0 19.4 11.1 [62]

Song sparrow SLEV serum 7 1.13 0.33 1955000.0 NA 0.459 42.9 28.6 14.3 [59]

American robin EEEV serum 10 1.34 .34 255511.8 NA 0.400 50 20 80 [63]

White-crowned sparrow WEEV serum 8 1.00 0.33 5548000.0 NA 0.347 50.0 25.0 12.5 [59]

American kestrel HPAIV oral 16 2.02 0.41 60709.1 6959.1 0.298 50.0 18.8 12.5 [35]

Mean HPAIV oral 20.7 0.66 0.08 1506141.2 5348.8 0.687 46.4 22.0 11.8.

SEM 3.27 0.036 1.1 0.9 0.4

*Avian host species in the order of first presented in table, Falco sparvius, Melospiza melodia, Passer domesticus, Melopsittacus undulatus, Callipepla gambelii, Calidris
alpinam, Anas platyrhynchos, Cardinalis cardinalis, Dumetella carolinensis, Zenaida macroura, Gallus gallus, Catharus ustulatus, Zonotrichia leucophrys, Sturnus vulgaris,
Turdus migratorius.
{Virus abbreviations, AIV, avian influenza virus; SLEV, St. Louis encephalitis virus; WEEV, western equine encephalitis virus; WNV, West Nile virus.
`Weibull shape parameter.
1Weibull scale parameter.
"Gini coefficient (0.0 indicates perfect equality and 1.0 is complete inequality).
=| Percent of birds within a group which shed virus at the 50th, 80th, or 90th percentile.
doi:10.1371/journal.pone.0072611.t001

The Inequality of Viral Infection

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e72611



investigator that differed only in their sample size (West Nile virus-

infected gray catbirds (Dumetella carolinensis), n = 17 and 59) [19,29].

Extrinsic but no measured intrinsic host factor affected the

position of a bird in the distribution of viral counts (Figure 1;

Table 3). Birds were categorized as supershedders if they shed at or

higher than the 80th percentile for a given study, placing them

towards the left in the distribution of viral counts. No intrinsic

factor evaluated (age, sex, migratory status) affected whether a bird

was classed as a supershedder or not (Table 3). Of the extrinsic

factors evaluated (corticosterone treatment, virus dose, and food

availability), only corticosterone exposure positively impacted

whether a bird was classed as a ‘‘supershedder’’ or not

(x2 = 17.33, df = 3, P = 0.0006). Specifically, the exposure of

WNV-infected chickens to corticosterone statistically significantly

affected whether a bird was a supershedder (i.e., shed at or higher

than the 80th percentile; x2 = 14.17, df = 1, P = 0.0002; Figure 2A).

A chicken exposed to corticosterone was more likely to be classed

as a supershedder than a control chicken (Odds Ratio 320610;

95% confidence interval not estimable). Lastly, chickens exposed

to corticosterone accounted for 93.4% of the total group virus but

only 47.5% of the birds [30]. Interestingly, although the chickens

in this study were domestically reared outbred birds, the level of

shedding heterogeneity (Gini = 0.673) was within the range of

wild-caught species infected with WNV (Gini of four WNV

studies = 0.628–0.867). In another study in which food restriction

treatments were used to achieve three body condition classes, body

condition only moderately affected whether an AIV infected

mallard (Anas platyrhynchos) was classed as a supershedder

(x2 = 3.13, df = 1, P = 0.077). A normally fed bird was 4.38 times

more likely to be a supershedder than a bird maintained on a food-

restricted diet (Odds Ratio 4.38; 95% CI, 0.85–33.25). However,

while overall the birds in a state of reduced body condition

contributed the least to the total group virus, the two highest

shedders were in the lean and poor condition groups (Figure 2B)

[31].

Discussion

We present a synthesis of viral load in birds using 24 datasets

and 20 unique avian-virus systems, which supports the conclusion

that viral load follows the ‘‘20/80 rule’’ (i.e., the ‘‘Pareto

Principle’’) and that viral ‘supershedders’ consistently emerge in

an infected population, regardless of avian host or viral species.

Quantitatively characterized heterogeneity in virus load provides

enormous utility for developing epidemiological models that are a

better representation of reality [5], potentially leading to more

effective and targeted disease control and treatment strategies

Figure 1. Cumulative distribution functions (i.e., Lorenz curves) for 17 different bird species infected with different viral pathogens
(as noted), demonstrating that most of the virus shed by an infected population was detected in a minority of the individuals in
that population. The x-axis is percent of total potentially transmissible group virus and the y-axis is the percent of the total number of birds.
Symbol shape is grouped by pathogen and symbol color is grouped by species. For AIV in dunlin and American kestrel we summed the samples for
oral and cloacal swabs separately. Replicate species-virus curves represent different experimental infection studies that differ by date, location of the
study and sample size (as indicated in parentheses).
doi:10.1371/journal.pone.0072611.g001

Table 2. Quantitative assessment of potential host and virus
factors on the value of the Gini Coefficient for 23 avian-virus
laboratory studies.

Factor DF x2 P Value

Sample size 13 11.68 0.554

Host species 12 8.10 0.777

Virus 4 0.65 0.957

Anatomic location of shedding 1 3.43 0.064

Extrinsic factor* 1 0.11 0.743

*Extrinsic factors were treatment with corticosterone or food restriction.
doi:10.1371/journal.pone.0072611.t002

The Inequality of Viral Infection
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through the identification of potential superspreaders [7,9]. While

the existence of supershedders has been demonstrated in other

host-pathogen systems [4,7,11,28,32], there have been no reports

of comprehensive studies on multiple host-pathogen systems as in

the current paper.

Several lines of evidence in our study indicate that RNA-virus

shedding in birds follows the Pareto Principle. First, it is visually

evident that approximately 80% of the virus was shed by

approximately 20% of the birds (Figure 1) and the data in

Table 1 support this with an average of 22.0% of the birds

shedding in the 80th percentile. Second, the Gini coefficient was

greater than 0.600, indicative of a high degree of inequality or the

20/80 Rule (Pareto principle). Third, the estimated Weibull shape

parameter was less than 1.0, indicating a long-tailed data

distribution. Hence, regardless of how we analyze the data we

find consistent support for a skewed distribution of the data (i.e.,

the Weibull distribution) that can be described as following the

Pareto Principle.

The good fit with the Weibull distribution likely reflects the

time-dependent nature of viral burden and how it is quantified.

The Weibull distribution models time-to-event data and virus is

enumerated in a sample by counting plaques in vitro or as a copy of

Table 3. The impact of extrinsic or intrinsic host factors associated with supershedding in avian-virus systems for which data were
available (test statistics are shown for the whole model, and odds ratios with 95% confidence intervals, (CI) are shown only for
selected factors (statistically significant factors are shown in bold text)).

Avian – Virus System Extrinsic Factor Intrinsic Factor Interaction n x2 P Value Odds Ratio (95% CI)

Chicken – WNV CORT Sex CORT6Sex 37 17.33 0.001 320610 (NE`)

Kestrel – AIV (oral) Virus Dose Sex Dose6Sex 16 2.02 0.568

Kestrel – AIV (cloacal) Virus Dose Sex Dose6Sex 16 3.34 0.342

Dunlin – AIV (cloacal) Virus Dose – – 20 0.115 0.735

Dunlin – AIV (oral) Virus Dose – – 17 0.267 0.606

Catbird – EEEV – Sex – 59 0.002 0.963

Catbird – WNV – Sex – 59 0.429 0.513

Catbird – WNV – Migratory – 17 0.018 0.893

Cardinal – WNV CORT Sex CORT6Sex 19 0.046 0.997

Mallard – AIV Food* Sex Food6Sex 40 4.87 0.181 4.38 (0.85–33.25)

Starling – AIV – Sex – 36 1.789 0.181

HOSP{ – AIV – Age, Sex – 36 0.702 0.704

Notes:
*, Normally fed versus food-restricted mallards (10 & 20% body condition reduction, [31], x2 = 3.12, df = 1, P = 0.077.
{, House sparrow.
`, Not estimable because the denominator was zero (i.e., no control treated birds were supershedders).
doi:10.1371/journal.pone.0072611.t003

Figure 2. Factors (corticosterone and food availability) extrinsic to the host were associated with the position of a bird in the viral
count distribution curves (i.e., Lorenz curve). (A) Impact of corticosterone (CORT) exposure compared to vehicle- (i.e., controls for a 0.1%
ethanol solvent vehicle) treated birds on a West Nile virus-infected chicken’s (Gallus gallus) position in the Lorenz curve [42]. (B) Effect of varying food
availability on an avian influenza virus-infected mallard’s (Anas platyrhynchos) position in the Lorenz curve [31].
doi:10.1371/journal.pone.0072611.g002
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viral RNA via RT-PCR and the plaque count or copy number are

then tracked during the infection period. The Weibull distribution

is described by scale (l) and shape (âa) parameter estimates; the

former is an indication of the mean viral count for the distribution

and the latter describes the slope of the CDF plot. In general, scale

is not easily interpretable across studies, and specifically this is

because virus was measured from a variety of anatomic

compartments and enumerated by many different assay tech-

niques as described in the respective papers cited herein. However,

the shape parameter estimate (âa) is more robust to comparisons

across studies and datasets.

The mean shape parameter estimate (âa) below 1.0 for the

studies currently evaluated indicates that the majority of the virus

was concentrated in a few individuals. Further, âa was not sensitive

to the mean viral count or sample size. This lack of sensitivity to

the mean is in contrast to previous descriptions of macroparasite

load heterogeneity across wild organisms in which it was found

that the negative binomial parameter (k) was sensitive to mean

parasite burden [33]. However, given that parameter estimation is

an imprecise exercise requiring very large sample sizes, significant

problems have been identified with this way of measuring

aggregation across study populations [27]. Moreover, because

nuances of statistical distributions are not readily interpretable to

all practitioners we additionally quantified the inequality of

shedding via the Gini coefficient, providing us with an index to

probe factors potentially influencing infection inequality across

many studies.

We found little evidence of intrinsic or extrinsic factors

influencing Gini (Table 2); mean viral burden (l), sample size,

host and virus species, host sex, anatomical site of collection (oral

or cloacal for AIV), and two extrinsic factors (food availability and

exogenous corticosterone) did not statistically significantly impact

the value of Gini (Table 2). The Gini coefficient was higher, but

not statistically significantly, for cloacal virus than it was for oral

HPAIV H5N1 (A/whooperswan/Mongolia/244/05) in American

kestrel (Falco sparverius) and dunlin (Calidrisalpina appina) [34,35].

Therefore, we found the inequality of viral shedding to be a robust

phenomenon.

The consistent inequality of viral shedding (i.e., Gini .0.600)

across identically exposed hosts is a key finding because it suggests

that host physiological and/or virus replication mechanisms rather

than differences in exposure are associated with the emergence of

differentially infected individuals. For host-pathogen systems in

which supershedding individuals may disproportionately contrib-

ute to epidemics, this information would be of great epidemiolog-

ical advantage, especially when these individuals can be identified

before or early in the course of their infection and prior to

transmission. Problematically, such early detection of highly

infectious hosts is currently not possible because the mechanisms

driving supershedding are largely unknown and grossly under-

studied, especially in epidemiologically relevant wild hosts.

Defining ‘‘supershedder’’
The transmission of an agent depends upon both contact rates

between infected individuals or environments and uninfected

individuals, and the ‘infectiousness’ of the infected individual. The

latter depends on the amount of infectious pathogen an individual

is circulating or sheds into the environment. Hence, super-

spreading is likely to depend on an individual’s propensity to

‘supershed’ infectious pathogen. Yet, quantitative definitions of

both superspreading and supershedding have not been universally

adopted. One definition that has been promulgated in recent

studies [36] is that superspreaders are the individuals within a

particular host-agent system that account for the nth percentile

(e.g., 99th percentile) of the transmission events [7]. Lloyd-Smith

et al.’s [19] approach depends upon reliable estimates of the

probability distribution (e.g., Poisson) of the basic reproduction

number (R0) for a given host-pathogen system; however, this is not

known for most wild organisms. In contrast to superspreading,

there is no accepted definition of supershedding, which may be the

result of inadequate knowledge about the role of host infectious-

ness on agent transmission and R0 in the wild [7]. However, in one

study, Matthews et al. [12] did find strong evidence for the

importance of supershedding on transmission of E. coli in cattle.

Specifically, they found that by identifying the 5% of the

population with the highest mean infectiousness and targeting

them for culling affected estimates of R0, more than any other

factor evaluated.

For the purposes of our study, we defined supershedding as

those individuals shedding at the 80th percentile. This definition

takes into account the observed 20/80-distribution of virus

shedding in the systems analyzed in this study, as well as

practicalities of characterizing epidemiological parameters and

host attributes potentially associated with these parameters in wild

host-pathogen systems. If the goal is for enhanced understanding

and mitigation of disease in animals, as well as humans, then

determining the 20% of hosts responsible for 80% of the virus

would be both highly advantageous as well as more cost-effective

than the identification of the 1% of birds shedding the highest

levels of virus [36].

Identifying features of supershedding
The preemptive identification of viral supershedders and

potential superspreaders is key for the early and rapid mitigation

of a disease outbreak. Identifying host features associated with

supershedding may facilitate more targeted research or disease

control efforts, and this can only be accomplished with a thorough

understanding of the mechanisms responsible for infection

heterogeneity. The life cycle of a virus provides the basis for

investigations of supershedding and includes (I) the initial exposure

of a host, (II) entry into sites of virus replication within a host

through barriers and receptors, (III) virus replication, and (IV)

exposure of another host to the virus [37]. Differences between

individuals in the transition-rate from one step of the cycle to the

next likely accounts for infection heterogeneity. In the majority of

the 24 datasets that we selected for our analysis, stages ‘I’ and ‘IV’

were held constant, indicating that differential entry or replication

of a given virus accounted for the observed heterogeneity. In

addition, we found that ‘virus dose’ did not impact Gini

coefficients (Table 2) or the tendency to become a supershedder

(Table 3). Therefore, we suggest that host or virus factors

associated with steps ‘II’ and ‘III’ should be studied for their

relationship to heterogeneous viral shedding and subsequent

disease transmission.

Extrinsic Factors: In two of the studies evaluated, we examined

the impact of environmentally relevant factors on shedding

inequality. Animal populations encounter conditions that can

enhance the secretion of glucocorticoid hormones (e.g., cortico-

sterone in birds), [38,39] and if elevated levels are sustained, anti-

viral immunity can be suppressed [40]. Additionally, food

availability in the wild is not spatially or temporally homogenous

and this can lead to under- or malnourishment with subsequent

reductions in body condition and potentially immunocompetence

[41]. In one study included in our analysis to address this

hypothesis, corticosterone was exogenously elevated in chickens

prior to and during WNV infection. Treatment with corticoste-

rone was found to ‘‘shift’’ the position of a treated bird to the left

(Figure 2A) such that only treated birds shed at the 80th percentile
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whereas no control birds shed at this level [42]. This finding

indicates that factors inducing short-term (10 days) rises in

corticosterone (such as social stressors or migratory stress) in

WNV infected birds may cause supershedders to emerge.

However, we emphasize caution in extrapolating this finding to

wild disease systems given the potentially lower genetic variability

of the domestic chickens used in the aforementioned study

compared to wild avian hosts.

The second extrinsic factor that affected the position of a bird

(mallard) in the CDF plot in our study was food availability, but in

a manner contrary to our a priori predictions. That is, mallards that

experienced reduced food availability and body condition, shed

lower levels of LPAIV than birds provided with ‘normal’ food

allowances [31] and were thus plotted to the right in the

distribution (Figure 2B). However, it is notable that the two

highest shedders were in the ‘lean’ and ‘poor’ condition groups.

This finding suggests that factors other than food availability and

body condition influence pathogen load, such as intrinsic factors.

Intrinsic Factors: The host’s response to parasite infection can

also depend on intrinsic factors including genetics [43,44], age

[45,46], social status [47], or annual cycle attributes such as

reproduction [48,49] and migratory status [50,51]. Although these

studies suggest a role for intrinsic factors on total viral load

quantity, in our study bird age, sex, and migratory status were not

associated with viral shedding at the 80th percentile (‘‘super-

shedders’’) (Table 3). A lack of an association between super-

shedding and the intrinsic factors evaluated may be a result of the

inadequacy of any one trait to capture the highly complex nature

of an organism’s response to a virus. One implication of the

current finding is that much work remains to identify intrinsic host

factors associated with high and low viral load.

Future Directions
Virulence, an emergent property, is a consequence of coevo-

lutionary processes between hosts and parasites in the context of

constantly changing environments [52]. Taking inspiration from

plant biologists studying host-parasite interactions, vertebrate

biologists have begun investigating virulence (a form of parasite

fitness) and host fitness in the context of resistance and tolerance

mechanisms. Resistance refers to mechanisms leading to reduced

parasite fitness whereas tolerance mechanisms are associated with

enhanced host fitness. For example, a resistant host would

experience a lower pathogen load compared to higher loads in a

non-resistant host. A tolerant host would experience a pathogen

load that is not negatively correlated with host health [53]. With

regards to the current study in which a subset of birds (,20%)

accounted for a majority (,80%) of the virus, genetically based

differences in resistance and tolerance mechanisms may have

influenced this skewed distribution. The consistent existence of

supershedders in our study may suggest divergent populations that

differed by resistance and tolerance mechanisms. Our analytical

framework provides a means to investigate these issues in an

epidemiological context as we separated populations by their

quantity of potentially transmissible virus. In addition to host-

specific resistance or tolerance mechanisms, our study also suggests

questions concerning how the evolution of virus populations may

vary by host.

In the current study, viral strain and often exposure concen-

tration were held constant within an experiment, meaning that

viral evolution would likely be dependent more upon the selective

pressures imposed by the host environment than an initial

variation of viral traits [54,55]. Studies examining the interplay

between host defenses and the evolution of viral traits are therefore

warranted. For example, given that corticosterone (and to some

extent, food availability) affected the tendency of a bird to become

a supershedder in the current study, such extrinsic factors and

their effect on host physiology and thus selective pressures on the

virus may lead to differences in viral evolution between similarly

infected hosts [56,57].

An additional point of interest is with respect to how virus

supershedding events may differ in domestic compared to wild

animal systems. Although the 20/80 pattern appears to be robust

across the systems evaluated currently, the emergence and control

of supershedding individual domestic birds may be more

predictable and feasible, respectively, than in wild systems. The

often-limited genetic variability of domestic birds may be

associated with a more uniform shedding/infection response to a

given extrinsic factor than in wild birds, but this certainly depends

upon genetic variability at relevant loci of a given domestic bird

population [58]. For example, although only corticosterone

exposed domestic chickens shed WNV at the 20th percentile,

hatchery raised mallards infected with AIV and provided with a

‘‘normal’’ diet did not uniformly shed at a different rate than wild-

collected mallards exposed to the same experimental conditions

(Figure 2). We further note that control measures focused on

supershedding individuals would be initially more tenable in

domestic than in wild disease systems. In addition to the potential

for a more predictable emergence of supershedders as noted

above, such individuals could be more cost-effectively sequestered

from the system than individuals in wild systems. However, in

discovering that viral shedding occurs according to the Pareto

Principle, we have identified an additional point of knowledge that

may facilitate the development of control measures in wild

systems. Further, in zoonotic disease systems uniquely hazardous

to humans or for those viruses affecting species of conservation

concern, the cost:benefit ratio of enacting control measures may

shrink compared to less consequential viruses. Although we have

identified what appears to be a generalized shedding pattern in

RNA-virus infected birds, other systems (e.g., supershedding cattle

infected with E. coli) [4] emphasize that a specific understanding is

critical before efficacious control measures can be developed.

Given that we have specifically demonstrated that virus

shedding is not equally distributed across equally (experimentally)

infected birds and that we know that superspreading events can

depend upon either or both contact rates and host infectiousness,

we suggest the following research directions. (1) Understand the

role of supershedding individuals on the potentiation of super-

spreading events for a given disease system including comparisons

between vector-borne and directly transmitted viruses. (2) For a

given disease system, determine whether heterogeneous contact

rates and heterogeneous shedding independently, additively, or

synergistically affect epidemiological rates such as R0. (3) In cases

when differential pathogen shedding influences epidemic growth

rates, examine the role of factors extrinsic and intrinsic to the host

on the development of differential pathogen load, with the goal of

early detection of supershedders. (4) Examine whether genetic or

physiologic biomarkers exist for supershedders of a pathogen,

which could be used for early detection and identification of highly

infectious individuals. (5) Collect pathogen load data in diverse

systems including agricultural animals, wildlife, and humans to

investigate environmental correlates with the presence of super-

shedding individuals. The coupling of experimental investigations

of the determinants of supershedding and transmissions dynamics

with epidemiological modeling, could lead to the identification of a

critical missing component in the mitigation of disease in both

animal and human populations.
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