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Abstract: Osteoarthritis is a degenerative disease, often resulting in chronic joint pain and commonly
affecting elderly people. Current treatments with anti-inflammatory drugs are palliative, making
the discovery of new treatments necessary. The inhibition of matrix metalloproteinase MMP-13 is a
validated strategy to prevent the progression of this common joint disorder. We recently described
polybrominated benzotriazole derivatives with nanomolar inhibitory activity and a promising
selectivity profile against this collagenase. In this work, we have extended the study in order to
explore the influence of bromine atoms and the nature of the S1′ heterocyclic interacting moiety
on the solubility/selectivity balance of this type of compound. Drug target interactions have been
assessed through a combination of molecular modeling studies and NMR experiments. Compound
9a has been identified as a water-soluble and highly potent inhibitor with activity in MG-63 human
osteosarcoma cells.

Keywords: MMP-13 inhibitors; metalloproteinases; osteoarthritis; molecular modeling; RMN; or-
ganic synthesis

1. Introduction

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases responsible
for the degradation and remodeling of the extracellular matrix. Currently, there are 23 dif-
ferent MMPs known in humans, which are classified into different groups based on their
specificity of substrate [1,2]. MMP-13 is a member of the collagenase group, together with
MMP-1 and MMP-8 [3], and is deregulated in different disorders, such as osteoarthritis
(OA) [4–7], rheumatoid arthritis [6,8], obesity [9], and cancer [10–12].

OA is characterized by the progressive degeneration of the joint cartilage and con-
stitutes the most common joint disorder that affects the middle-aged and elderly popu-
lation [13,14]. The main symptoms of the disease are pain and loss of function [15,16].
Current treatments for OA with steroidal and nonsteroidal anti-inflammatory drugs are pal-
liative, and surgical approaches are required when the joints become dysfunctional [17–19].
MMP-13 is involved in OA through the degradation of type II collagen, the main structural
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protein of articular cartilage [20]. It has been reported that MMP-13 levels in synovial fluid
are correlated to human OA severity [21]. MMP-13 is expressed in the cartilage of human
OA patients while it is not present in normal adult cartilage [5,22]. Altogether, this makes
the inhibition of MMP-13 an effective strategy to prevent the progression of OA [21,23,24].
The fact that OA brings patients great pain and high healthcare costs [25], plus the fact that
there are currently no FDA-approved MMP-13 inhibitors to cease the development of the
disease, clearly supports the need for research in this field.

All MMPs have a Zn atom in the active site, coordinated by three histidines and
surrounded by several subsites. Among them, the S1’subsite is known as the specificity
subsite because it differs in length and amino acid sequence in the different MMPs. MMP-
13 possesses a large S1´pocket, bigger than in other MMPs, which can accommodate large
substituents, giving the opportunity of gaining selectivity. One strategy in the design of
selective MMP-13 inhibitors consists of using a Zinc Binding Group (ZBG) to chelate the
Zn atom present in the active site of the enzyme (very frequently a hydroxamate, as in
compound I [26]) (Figure 1), connected with large groups selected to interact with the
S1´pocket. This characteristic S1´pocket has also allowed the development of non-zinc-
binding MMP-13 inhibitors using different structural scaffolds, as in compound II [27]
(Figure 1). More examples of MMP-13 inhibitors of the above-mentioned strategies are
compiled in X.-W Xie et al. [13] and Y. Wan et al. [17] reviews. The most recent publications
in this field describe new selective MMP-13 allosteric inhibitors based on pyrimidines and
triazolopyrimidines scaffolds [28,29]. Interestingly, A. M. Bendele et al. demonstrated a
chondroprotective effect of the AQU-019 inhibitor in a rat model of [28] OA (Figure 1).
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A novel approach in the search for selective MMP-13 inhibitors is the use of docking
techniques to carry out the screening of FDA-approved drugs against optimal human
MMP-13 crystal structures. Thus, K. S. Kumar et al. have found three potential MMP-13
inhibitors that can be repurposed as drugs for OA therapy [30], saving time and costs
in the drug development process. Other recent investigations are focused on the use of
MMP-13 inhibitors for the development of probes as non-invasive techniques that allow an
early diagnosis and a better prognosis of OA. Significant examples that follow this line of
research are described in the works by S. Lee et al. [31] and V. Hugenberg et al. [32].

In previous work, we described polybrominated triazole derivatives 1 and 2 (Figure 2)
with nanomolar inhibitory activity against MMP-13 (3.7 and 5.6 nM, respectively) and
promising selectivity profiles against other MMPs [33]. In this work, we have extended
the study to inhibitors based on phthalimide scaffolds and explored the influence of the
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bromine atoms with the aim of improving the potency/selectivity/solubility balance of
this type of compound.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 25 
 

 

the study to inhibitors based on phthalimide scaffolds and explored the influence of the 

bromine atoms with the aim of improving the potency/selectivity/solubility balance of this 

type of compound. 

 

Figure 2. Chemical structure and IC50 values for compounds 1 and 2. 

2. Results and Discussion 

2.1. Synthesis 

Azides 3, 4, and 5, necessary for the click chemistry reactions, were synthesized as 

described in previous works [34,35] (Figure 3). 

 

Figure 3. Chemical structure of compounds 3-5. 

Triazole-derived alkynes 6a,b were obtained by alkylation of benzotriazole or tetra-

bromobenzotriazole with 4-bromobut-1-yne in the presence of potassium carbonate. To-

gether with the desired N-2 alkylated compounds 6a,b, the corresponding N-1 alkylation 

products 7a,b were obtained (Scheme 1) [36]. 

 

Scheme 1. Synthesis of the benzotriazole-derived alkynes. Reagents and conditions: (a) ACN, K2CO3, 

4-bromobut-1-yne, 24 h, RT. 

The alkynes derived from phthalimides used in the synthesis of the final inhibitors 
are collected in Scheme 2. N-(3-butynyl) phthalimide (8a) is commercially available, and 

the rest of the alkynes (8b–e) were synthesized by reaction of the corresponding anhy-

dride with 3-butyn-1-amine. All the anhydrides were commercially available except the 

dibromosubstituted (R2 = R3 = Br), which was obtained by oxidation followed by dehydra-

tion of 1,2-dibromo-4,5-dimethylbenzene. 

Figure 2. Chemical structure and IC50 values for compounds 1 and 2.

2. Results and Discussion
2.1. Synthesis

Azides 3, 4, and 5, necessary for the click chemistry reactions, were synthesized as
described in previous works [34,35] (Figure 3).
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Figure 3. Chemical structure of compounds 3–5.

Triazole-derived alkynes 6a,b were obtained by alkylation of benzotriazole or tetrabro-
mobenzotriazole with 4-bromobut-1-yne in the presence of potassium carbonate. Together
with the desired N-2 alkylated compounds 6a,b, the corresponding N-1 alkylation products
7a,b were obtained (Scheme 1) [36].
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Scheme 1. Synthesis of the benzotriazole-derived alkynes. Reagents and conditions: (a) ACN, K2CO3,
4-bromobut-1-yne, 24 h, RT.

The alkynes derived from phthalimides used in the synthesis of the final inhibitors
are collected in Scheme 2. N-(3-butynyl) phthalimide (8a) is commercially available, and
the rest of the alkynes (8b–e) were synthesized by reaction of the corresponding anhydride
with 3-butyn-1-amine. All the anhydrides were commercially available except the dibro-
mosubstituted (R2 = R3 = Br), which was obtained by oxidation followed by dehydration
of 1,2-dibromo-4,5-dimethylbenzene.
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Scheme 2. Synthesis of the phthalimide-derived alkynes. Reagents and conditions: (a) (i) KMnO4,
KOH, H2O, 120 ◦C, MW (ii) Ac2O, 80 ◦C, MW (b) 3-butyn-1-amine, EtOH, 100 ◦C, MW.

The click chemistry reaction between azides and alkynes was performed using CuSO4
and ascorbate as a catalytic system. When the click reaction was performed with azides
containing a carboxylic group, 0.01 equivalents of TBTA (Tris [(1-benzyl-1H-1,2,3-triazol-4-
yl) methyl] amine) was added to the reaction mixture yielding acids 9b–d with good yields.
In the case of hydroxamates 9a and 10a–e, a final THP-deprotection step was performed in
acidic conditions (Scheme 3).
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2.2. Activity Results

In a previous publication, we reported the discovery of a new class of compounds that
showed highly potent activity against MMP-13, and a promising selectivity profile against
a panel of MMPs. Thus, hydroxamates 1 and 2 presented activity in the low nanomolar
range with IC50 = 3.7 and 5.6 nM, respectively (Table 1). The activity of hydroxamate
1 against MMP-13 was the highest among all the tested MMPs (for selectivity of 1 see
Table 2) [33].

Table 1. IC50 inhibitory values, calculated logD and calculated and experimental logS for compounds
1, 2, 9, and 10.

Compound MMP-13
IC50 (nM)

MMP-2 IC50
(nM) clogD 1

Water
Solubility
LogS 1,2

Experimental
Water Solubility

LogS 2,3

9a 0.65 ± 0.30 3.42 ± 1.15 2.94 −3.71 −5.01

9b >100 >100 0.32 0.00 n.d.

9c >100 >100 0.32 0.00 n.d.

9d >100 >100 3.39 −1.93 n.d.

9e 3.3 ± 2.1 10.3 ± 2.8 1.37 −2.72 −4.47

10a 6.9 ± 1.1 3.1 ± 0.9 2.37 −5.17 −5.57

10b 46 ± 21 15 ± 5 3.90 −6.36 −5.44

10c 61 ± 18 17 ± 4 5.44 −7.16 −6.85

10d 15 ± 4 14 ± 7 3.14 −5.81 −5.64

10e 9.2 ± 3.0 2.9 ± 1.1 2.88 −5.61 −5.08

1 3.70 ± 1.85 70 6.01 −5.85 −5.54

2 5.60 ± 2.66 100 4.44 −5.03 −5.62
1 Calculated with Chemicalize—Instant Cheminformatics Solutions. 2 logS scale: insoluble < −10 < poorly < −6 <
moderately < −4 < soluble <−2 < very < 0 < highly. 3 Water solubility in PBS pH 7.4.

Table 2. IC50 inhibitory values for compounds 1 and 9a in a panel of MMPs.

Enzyme Compound 9a Compound 1

MMP-1 >1000 >1000

MMP-2 3.42 ± 1.15 70

MMP-3 31 ± 8 500

MMP-7 47 ± 21 >1000

MMP-8 100 ± 19 >500

MMP-9 500 ± 74 >500

MMP-10 280 ± 22 434

MMP-12 3.7 ± 2.0 17.8

MMP-13 0.65 ± 0.30 3.7

MMP-14 >1000 >1000

Both 1 and 2 present the calculated logD (clogD) values of 6.01 and 4.44, respectively,
and moderate solubility in water at physiological pH (Table 1), predicting bad absorption
and difficult administration. In our studies on MMP-2 inhibitors, we could improve
solubility by modifying the structure of the initial hits by introducing a polar piperidine
ring [37].
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To improve the solubility of 1 and 2, we designed and synthesized compounds 9a
and 9e, where we removed all bromine atoms present in these molecules. Fortunately, we
observed an increase in MMP-13 inhibitory activity, with IC50 values of 0.65 and 3.3 nM,
respectively. Furthermore, the predicted solubility classifies 9e as water-soluble (Calibration
curves of all active compouds are collected in Supplementary Material (Figure S1).

The removal of the bromine atoms in 9a caused a loss of selectivity, showing nanomolar
activity against MMP-2 and MMP-12. We expected this result because MMP-13 has a larger
and slightly more flexible Ω-loop compared to that of other MMPs [38]. Therefore, the
bulky tetrabromo benzotriazole group present in 1 and 2 is better stabilized by MMP-13 [33],
while non-brominated compounds 9a and 9e bind to the active site of other isoforms with
similar affinity. The results of the activity of 9a against a panel of MMPs are collected in
Table 2. This inhibitor shows selectivity against MMP-1, an enzyme reported to be involved
in the musculoskeletal disorders described in patients treated with broad-spectrum MMP
inhibitors [39]. Inhibitor 9a is also selective against MMP-14 and moderately selective
against MMP-3,7,8, and 10.

To analyze whether the selectivity could improve using a weaker Zinc Binding Group
(ZBG), we replaced the bidentate hydroxamate ZBG with a carboxylic acid. Thus, we
synthesized and tested acids 9b–d, but we found a complete lack of inhibitory activity
against MMP-13.

The next step in this work was the modification of the aromatic core. We selected
compounds 10a–e due to the accessibility to a variety of phthalimides with different
bromine substitution patterns. Furthermore, we considered that the presence of hydrogen
bond acceptors (carbonyl groups) in these compounds could increase the affinity for MMP-
13 by establishing interactions with some residues in the active site of the enzyme (see
molecular modeling studies).

As can be seen in Table 1, all phthalimide derivatives were active in MMP-13. The
lowest activity was obtained for tetrabromo derivative 10c, which also had the worst
predicted pharmacokinetic properties. The progressive removal of bromine atoms in 10b,d
and 10a gave an improvement in activity, clogD, and solubility. Inhibitor 10a was the
best compound of this series with IC50 of 6.9 nM, clogD = 2.37, and moderate calculated
solubility. Finally, compound 10e, which bears a methyl group at the 5-position of the
phthalimide ring, was also active in MMP-13 (IC50 = 9.2 nM), demonstrating that it is
possible to introduce larger substituents in this part of the molecule.

All the above-mentioned solubility values predicted with Chemicalize showed a good
correlation with the experimental values obtained in PBS pH 7.4 (Table 1). Although
solubility values are slightly lower than expected, the solubility gradation maintains the
same trend. The most soluble compound was 9e, followed by 9a and 10a–d.

2.3. Molecular Modeling

The catalytic domain of all MMPs shares the same common features, the catalytic Zn2+

ion at the entrance of the catalytic cleft and, delimiting the lower lip of that cleft, the flexible
Ω-loop, also known as the specificity loop. This loop is the least conserved fragment
within the catalytic domain and defines the size of the ligand-binding site, the S1′ pocket;
thus, it has become the center of attention of studies looking for ligand specificity [40]. In
our experience with selective MMP-2 inhibitors, we found that straight and rather rigid
molecules protrude out of the Ω-loop, establishing mainly hydrophobic interactions with
the side chains of the amino acids that line it [35]. However, we obtained MMP-13 binding
when the ligand presented flexibility that enabled it to adapt to the S1′ pocket, as the
increased length and flexibility of the Ω-loop allowed a certain expansion of the binding
site. Consequently, in contrast to MMP-2, MMP-13 will be able to accommodate within the
S1′ pocket larger and bulkier ligands, such as the polybrominated 1 and 2, thus leading to
lower IC50 values (Table 1) [33].

Working with MMPs is always a challenge, as the conformation of the Ω-loop is
determined by the nature and size of the bound ligand and the induced fit that it generates
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upon binding. Most molecular modeling methods are deterministic, as the outcome greatly
depends on the initial structure provided. Therefore, in this work, we have used the
ensemble docking approach to model as many interactions with the Ω-loop as possible. In
this way, we recreate what happens in a flexible system accounting for different binding
interactions of the highly modified moieties of the synthesized compounds and the Ω-loops
of MMP-13 and MMP-2. To account for the Ω-loop flexibility, we analyzed the PDB to
find deposited structures of MMP-13 and MMP-2 bound to different ligands that would
have produced different induced fits, and therefore, different conformations of the Ω-loop.
We selected four MMP-13 structures, as well as the only NMR-solved MMP-2 structure
available that presented eleven different conformations. The selected MMP-13 structures
were bound to three different types of inhibitors that produced different conformations of
the n-terminal end of the Ω-loop: (i) a short chelating inhibitor (PDB code 456C), (ii) a long
chelating rigid inhibitor (PDB code 3TVC), and (iii) two large non-chelating inhibitors with
a carboxylic moiety that explored the back of the S1′ pocket and interacted with the side
chain of Lys140 (PDB codes 3KEK and 3WV1).

Previous studies in MMP-13 showed how some inhibitors are able to follow the α-helix
that makes up the inner wall of the S1′ site and to establish hydrophobic interactions with
the binding site due to the increased length and flexibility of the Ω-loop [33]. In this line,
the reason for the MMP-13 selectivity of the polybrominated 1 and 2 is the flexibility of the
Ω-loop and its inherent ability to accommodate the bulky TBB moiety within the S1′ pocket
where it can establish hydrophobic interactions [33]. On the other hand, when binding to
MMP-2, ligands tend to protrude out of the S1′ pocket and interact with the amino acids
lining the loop [34,41].

All the ligands were docked in all the selected protein conformations of both MMP-13
and MMP-2 to account for all the possible interactions established with the flexible Ω-loop
(Figures S3 and S4). All docked compounds established a bidentate chelation with the
catalytic zinc ion (Figure S5) and oriented the rest of the molecule towards the interior of
the S1′ pocket. The best binding poses were selected to account for the ligand-receptor
interactions; their docking scores are summarized in Supplementary Table S1. Following
previous results [33,34], the smaller size of the benzotriazole compared to that of the TBB
moiety increases the binding affinity of both 9a,e compared to that of 1 and 2 (Table 1).
However, the selectivity for MMP-13 over MMP-2 decreases as the smaller-sized 9a–e can
fit in both MMP-13 and MMP-2 (Figure 4). The modification of the aromatic core led to
compounds 10, where the presence of carbonyl groups in the phthalimide moiety allowed
better interactions with the S1′ pocket through the establishment of hydrogen bonds with
the amino acids lining the Ω-loop of MMP-2 (Figure 5). Unfortunately, we observed a
higher affinity for MMP-2 compared to MMP-13 for this series of compounds (Table 1). As
shown in Figure 5, compound 10a binds to MMP-2, positioning the phthalimide moiety
closer to the hydrophilic moieties than in MMP-13.
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Further modifications of the phthalimide by the addition of bromine atoms in 10b,
10c,d, or a methyl group in 10e (Figure 5) did not improve binding in the hydrophobic
S1´pocket and, as a result, the binding affinity towards MMP-13 is reduced compared
to that of 10a (Table 1). The addition of the hydrophobic substituents to the phthalimide
reduced the affinity, for MMP-2, as the bromine atoms make the fitting inside the S1′ pocket
difficult, and only one binding pose was obtained for 10c in the eleven NMR models of
MMP-2 (Figure S4) [33].

2.4. NMR Studies

To experimentally assess if the observed inhibition of MMP-13 was due to a physical
interaction with the enzyme, the most active and soluble inhibitor 9a was selected for
performing a 1D NMR experiment, WaterLOGSY, commonly used to evaluate potential
drug-target interactions.

To this end, a recombinantly expressed catalytic domain of MMP-13 was purified
under denaturing conditions (Figure S6); the process lead to a very pure sample preparation.
After protein refolding, the enzymatic activity of the recombinant protein was evaluated
(Figure S7), and the results showed that the protein maintains its activity in these conditions.
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In WaterLOGSY experiments, the large bulk water magnetization is partially trans-
ferred via the protein-ligand complex to the free ligand in a selective manner. A non-
interacting compound results in negative resonances, whereas productive protein-ligand
interactions are characterized by positive signals or by a reduction in the negative signals ob-
tained in the absence of the protein. In these experiments, (2R)-[(4-biphenylylsulfonyl)amino]-
N-hydroxy-3-phenylpropionamide (BiPS), a commercially available MMP inhibitor, was
used as a positive control. The results of the WaterLOGSY experiments revealed a pattern
of positive signals, corresponding to specific chemical shifts of BiPS when the experiment
was performed in the presence of the MMP-13 catalytic domain, while no signals were
detected in the absence of the protein (Figure S8). These results also corroborated the
correct refolding of the recombinant protein and its interaction with a well-known inhibitor.
More importantly, compound 9a, the selected inhibitor, also showed a positive interaction
with the MMP-13 catalytic domain (Figure 6).
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experiment of 9a in the presence of the MMP-13 catalytic domain.

Overall, these results confirmed, using an orthogonal method, that a proper procedure
was employed for the preparation of a functional MMP-13 catalytic domain and that 9a
interacts with this domain leading to the inhibition of its biological activity.

2.5. MMP-13 Inhibition in MG-63 Cells

Next, we studied the inhibitory activity of 9a in MG-63 human osteosarcoma cells
because this is one of the most widely used cell lines in the study of the effect of drugs on
osteoblasts [42].

MMP-13 activity was determined on the conditioned medium from MG-63 cells
treated with DMSO (i.e., control) or 9a. When compared to the treatment with DMSO, 9a
showed a dose-dependent effect on MMP-13 activity, with 0.5 nM 9a decreasing MMP-13
activity by 38% (non-significant), and 5 and 50 nM 9a reducing MMP-13 activity by 50% and
51%, respectively (p < 0.05) (Figure 7). No differences in MMP-13 activity were observed
between untreated MG-63 cells and MG-63 cells incubated with DMSO (data not shown).
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Figure 7. Effect of 9a on MMP-13 activity in MG-63 cells. MG-63 cells were incubated in the absence
(DMSO) or the presence of 9a (0.5, 5, and 50 nM). MMP-13 activity was determined in the cell
supernatants using the SensoLyte® Plus 520 MMP-13 assay kit. Results were normalized to total
protein content in the supernatants and calculated relative to the treatment with DMSO, considered
as 100% in terms of MMP-13 activity. Data are expressed as the mean ± SEM and are representative
of three experiments. * p < 0.05 vs. DMSO.

This experiment demonstrates that compound 9a is effectively decreasing the MMP-13
activity in MG-63 human osteosarcoma cells and gives further evidence for the interest of
this class of compounds in the treatment of osteoarthritis.

3. Conclusions

Based on previously described polybrominated benzotriazoles 1 and 2, we have de-
signed and synthesized a series of differently substituted benzotriazole and phthalimide
derivatives. The removal of the bromine atoms present in polybrominated benzotriazoles 1
and 2 (compounds 9a,e) significantly improved water solubility, as predicted by cheminfor-
matics tools and subsequently determined by the shake flask method. Substitution of the
aromatic core by a phthalimide scaffold (compounds 10), containing carbonyl groups able
to establish hydrogen bonds with the Ω loop of the enzyme, did not improve their solubility
compared to 9a,e, even in those compounds where all bromine atoms were removed (10a).

As computationally predicted, both compounds, 9a,e, showed a loss of selectivity
compared to the parent compound 1. This fact is associated with the smaller size of
the aromatic core that allows the accommodation of the inhibitors in the less flexible
S1´selectivity pocket present in other metalloproteinases [38].

Substitution of the hydroxamate by a weaker ZBG not only brought about a loss of
selectivity but also a complete loss of solubility.

Compound 9a, in addition to its water solubility at physiological pH, showed a
remarkable potency with IC50 = 0.65 nM in enzymatic assays. For this reason, we selected
9a to carry out biophysical and cell-based assays.

WaterLOGSY NMR experiments corroborated the docking studies by showing a
positive interaction of 9a with the MMP-13 catalytic domain.

MG-63 human osteosarcoma cells, one of the most widely used cell lines in the study
of the effect of drugs on osteoblasts, were used to biologically evaluate the effect of 9a,
showing an effective decrease in the MMP-13 activity

In conclusion, we have identified 9a as a water-soluble and highly potent MMP-13
inhibitor, which constitutes a new promising candidate for the treatment of osteoarthritis
and related diseases.
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4. Materials and Methods
4.1. Synthetic General Procedures
4.1.1. Materials

All reagents and solvents were obtained from different commercial sources:Merck
(Darmstadt, Germany), Fluorochem (Derbyshire, UK), Acros Organics (Geel, Belgium),
Alfa Aesar (Candel, Germany), Scharlab (Barcelona, Spain) and Avantor (Radnor, PA,
USA)and used without further purification. Tetrahydrofuran and dichloromethane were
dried by the solvent purification system Technical Bulletin AL-258.

4.1.2. General Methods

Reaction progress was monitored using analytical thin-layer chromatography (TLC)
on Merck silica gel 60 F-254 plate. Visualization was achieved by UV light (254 nm). Flash
chromatography was performed with Scharlau silica gel 60 (0.04–0.06 mm) packing. 1H
NMR and 13C NMR spectra were recorded on a Bruker Advance III 400 MHz instrument.
Signals are quoted as s (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet),
dd (doublet of doublets), td (triplet of doublets), and m (multiplet). Chemical shifts (δ)
are expressed in parts per million, relative to solvent resonance as the internal standard.
Coupling constants (J) are in hertz (Hz). Original 1H NMR and 13C NMR spectra for
final compounds are shown in Supplementary Materials (Figure S2) Melting points were
determined on a Stuart Scientific (BIBBY) melting point apparatus. Final products were
analyzed for purity by reverse-phase high-performance liquid chromatography (HPLC)
on Agilent Technologies 1260 Infinity II apparatus (Figure S10). Mass spectrometry was
performed by the CEMBIO Analytical Service Laboratory of the Universidad CEU San
Pablo on an MS/IT Esquire 3000 Bruker Daltonics apparatus. Mass spectra reports for final
compounds are shown in Supplementary Materials (Figure S11).

4.1.3. General Synthetic Methods

1. Preparation of triazoles by Copper-Catalyzed Azide-Alkyne Cycloadditions (CuAAC)

Method A: To a suspension of azide 3 [34], 4 [34], or 5 [35] (1 eq) in DMF (10 mL/mmol),
a freshly made aqueous 0.5 M sodium ascorbate solution (0.6 eq), aqueous 0.1 M CuSO4·5H2O
solution (0.3 eq) (and TBTA (0.01 eq) for 9b–d), the corresponding alkyne (1.1–1.3 eq) was
added and the reaction was stirred at RT overnight. The mixture was then concentrated
under vacuum, and H2O was added. The precipitate formed was filtered and purified by
column chromatography on silica gel.

Method B: To a suspension of azide 3 (1 eq) in THF (10 mL/mmol), sodium ascorbate
(2 eq), CuSO4·5H2O (0.5 eq), and the corresponding alkyne (1.1–1.3 eq) were added, and
the mixture was irradiated under microwave conditions at 70 ◦C for 30 h. The solid was
removed by filtration, and the solvent was evaporated. The residue was purified by column
chromatography on silica gel.

2. O-THP deprotection

Method A: HCl was prepared by adding AcCl (20 eq) to a solution of dry MeOH
(1.5 mL) at 0 ◦C. The solution was stirred for 2 min, and then it was added to a flask
containing the compound to be deprotected (1 eq) dissolved in MeOH (1 mL) at 0 ◦C. The
mixture was kept at 0 ◦C till the completion of the reaction (C). The mixture was neutralized
with saturated NaHCO3 aqueous solution. The precipitate formed was filtered and washed
with water. The solid was purified when necessary.

Method B: A suspension of the THP-protected compound (1 eq) in THF (5 mL/mmol),
H2O (2.5 mL/mmol), and AcOH (20 mL/mmol) was irradiated under microwave con-
ditions at 45 ◦C for 4 h. The solvent was removed under vacuum, and the residue was
purified by column chromatography on silica gel.

5,6-dibromoisobenzofuran-1,3-dione [43]. A suspension of 1,2-dibromo-4,5-dimethylbenzene
(500 mg, 1.89 mmol), KMnO4 (1.8 g, 11.4 mmol), and KOH (180 mg, 3.2 mmol) in 20 mL of
H2O was irradiated under microwave conditions at 120 ◦C for 15 h. After cooling down,
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EtOH was added, the mixture was filtered over silica gel, washed with water, and the
solvent was evaporated. The residue was acidified, obtaining 4,5-dibromophthalic acid as
a white solid isolated by filtration (252.7 mg, 41%). 1H RMN (400 MHz, D2O) δ 8.09 (s, 2H,
ArH); EM (ESI) m/z 322.4 [M-H]−. The solid obtained was suspended in Ac2O (5 mL) and
heated under microwave conditions for 4 h at 80 ◦C. The solvent was evaporated under
vacuum, and 5,6-dibromoisobenzofuran-1,3-dione was obtained as a white solid (231.5 mg,
97%). 1H RMN (400 MHz, CDCl3) δ 8.26 (s, 2H, ArH)).

5,6-dibromo-2- (but-3-yn-1-yl)isoindoline-1,3-dione (8b): A solution of 5,6-dibromoisobenzofuran-
1,3-dione (100 mg, 0.33 mmol) and 3-butyn-1-amine (27 µL, 0.33 mmol) in EtOH (5 mL) was
irradiated under microwave conditions at 100 ◦C for 4 h. Compound 8b was obtained as
a white solid isolated by filtration (57.8 mg, 50%). m.p. 190–192 ◦C 1H RMN (400 MHz,
CDCl3) δ 8.10 (s, 2H, ArH), 3.87 (t, J = 6.9 Hz, 2H, NCH2), 2.61 (td, J = 6.9, 2.5 Hz, 2H,
CCH2), 1.95 (t, J = 2.4 Hz, 1H, CH).

4,5,6,7-tetrabromo-2- (but-3-yn-1-yl)isoindoline-1,3-dione (8c): Et3N (450 µL, 3.24 mmol)
was added to a solution of tetrabromophthalic anhydride (600 mg, 1.3 mmol) and 3-butyn-
1-amine hydrochloride (172 mg, 1.62 mmol) in EtOH (5 mL). The mixture was irradiated
under microwave conditions at 100 ◦C for 2 h. Compound 8c was obtained as a white solid
isolated by filtration (320 mg, 46%). m.p. 245–247 ◦C 1H RMN (400 MHz, CDCl3) δ 3.90 (t,
J = 6.9 Hz, 2H, NCH2), 2.63 (td, J = 6.9, 2.4 Hz, 2H, CCH2), 1.97 (t, J = 2.3 Hz, 1H, CH).

5-bromo-2-(but-3-yn-1-yl)isoindoline-1,3-dione (8d): Et3N (821 µL, 5 mmol) was added to
a solution of 4-bromophthalic anhydride (454 mg, 2 mmol) and 3-butyn-1-amine hydrochlo-
ride (253 mg, 2.4 mmol) in EtOH (5 mL). The mixture was irradiated under microwave
conditions at 100 ◦C for 4 h. Compound 8d was obtained as a white solid, which was
isolated by filtration (160 mg, 29%). m.p. 127–129 ◦C 1H RMN (400 MHz, CDCl3) δ 8.00 (s,
1H, ArH), 7.87 (d, J = 7.9 Hz, 1H, ArH), 7.73 (d, J = 7.9 Hz, 1H, ArH), 3.88 (t, J = 7.0 Hz, 2H,
NCH2), 2.61 (td, J = 6.9, 2.5 Hz, 2H, CCH2), 1.96 (t, J = 2.4 Hz, 1H, CH). 13C RMN (101 MHz,
CDCl3) δ 167.2, 166.7, 137.1, 133.6, 130.5, 129.0, 126.8, 124.8, 80.1, 70.4, 36.7, 18.3. IR (KBr)
1709 cm−1. MS (ESI) m/z 278.0 [M + H]+.

2-(but-3-yn-1-yl)-5-methylisoindoline-1,3-dione (8e): A solution of 4-methylphthalic an-
hydride (100 mg, 0.62 mmol) and 4-bromo-1-butyne (44 µL, 0.54 mmol) in EtOH (5 mL)
was irradiated under microwave conditions at 100 ◦C for 3 h. The solvent was removed
under vacuum, and the crude was solved up in EtOAc, washed with brine, dried over
MgSO4, filtered, and evaporated. The crude was purified by column chromatography on
silica gel using hexane-EtOAc (9.5:0.5) as eluent to give 8e (64 mg, 49%) as a white solid.
m.p. 114–115 ◦C 1H RMN (400 MHz, DMSO) δ 7.77 (d, J = 7.6 Hz, 1H, ArH), 7.71 (s, 1H,
ArH), 7.65 (d, J = 7.8 Hz, 1H, ArH), 3.70 (t, J = 7.0 Hz, 2H, n-CH2), 2.81 (t, J = 2.5 Hz, 1H,
CH), 2.54 (td, J = 6.9, 2.6 Hz, 2H, n-CH2-CH2), 2.48 (s, 3H, CH3). 13C NMR (101 MHz,
DMSO-d6) δ 167.7, 167.6, 145.5, 134.9, 131.9, 128.9, 123.6, 123.1, 80.9, 72.8, 36.1, 21.4, 17.4. IR
(KBr): 3284.2, 1758.1, 1704.6 cm−1.

2-(but-3-yn-1-yl)-2H-benzo[d][1–3]triazole (6a) and 1-(but-3-yn-1-yl)-3a,7a-dihydro-1H-
benzo[d][1–3]triazole (7a): A suspension of benzotriazole (500 mg, 4.2 mmol) and K2CO3
(5.2 g, 38 mmol) in ACN (30 mL) was stirred for 5 min. Then, 4-bromobut-1-yne (1.23 mL,
12.6 mmol) was added and the reaction was left under argon at RT for 24 h. The solvent
was removed under vacuum, and the crude was solved up in DCM, washed with brine
and H2O, dried over MgSO4, filtered, and evaporated. The crude was purified by column
chromatography on silica gel using hexane-EtOAc (9:1) as eluent to give 6a (400 mg, 56%)
as a light-yellow solid and 7a (260 mg, 36%) as a beige solid. For 6a: m.p. 73–75 ◦C 1H
NMR (400 MHz, CDCl3) δ 7.96–7.66 (m, 2H, ArH), 7.47–7.28 (m, 2H, ArH), 4.86 (t, J = 7.3
Hz, 2H, NCH2), 3.01 (td, J = 7.3, 2.7 Hz, 2H, CH2C), 2.03 (t, J= 2.7 Hz, 1H, CCH). 13C NMR
(100 MHz, CDCl3) δ 144.5, 126.5, 118.1, 79.4, 71.1, 54.8, 20.1. For 7a: m.p. 74–76 ◦C. 1H
NMR (400 MHz, CDCl3) δ 7.90 (d, J = 8.4 Hz, 1H, ArH), 7.46 (d, J = 8.3 Hz 1H, ArH), 7.34
(t, J= 7.6 Hz, 1H, ArH), 7.21 (t, J = 7.6 Hz, 1H, ArH), 4.65 (t, J = 7.0 Hz, 2H, NCH2), 2.76
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(td, J = 7.0, 2.6 Hz, 2H, CH2C), 1.88 (t, J = 2.6 Hz, 1H, CCH). 13C NMR (100 MHz, CDCl3) δ
145.9, 133.1, 127.4, 123.9, 119.9, 109.5, 79.7, 71.5, 46.6, 20.2.

(2(R)-2-(4-(4-(2-(2H-benzo[d][1–3]triazol-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenylsulfonamido)-
N-hydroxy-3-phenylpropanamide (9a)

Method 1A was followed for the click reaction: From 3 (201 mg, 0.45 mmol) and 6a
(100 mg, 0.58 mmol), and after purification by column chromatography (hexane:EtOAc 7:3)
followed by recrystallization from hexane-EtOAc, OTHP-9a (64 mg, 23%) was obtained
as a white solid and as a mixture of diastereomers a:b (45:55). m.p. 170–171 ◦C. 1H NMR
(400 MHz, CDCl3) δ 9.38 (brs, diastereomer a, 0.45H, NH), 9.23 (brs, diastereomer b, 0.55H,
NH), 7.92–7.79 (m, 2H, ArH), 7.71–7.60 (m, 5H, CH-triazole), 7.41–7.32 (m, 2H, ArH),
7.17–6.99 (m, 5H, ArH), 5.84–5.79 (m, isomers a + b, 1H, NHCH), 5.15 (t, J = 6.9 Hz, 2H,
NCH2), 4.75–4.71 (2x brs, isomers a + b, 1H, OCH), 3.97–3.92 (m, 1H), 3.86–3.80 (m, 1H),
3.70 (t, J = 6.8 Hz, 2H, NCH2CH2), 3.52–3,48 (m, 1H), 3.07–3.01 (m, 1H, CHHPh), 2.96–2.86
(m, 1H, CHHPh), 1.75–1.48 (m, 6H, 3CH2).

This compound was deprotected following Method 2A. From OTHP-9a (68 mg, 0.11
mmol), compound 9a (30 mg, 52%) was obtained as a white solid. m.p. 189 ◦C (decomp.).
1H NMR (400 MHz, DMSO) δ 10.66 (d, J = 1.5 Hz, 1H, NHOH), 8.86 (d, J = 1.6 Hz, 1H,
NHOH), 8.70 (s, 1H, CH-triazole), 8.42 (d, J = 8.9 Hz, 1H, NHCH), 7.96–7.88 (m, 2H, ArH),
7.83 (d, J = 8.8 Hz, 2H, ArH), 7.65 (d, J = 8.7 Hz, 2H, ArH), 7.45–7.37 (m, 2H, ArH), 7.11–7.03
(m, 4H, ArH), 7.00–6.95 (m, 1H, ArH), 5.14 (t, J = 7.1 Hz, 2H, NCH2CH2), 3.84–3.78 (m, 1H,
NHCH), 3.57 (t, J = 7.0 Hz, 2H, NCH2CH2), 2.77 (dd, J = 13.6, 5.5 Hz, 1H, CHHPh), 2.63
(dd, J = 13.7, 9.3 Hz, 1H, CHHPh). 13C NMR (101 MHz, DMSO) δ 166.8, 144.5, 143.6, 140.7,
138.5, 136.8, 129.1, 128.0, 127.9, 126.4, 126.2, 121.2, 119.7, 117.8, 55.6, 55.1, 38.4, 25.8. HPLC
purity 95%. MS (ESI) m/z 531.0 [M-H]−.

(R)-2-(4-(4-(2-(2H-benzo[d][1–3]triazol-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenylsulfonamido)-
3-phenylpropanoic acid (9b)

Method 1A was followed for the click reaction: From (R)-4 [34] (110 mg, 0.31 mmol)
and 6a (70.7 mg, 0.41 mmol), and after column chromatography (from pure DCM to DCM-
MeOH 95:5), compound 9b (85 mg 53%) was obtained as a white solid. m.p. 246 ◦C
(decomp.). 1H NMR (400 MHz, DMSO) δ 12.80 (s, 1H, COOH), 8.72 (s, 1H, CH triazole),
8.35 (brs, 1H, NHCH), 7.98–7.89 (m, 2H, ArH), 7.87 (d, J = 8.7 Hz, 2H, ArH), 7.68 (d, J = 8.7
Hz, 2H, ArH), 7.47–7.35 (m, 2H, ArH), 7.17–7.07 (m, 4H, ArH), 7.07–6.94 (m, 1H, ArH), 5.14
(t, J = 7.1 Hz, 2H, NCH2CH2), 3.86 (brs, 1H, NHCH), 3.55 (t, J = 7.0 Hz, 2H, NCH2CH2),
2.94 (dd, J = 13.7, 5.1 Hz, 1H, 1/2CH2Ph), 2.74 (dd, J = 13.6, 9.0 Hz, 1H, 1/2CH2Ph). 13C
NMR (101 MHz, DMSO) δ 172.7, 145.0, 144.2, 141.0, 139.1, 137.4, 129.7, 128.6, 128.5, 126.9,
126.8, 121.7, 120.2, 118.3, 58.1, 55.6, 38.2, 26.3. HPLC purity 94%. MS (ESI) m/z 518.1 [M +
H]+.

(S)-2-(4-(4-(2-(2H-benzo[d][1–3]triazol-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenylsulfonamido)-
3-phenylpropanoic acid (9c)

Method 1A was followed for the click reaction: From (S)-4 (75 mg, 0221 mmol) and
6a (44.5 mg, 0.26 mmol), and after purification by column chromatography (from pure
DCM to DCM-MeOH 95:5), compound 9c (94 mg, 77%) was obtained as a white solid. m.p.
227–228 ◦C. 1H NMR (400 MHz, DMSO) δ 8.72 (s, 1H, CH triazole), 7.94–7.89 (m, 2H, ArH),
7.88 (d, J = 8.7 Hz, 2H, ArH), 7.72 (d, J = 8.7 Hz, 2H, ArH), 7.46–7.37 (m, 2H, ArH), 7.16–7.08
(m, 4H, ArH), 7.06–7.00 (m, 1H, ArH), 5.14 (t, J = 7.1 Hz, 2H, NCH2CH2), 3.78–3.73 (m, 1H,
NHCH), 3.56 (t, J = 7.1 Hz, 2H, NCH2CH2), 2.95 (dd, J = 13.5, 5.0 Hz, 1H, 1/2CH2Ph), 2.78
(dd, J = 13.6, 8.3 Hz, 1H, 1/2CH2Ph). 13C NMR (101 MHz, DMSO) δ 172.3, 144.6, 143.7,
140.5, 138.6, 137.0, 129.3, 128.1, 128.0, 126.4, 126.3, 121.2, 119.7, 117.9, 57.8, 55.2, 37.8, 25.8.
HPLC purity 95%. MS (ESI) m/z 518.2 [M + H]+.

(R)-2-(4-(4-(2-(perbromo-2H-benzo[d][1–3]triazol-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenylsulfon-
amido)-3-phenylpropanoic acid (9d)

Method 1A was followed for the click reaction: from (R)-4 (110 mg, 0.31 mmol) and
alkyne 6b (199 mg, 0.41 mmol), and after purification by column chromatography (from
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pure DCM to DCM-MeOH 95:5), compound 9d (64 mg, 27%) was obtained as a white
solid. m.p. 127–130 ◦C 1H NMR (400 MHz, DMSO) δ 12.83 (s, 1H, COOH), 8.69 (s, 1H,
CH triazole), 8.45 (brs, 1H, NHCH), 7.85 (d, J = 8.8 Hz, 2H, ArH), 7.69 (d, J = 8.7 Hz, 2H,
ArH), 7.15–7.08 (m, 4H, ArH), 7.06–6.99 (m, 1H, ArH), 5.18 (t, J = 7.0 Hz, 2H, NCH2CH2),
3.93–3.88 (m, NHCH), 3.57 (t, J = 7.0 Hz, 2H, NCH2CH2), 2.96 (dd, J = 13.7, 5.1 Hz, 1H,
1/2CH2Ph), 2.72 (dd, J = 13.7, 9.5 Hz, 1H, 1/2CH2Ph). HPLC purity 94%. MS (ESI) m/z
831.8 [M-H]−.

4-((4-(4-(2-(2H-benzo[d][1–3]triazol-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenyl)sulfonyl)-N-
hydroxytetrahydro-2H-pyran-4-carboxamide (9e)

Method 1A was followed for the click reaction: From 5 [35] (200 mg, 0.49 mmol) and
6a (100 mg, 0.59 mmol), and after purification by column chromatography (DCM-MeOH
(1.5% MeOH)) OTHP-9e (190 mg, 67%) was obtained as a white solid. m.p. 199.7–201.4 ◦C.
1H NMR (400 MHz, CDCl3) δ 9.37 (s, 1H, NH), 8.01–7.98 (m, 2H, ArH), 7.88–7.85 (m, 4H,
ArH), 7.68 (s, 1H, CH-triazole), 7.42–7.37 (m, 2H, ArH), 5.15 (t, J = 6.9 Hz, 2H, NCH2), 5.01
(t, J = 2.5 Hz, 1H, OCH), 4.03–3.96 (m, 3H), 3.74–3.69 (m, 3H), 3.49 (td, 2H, J = 12.0, 4,6 Hz,
2H, OCHH), 2.31 (td, 2H, J = 12.3, 4,7 Hz, 2H, CHH), 2.07 (d, 2H, J = 13.2 Hz, 2H, CHH)
1.89–1.61 (m, 6H, 3CH2). 13C NMR (100 MHz, CDCl3 + acetone-d6) δ 163.1, 145.1, 144.2,
133.6, 132.1, 126.4, 120.0, 117.9, 101.8, 70.1, 64.2, 62.2, 55.2, 30.2, 28.2, 27.8, 26.2, 24.9, 18.1. IR
(KBr): 3462, 3168, 2952, 1703, 1683, 1597, 1507 cm−1.

This compound was deprotected following Method 2A. From OTHP-9e (176 mg,
0.30 mmol) and after column chromatography (from DCM:MeOH 100:0 to 97.5:2.5) 9e (84
mg, 56%) was obtained as a white solid. m.p. 219.4–220.8 ◦C. 1H NMR (400 MHz, DMSO)
δ 11.04 (brs, 1H), 9.24 (brs, 1H), 8.83 (s, 1H), 8.11 (d, J = 8.8 Hz, 2H), 7.92–7.90 (m, 4H),
7.45–7.40 (m, 2H), 5.14 (t, J = 7.1 Hz, 2H), 3.89 (dd, J = 11.6, 3.7 Hz, 2H), 3.57 (t, J = 7.1 Hz,
2H), 3.18–3.13 (m, 2H), 2.23 (d, J = 13.0 Hz, 2H), 1.96 (td, J = 13.0, 4.6 Hz, 2H). 13C NMR
(101 MHz, DMSO) δ 160.3, 144.7, 143.6, 140.4, 133.8, 132.1, 126.4, 121.4, 119.7, 117.8, 69.5,
63.8, 55.1, 27.2, 25.7. IR (KBr): 3305, 3140, 2924, 1668, 1589, 1507 cm−1 HPLC purity >98%.
MS (ESI) m/z 498.1 [M + H]+.

(R)-2-((4-(4-(2-(1,3-dioxoisoindolin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenyl)sulfonamido)-N-
hydroxy-3-phenylpropanamide (10a)

Method 1A was followed for the click reaction: From 3 (150 mg, 0.34 mmol) and
N- (3-butynyl)phthalimide (80.5 mg, 0.4 mmol), and after column chromatography (from
DCM:MeOH 100:0 to 98:2), OTHP-10a (146.3 mg, 68%) was obtained as a white solid and
as a mixture of diastereomers a:b (45:55). m.p. 177 ◦C (decomp.). 1H NMR (400 MHz,
CDCl3) δ 8.85 (s, 0.45H, NH diastereomer a), 8.67 (s, 0.55H, NH diastereomer b), 7.98 (s,
1H, CH-triazole), 7.85–7.71 (m, 8H, ArH), 7.19–7.16 (m, 3H, ArH), 7.00 (brs, 2H, ArH), 5.23–
5.20 (m, 1H, SO2NH), 4.80 (s, 0.5H, O-CH-O diastereomer a or b), 4.72 (s, 0.5H, O-CH-O
diastereomer a or b), 4.11 (t, J = 7.04, 2H, NCH2) 3.88–3.77 (m, 2H, OCHH, SO2NHCH),
3.58–3.54 (m, 1H, OCHH), 3.27 (t, J = 6.8 Hz, 2H, CH2), 3.06 (dd, J = 14.3 Hz, 6.4 Hz, 1H,
CHH-Ph), 2.97–2.91 (m, 1H, CHH-Ph), 1.75–1.55 (m, 6H, 3CH2 THP). IR (KBr): 3270.3,
2950.6, 1712.6 cm−1.

This compound was deprotected following Method 2A: From OTHP-10a (121.5 mg,
0.19 mmol) and after column chromatography (from DCM:MeOH 100:0 to 97:3), 10a (63 mg,
60%) was obtained as a white solid. m.p. 217–219 ◦C. 1H NMR (400 MHz, DMSO) δ 10.68
(brs, 1H, NH), 8.88 (s, 1H, OH), 8.80 (s, 1H, CH-triazole), 8.43 (brs, 1H, SO2NH), 7.88–7.82
(m, 6H, ArH), 7.66 (d, J = 8.6 Hz, 2H, ArH), 7.12–7.01 (m, 5H, ArH), 3.92 (t, J = 7.1 Hz, 2H,
NCH2), 3.82 (brs, 1H, NH-CH), 3.10 (t, J = 7.1 Hz, 2H, CH2), 2.78 (dd, J = 13.7, 5.4 Hz, 1H,
CHH-Ph), 2.64 (dd, J = 13.6, 9.4 Hz, 1H, CHH-Ph). 13C NMR (101 MHz, DMSO) δ 167.8,
166.8, 145.1, 140.6, 138.7, 136.9, 134.4, 131.7, 128.04, 127.9, 126.3, 123.1, 121.1, 119.6, 55.7,
38.4, 37.3, 24.1. IR (KBr): 3271, 2931, 1772, 1715 cm−1. HPLC purity 98%. MS (ESI) m/z 561
[M + H]+.

(R)-2-((4-(4-(2-(5,6-dibromo-1,3-dioxoisoindolin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenyl)
sulfonamido)-N-hydroxy-3-phenylpropanamide (10b)
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Method 1B was followed for the click reaction: From 3 (56,3 mg, 0.13 mmol) and
8b (49,6 mg, 0.14 mmol), and after column chromatography (from DCM:MeOH 100:0
to 98.5:1.5) OTHP-10b (30 mg, 29%) was obtained as a white solid and as a mixture of
diastereomers a:b (57:43). m.p. 187–189 ◦C. 1H RMN (400 MHz, DMSO) δ 11.30 (s, 0.57H,
diastereomer a, CONH), 11.22 (s, 0.43H, diastereomer b, CONH), 8.79 (s, 1H, CH-triazole),
8.51 (d, J = 9.2 Hz, 0.57H, diastereomer a, SO2NH), 8.46 (d, J = 8.8 Hz, 0.43H, diastereomer b,
SO2NH), 8.26 (s, 2H, ArH), 7.91–7.87 (m, 2H, ArH), 7.72 (d, J = 8.6 Hz, 2H, ArH), 7.22–7.03
(m, 5H, ArH), 4.56 (brs, 0.43H, diastereomer b, OCH), 4.34 (brs, 0.57H, diastereomer a,
OCH), 3.90 (t, J = 7.0 Hz, 2H, NCH2), 3.83–3.74 (m, 2H, COCH y OCHH), 3.48–3.36 (m, 1H,
OCHH), 3.08 (t, J = 7.1 Hz, 2H, triazole-CH2), 2.79 (“dd”, 1H, Ph-CHH), 2.71–2.62 (m, 1H,
Ph-CHH), 1.63–1.30 (m, 6H, 3CH2). IR (KBr) 3260, 1717 cm−1.

This compound was deprotected following Method 2B: From OTHP-10b (30 mg,
0.04 mmol) and after column chromatography (from DCM:MeOH 98:2 to 90:10) followed
by recrystallization from EtOH:H2O, 10b (19.5 mg, 69%) was obtained as a white solid.
m.p. 154–156 ◦C. 1H NMR (400 MHz, DMSO) δ 10.68 (brs, 1H, CONH), 8.88 (brs, 1H, OH),
8.78 (s, 1H, CH triazole), 8.43 (brs, 1H, SO2NH), 8.26 (s, 2H, ArH), 7.86 (d, J = 8.2 Hz, 2H,
ArH), 7.66 (d, J = 8.2 Hz, 2H, ArH), 7.15–6.98 (m, 5H, ArH), 3.90 (t, J = 7.1 Hz, 2H, NCH2),
3.85–3.78 (m, 1H, CH), 3.08 (t, J = 6.9 Hz, 2H, triazol-CH2), 2.78 (dd, J = 13.7, 5.8 Hz, 1H,
Ph-CHH), 2.70–2.58 (m, 1H, Ph-CHH). 13C RMN (101 MHz, DMSO) δ 167.3, 166.6, 145.4,
141.1, 139.1, 137.3, 132.5, 131.0, 129.6, 128.6, 128.5, 128.4, 126.8, 121.6, 120.1, 56.1, 38.9, 38.1,
24.3. IR (KBr) 1717 cm−1 HPLC purity 99%. MS (ESI) m/z 719.0 [M + H]+.

(R)-N-hydroxy-3-phenyl-2-((4-(4-(2-(4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl)ethyl)-
1H-1,2,3-triazol-1-yl)phenyl)sulfonamido)propenamide 10c

Method 1B was followed for the click reaction: From 3 (200 mg, 0.45 mmol) and 8c
(300 mg, 0.58 mmol), after column chromatography (from DCM:MeOH 100:0 to 98.5:1.5),
followed by recrystallization from hexane-EtOAc, OTHP-10c (185 mg, 43%) was obtained
as a white solid and as a mixture of diastereomers a:b (50:50). m.p. 195–197 ◦C. 1H NMR
(400 MHz, DMSO) δ 11.27 (s, 0.5H, diastereomer a, CONH), 11.19 (s, 0.5H, diastereomer b,
CONH), 8.79 (s, 1H, CH triazole), 8.48 (d, J = 9.1 Hz, 0.5H, diastereomer a or b SO2NH),
8.43 (d, J = 8.7 Hz, 0.5H, diastereomer a or b, SO2NH), 7.90 (d, J = 8.6 Hz, 2H, ArH), 7.73 (d,
J = 8.2 Hz, 2H, ArH), 7.18–7.08 (m, 5H, ArH), 4.57 (s, 0.5H, diastereomer a or b, OCH), 4.37
(s, 0.5H, diastereomer a or b, OCH), 3.91 (t, J = 7.0 Hz, 2H, NCH2), 3.85–3.75 (m, 2H, COCH
y OCHH), 3.49–3.34 (m, 1H, OCHH), 3.09 (“t”, 2H, CH2), 2.84–2.76 (m, 1H, Ph-CHH),
2.72–2.63 (m, 1H, Ph-CHH), 1.37–1.62 (m, 6H, 3CH2). IR (KBr) 2951, 1713 cm−1.

This compound was deprotected following Method 2B: From OTHP-10c (160 mg,
0.17 mmol) and after column chromatography (from DCM:MeOH 98:2 to 90:10) followed
by recrystallization from EtOH:H2O, 10c (45 mg, 31%) was obtained as a white solid. m.p.
165 ◦C (decomp.). 1H NMR (400 MHz, DMSO) δ 10.67 (s, 1H, CONH), 8.88 (s, 1H, OH),
8.79 (s, 1H, CH triazole), 8.43 (d, J = 7.4 Hz, 1H, SO2NH), 7.86 (d, J = 8.4 Hz, 2H, ArH), 7.67
(d, J = 8.5 Hz, 2H, ArH), 7.15–7.05 (m, 5H, ArH), 3.91 (t, J = 7.0 Hz, 2H, NCH2), 3.86–3.78
(m, 1H, CH), 3.08 (t, J = 7.1 Hz, 2H, triazole-CH2), 2.78 (dd, J = 13.7, 5.5 Hz, 1H, Ph-CHH),
2.69–2.59 (m, 1H, Ph-CHH). 13C RMN (101 MHz, DMSO) δ 167.3, 164.1, 145.3, 141.2, 139.1,
137.3, 136.9, 131.6, 129.6, 128.5, 128.4, 126.8, 121.7, 121.0, 120.2, 56.1, 38.9, 38.5, 24.2. IR (KBr)
3287, 1717 cm−1 HPLC purity 95%. MS (ESI) m/z 876.9 [M + H]+.

(R)-2-((4-(4-(2-(5-bromo-1,3-dioxoisoindolin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)phenyl)sulfonamido)-
N-hydroxy-3-phenylpropanamide (10d)

Method 1B was followed for the click reaction: From 3 (100 mg, 0.22 mmol) and
8d (75 mg, 0.27 mmol), and after column chromatography (from DCM:MeOH 100:0 to
97.5:2.5), OTHP-10d (160.3 mg, quantitative yield) was obtained as a white solid and as a
mixture of diastereomers a:b (50:50). m.p. 104 ◦C (decomp.). 1H RMN (400 MHz, DMSO)
δ 11.29 (s, diastereomer a, 0.5H, CONH), 11.21 (s, diastereomer b, 0.5H, CONH), 8.80 (s,
1H, diastereomer a or b, CH triazole), 8.79 (s, 1H, diastereomer a or b, CH triazole), 8.50 (d,
J = 9.2 Hz, 0.5H, diastereomer a or b,SO2NH), 8.45 (d, J = 8.9 Hz, 0.5H, diastereomer a or
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b SO2NH), 8.07 (d, J = 0.8 Hz, 1H, ArH), 8.04 (dd, J = 7.9, 1.1 Hz, 0.5H, diastereomer a or
b, ArH), 8.03 (dd, J = 7.9, 1.6 Hz, 0.5H, diastereomer a or b, ArH), 7.91–7.88 (m, 2H, ArH),
7.80 (d, J = 7.9 Hz, 1H, ArH), 7.71 (d, J = 8.7 Hz, 2H, ArH), 7.21–7.02 (m, 5H, ArH), 4.56
(“t”, 0.5H, diastereomer a or b, OCH), 4.34 (“t”, 0.5H, diastereomer a or b, OCH), 3.90 (t,
J = 7.1 Hz, 2H, NCH2), 3.90–3.75 (m, 2H, COCH + OCHH), 3.50–3.37 (m, 1H, OCHH), 3.09
(t, J = 7.1 Hz, 2H, triazole-CH2), 2.85–2.75 (m, 1H, Ph-CHH), 2.71–2.62 (m, 1H, Ph-CHH),
1.62–1.34 (m, 6H, 3CH2). IR (KBr) 1713 cm−1.

This compound was deprotected following Method 2B: From OTHP-10d (160 mg,
0.22 mmol) and after column chromatography (from DCM:MeOH 98:2 to 90:10) followed
by recrystallization from EtOH:H2O, 10d (78 mg, 55%) was obtained as a white solid. m.p.
149–152 ◦C. 1H NMR (400 MHz, DMSO) 1H RMN (400 MHz, DMSO) δ 10.68 (brs, 1H,
CONH), 8.88 (brs, 1H, OH), 8.79 (s, 1H, CH triazole), 8.43 (brs, 1H, SO2NH), 8.08 (s, 1H,
ArH), 8.04 (d, J = 8.0 Hz, 1H, ArH), 7.86 (d, J = 8.5 Hz, 2H, ArH), 7.80 (d, J = 7.9 Hz, 1H,
ArH), 7.66 (d, J = 8.6 Hz, 2H, ArH), 7.15–7.00 (m, 5H, ArH), 3.91 (t, J = 7.0 Hz, 2H, NCH2),
3.83–3.80 (m, 1H, CO-CH), 3.09 (t, J = 6.9 Hz, 2H, triazole-CH2), 2.78 (dd, J = 13.5, 5.2 Hz,
1H, Ph-CHH), 2.70–2.60 (m, 1H, Ph-CHH). 13C NMR (101 MHz, DMSO) δ 167.7, 167.4,
167.1, 145.6, 140.8, 139.1, 137.6, 137.1, 134.0, 130.9, 130.0, 128.5, 128.5, 128.4, 126.8, 126.4,
125.4, 121.5, 120.2, 56.1, 38.7, 38.0, 24.2. IR (KBr) 1709 cm−1 HPLC purity 97%. MS (ESI)
m/z 639.1 [M + H]+.

(R)-N-hydroxy-2-((4-(4-(2-(5-methyl-1,3-dioxoisoindolin-2-yl)ethyl)-1H-1,2,3-triazol-1-yl)
phenyl)sulfonamido)-3-phenylpropanamide 10e

Method 1A was followed for the click reaction: From azide 3 (104.5 mg, 0.23 mmol)
and alkyne 8e (60 mg, 0.28 mmol), and after column chromatography (from DCM:MeOH
100:0 to 98:2), OTHP-10e (159 mg, 97%) was obtained as a white solid and as a mixture of
diastereomers a:b (45:55) m.p. 143–145 ◦C. 1H NMR (400 MHz, DMSO) δ 11.29 (s, 0.45H,
NH diastereomer a), 11.20 (s, 0.55H, NH diastereomer b), 8.79 (s, 1H, CH-triazole), 8.51–
8.44 (m, 1H, SO2NH diastereomer a + b) 7.91–7.88 (m, 2H, ArH), 7.75–7.62 (m, 5H, ArH),
7.15–7.08 (m, 5H, ArH), 4.56 (s, 0.5H, O-CH-O diastereomer a or b), 4.34 (s, 0.5H, O-CH-O
diastereomer a or b), 3.91–3.76 (m, 4H), 3.46–3.38 (m, 1H partially under H2O signal), 3.08
(“t”, J = 6.2 Hz, 2H, CH2), 2.82–2.76 (m, 1H, CHH-Ph), 2.70–2.64 (m, 1H, CHH-Ph), 2.47 (s,
3H, CH3 partially under DMSO peak), 1.57–1.35 (m, 6H, 3CH2 THP). IR (KBr): 3272, 2947,
1770, 1705 cm−1.

This compound was deprotected following Method 2A: From OTHP-10e (159 mg,
0.24 mmol) and after column chromatography (from DCM:MeOH 100:0 to 90:10), 10e
(31 mg, 23%) was obtained as a white solid. m.p. 170–172 ◦C. 1H NMR (400 MHz, DMSO)
δ 10.69 (brs, 1H, NH), 8.89 (s, 1H), 8.79 (s, 1H), 8.44 (brs, 1H, SO2NH), 7.86 (d, J = 8.5 Hz,
2H, ArH), 7.75 (d, J = 7.6 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 7.67–7.62 (m, 3H, ArH), 7.11–7.02
(m, 5H, ArH), 3.89 (t, J = 7.1 Hz, 2H, NCH2), 3.81 (brs, 1H, NH-CH), 3.08 (t, J = 7.1 Hz, 2H,
CH2), 2.78 (dd, J = 13.5, 5.5 Hz, 1H, CHH-Ph), 2.64 (dd, J = 13.6, 9.4 Hz, 1H, CHH-Ph), 2.54
(s, 3H, CH3). 13C NMR (101 MHz, DMSO) δ 168.3, 168.2, 167.3, 145.8, 145.5, 141.1, 139.1,
137.3, 135.2, 132.5, 129.6, 129.5, 128.5, 128.4, 126.7, 124.0, 123.5, 121.6, 120.1, 56.1, 38.9, 37.7,
24.5, 21.8. IR (KBr): 3259, 1701, 1655 cm−1. HPLC purity 96% MS (ESI) m/z 575.1 [M+H]+.

4.2. MMP Inhibition Assays

MMP activity measurements were performed using an MMP Inhibitor Profiling Kit
purchased from Enzo Life Science International, Inc. (Farmingdale, NY, USA), and fol-
lowing the manufacturer’s protocol with slight modifications. Proteolytic activity was
measured using a thiopeptide substrate (Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-
OC2H5) where the MMP cleavage site peptide bond has been replaced by a thioester
bond. Hydrolysis of this bond by MMPs produces a sulfhydryl group that reacts with
DTNB to form 2-nitro-5-thiobenzoic acid, which was detected by its absorbance at 414 nm
(microplate photometer 90 Thermo Scientific Multiscan FC).

Enzyme reactions were carried out at 37 ◦C in a 100 µL final volume of solutions, where
the catalytic domains of the corresponding MMP were incubated in triplicate with at least
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seven concentrations of inhibitors. The assay buffer contained the following components:
50 mM HEPES, 10 mM CaCl2 95, 0.05% Brij-35, and 1 mM DTNB at pH 7.5. After addition
of the substrate, the increase of absorbance was recorded in 1 min time intervals for 30 min.
Data were plotted as OD versus time for each sample to obtain the reaction velocity (V) in
OD per min. The percentage of residual activity for each compound was calculated using
the following formula: % of remaining activity = (V in the presence of inhibitor/Vcontrol)×
100. An inhibitor, NNGH, was included as a prototypic control inhibitor. IC50 calculations
in MMP-13 and MMP-2 for active compounds are shown in Supplementary Materials
(Figure S9)

The concentration of the compound that provided 50% inhibition of enzymatic activity
(IC50) was determined by using semi-logarithmic dose–response plots (Graph Pad Prism
5.0 for Windows, Graph Pad Software Inc., San Diego, CA, USA, 2007).

4.3. Cell Culture

The human osteosarcoma cell line MG-63 was kindly provided by Dr. A. Rodríguez
de Gortazar (Universidad San Pablo-CEU, Madrid, Spain). Briefly, MG-63 cells were
seeded in gelatin-coated plates in Dulbecco’s modified Eagle’s medium (DMEM, Biow-
est, Nuaillé, FR), supplemented with 10% (v/v) fetal bovine serum (Biowest) and peni-
cillin/streptomycin (Sigma Aldrich, St. Louis, MO, USA), and maintained in a humidified
incubator (37 ◦C and 5% CO2) for 24 h. The cells were then washed with phosphate-
buffered saline (PBS) and serum-starved for 24 h. Thereafter, the cells were incubated in
the presence of 0.5, 5, or 50 nM MY399 for 24 h. As 9a was dissolved in dimethylsulfoxide
(DMSO, Sigma, St. Louis, MO, USA), cells treated with DMSO were used as a control. After
24 h, supernatants were collected, centrifuged at 1500 rpm for 15 min, and stored at −80 ◦C
until further use.

MMP-13 activity was determined in MG-63 supernatants using the SensoLyte® Plus
520 MMP-13 assay kit (Anaspec, Fremont, CA, USA) as per the manufacturer’s guidelines.
The results obtained were normalized to total protein content in the supernatants. Statistical
analyses were performed using Graphpad (version 6.5). Normal distribution of the data
was confirmed using the Kolmogorov–Smirnov test. Statistical significance was determined
using one-way ANOVA with Bonferroni post-test, with p < 0.05 considered as statistically
significant.

4.4. Thermodynamic Solubility (Shake Flask Method)

Compounds that showed activity in the enzymatic assay, 1, 2, 9a, 9e, 10a–e, were
added into 1.5 mL Eppendorf tubes prior to the addition of pH 7.4 phosphate buffer to
obtain a nominal concentration of 1 mg/mL. The samples were sonicated for 10 min and
shaken overnight at 800 rpm (FB15013 TopMix, Fischer Scientific, Waltham, MA, USA)
at room temperature. A first phase separation of supernatant and undissolved solid was
performed by centrifugation at 5000 rpm for 20 min (Biofuge primo R). The supernatant
was then transferred into Eppendorf tubes for a second centrifugation. An adequate
dilution was made using the particle-free supernatant and the concentration quantified by
LC-HRMS using a 4-point calibration curve (Agilent 1260 Infinity II).

4.5. Recombinant Protein Production

A recombinant MMP-13 construct containing the catalytic site (amino acid residues
−104 to 274) was expressed from a modified version of the pET-22b (Novagen, Merck,
(Darmstadt, Germany) expression vector containing a TEV cleavage site and a C-terminal
6xHis-tag in Escherichia coli BL21-DE3 pLys S (Stratagene, La Jolla, CA, USA) cells. The
cells were grown at 37 ◦C until an absorbance of 0.6 at 600 nm was reached and then
induced with 1 mM of isopropyl ß-D-1-thiogalactopyranoside (IPTG) for 4 h at 37 ◦C.
The cells were harvested by centrifugation at 3500 rpm for 15 min at 4 ◦C. The drained
pellet was either stored at -80 ◦C or subjected to cell disruption for immediate use. Cell
pellets were harvested and resuspended in 100 mL of lysis buffer (20 mM Tris-HCl, pH
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8.0, 300 mM NaCl and 6M urea). The suspension was incubated and shaken for 30 min
at room temperature and subsequently sonicated (Microson Ultrasonic cell disruptor XL,
Misonix) on ice 12 times, 15 s each, to break the cell wall and centrifuged at 9000 rpm for
20 min. The solubilized MMP-13 recombinant protein was purified using metal affinity
chromatography under denaturing conditions. The supernatant was mixed with 2.5 mL of
Ni-NTA His Bind resin (Novagen) previously equilibrated with buffer (20 mM Tris-HCl,
pH 8.0, 300 mM NaCl and 6 M urea), leaving the mixture supernatant-resin incubating and
shaking for 1 h at room temperature. The column was washed with 50 mL of buffer and
afterward with 50 mL of buffer supplemented with 10 and 30 mM imidazole, respectively.
The protein bound to the resin was eluted with 3 fractions of 5 mL of buffer supplemented
with 250, 500 mM, and 1 M imidazole, respectively. The purity of all fractions was assessed
by SDS-PAGE, and those fractions free of contaminants were pooled and subjected to
buffer exchange using a desalting PD MidiTrap G-25 column (GE Healthcare, Chicago,
IL, USA), in order to remove imidazole and refold the protein. Desalting columns were
equilibrated with 20 mM Tris-HCl, pH 8.0, 200 mM NaCl buffer. Finally, eluted fractions
were dialyzed against 10 mM Tris-HCl, pH 7.4, 50 mM NaCl buffer. Protein aliquots at
5 uM were lyophilized and stored at −20 ◦C before their use in WaterLOGSY experiments.

4.6. NMR Experiments

All NMR experiments were performed using a Bruker UltrashieldTM Plus 500 MHz
spectrometer equipped with a 5 mm TXI probe at 25 ◦C. For WaterLOGSY experiments, to
473 µL of 5 µM MMP-13 catalytic domain with 100 µM CaCl2 and 100 µM ZnCl2, 50 µL
of D2O, and 0.15 mM of ligand were added (from a 100 mM stock in DMSO-d6), in a
protein/ligand ratio of 1:30, optimal for the WaterLOGSY experiments. For each sample,
1D 1H and WaterLOGSY experiments were conducted. A total of 8 K-points were used
for a sweep width of 16 ppm in both experiments. For the 1D 1H experiments, 64 scans
were accumulated. A total of 360 scans were accumulated for the WaterLOGSY experiment.
Spectra were acquired and processed with Topspin 3.5 (Bruker Biospin), and MNova
software (MestReNova, v8.1.2).

4.7. Molecular Modeling

To account for the flexibility of the Ω-loop, we selected several X-ray structures of the
catalytic domain of MMP-13 bound to various inhibitors (PDB codes 3KEK, 3WV1, 456C
and 3TVC) [44–47] and the eleven conformations issued from the NMR-solved catalytic
domain of MMP-2 (PDB code 1HOV) also bound to an inhibitor [48]. All fifteen proteins
were prepared with the Protein Preparation Wizard module of the Schrödinger software,
where the inhibitors and water molecules were eliminated [49,50]. The catalytic glutamic
acid (Glu223 in MMP-13 and Glu121 in MMP-2) is known to deprotonate different types
of inhibitors depending on the type of Zinc Binding Group (ZBG), such as hydroxamic
acid. Given the nature of the tested inhibitors, two sets of proteins with the two types of
protonation of the catalytic glutamic acid were prepared. The induced-fit docking protocol
of the Glide software was applied as indicated in the literature [51–54]. All compounds
were docked in a 25Å sized box, with the center of the box located at a centroid between
the Zn2+ and Tyr244 MMP-13/Tyr142 MMP-2 [54]. Ligands were prepared using the
LigPrep module of the Schrödinger suite, where metal coordination options were added
for the calculation [54]. The hydroxamate form was used for the docking calculations using
the protonated forms of Glu223/Glu121, whereas the carboxylate-based inhibitors were
docked in the deprotonated forms of Glu223/Glu121.
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ACN acrylonitrile
DCM dichloromethane
DMF dimethylformamide
DMSO dimethylsulfoxide
MW microwave
PDB protein data bank
PK pharmacokinetic
RT room temperature
THF tetrahydrofuran
THP tetrahydropyrane
TBTA (Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine)
TLC thin layer chromatography
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