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Abstract: This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids
found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft
corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is
found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and
triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a
cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and
triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane,
cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile,
we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to
identify possible promising sources for pharmacologists and the pharmaceutical industry. About
300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological
activities, but the most pronounced antitumor profile. The review summarizes biological activities
both determined experimentally and estimated using the well-known PASS software. According
to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a
confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor
activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different
lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer,
sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer,
and genitourinary cancer with varying degrees of confidence. In addition, the review presents
graphical images of the antitumor profile of both individual CBS and triterpenoids groups and
individual compounds.

Keywords: carbon-bridged steroids; cyclopropane; cyclobutane; cyclopentane; cyclohexane; triter-
penoids; pharmacology; antitumor; marine invertebrates; green and red algae; fungi

1. Introduction

In both natural and synthetic steroids, when an additional ring is formed within the
steroid skeleton, through a direct bond between any two carbon atoms (or more) of the
steroid ring system or an attached side chain, such steroids (or triterpenoids) are called
carbon-bridged steroids [1,2]. Analyzing the literature data from 1920, we concluded that
the first mention of cyclopropane-containing hormones appeared in the mid-1930s of the
twentieth century [2–4]. Steroids containing a cyclopropane ring in the side chain, such
as gorgosterol, were first isolated from marine organisms in the early 1940s [4–6], and
other 22,23-cyclopropyl sterols, such as dimethyl-gorgosterol, acanthasterol, demethy-
lacanthasterol, acanthastanol, and 9,11-secogorgosterol, all of which have 22R, 23R and
24R configurations, have been isolated from marine sources [7–12]. Natural triterpenes
containing a cyclopropane ring, and called cycloartanes, were first found in the early
1950s [13–15].
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Natural carbon-bridged steroids predominantly contain an additional cyclopropane
ring, and to a lesser extent cyclobutane, cyclopentane, cyclohexane or cycloheptane, al-
though synthetic CBS can contain a wide variety of additional rings. It was found that all
these groups of CBS exhibit a wide range of biological activities [16–21].

Over the past 30–40 years, scientists have made great efforts to search for antitumor
agents, among both natural and synthetic compounds, for use in practical and experimental
medicine [22–46]. In our opinion, natural and synthetic carbon-bridged steroids or similar
triterpenoids can be excellent anticancer agents, as they exhibit a wide range of biological
activities and, predominantly, antitumor activity.

Our review focuses on this topic, and we consider about 300 natural, semi-, and syn-
thetic carbon-bridged steroids and similar triterpenoids, many of which show pronounced
antitumor activity.

2. Cyclopropane Containing Steroids and Triterpenoids

A unique steroid containing a 5,19-cycloergostane skeleton, (3β,5β,6β,7α,22E,24ξ)-
5,19-cycloergost-22-ene-3,6,7-triol, named hatomasterol (1) was found in the extracts of
the Okinawan sponge Stylissa sp., and an isolated compound demonstrated cytotoxicity
against HeLa cells in vitro [47]. Chemical structures 1–18 are shown in Figure 1, and their
biological activity is shown in Table 1.

Cycloartane derivatives are widely distributed in terrestrial plants, but only a few
were obtained from the seaweeds and marine invertebrates. Thus, cycloartane triter-
pene 3-hydroxy-cycloarta-23,25-dien-28-oic acid (2) was found in the red alga Galaxaura
sp. [48]. Cycloartenol (3), 24-methylene cycloartenol (4), and cycloartanol (5) have been
detected in brown alga Fucus spiralis and F. krishnae (Phaeophyceae) [49,50], in the ma-
rine green algae Enteromorpha intestinalis and Ulva lactuca [51], in a freshwater species
of single-celled alga Euglena gracilis [52], in a yellow-green unicellular freshwater alga
Monodus subterraneus [53], and in the subarctic moss Dicranum elongatum [54]. Cycloartenol
(3) was also found in a single-cell green alga Chlamydomonas reinhardtii [55], a single-celled
green algae Chlorella ellipsoidea [56], and cycloartenol is found in a ubiquitous green alga
Prototheca wickerhamiiin [57], in the marine alga Aurantiochytrium sp. [58], and in the red
seaweed Laurencia dendroidea [59].

Interestingly, cycloartenol (3) is the sterol precursor in photosynthetic organisms such
as amoebae Naegleria lovaniensis, N. gruberi and the soil amoeba Acanthamoeba polyphaga
using [l-14C] acetate in the biosynthesis of all steroids in the genus Amoeba [60,61]. In addi-
tion to cycloartenol, 24-methylene cycloartenol (4), cycloartanol (5), and 31-norcycloartenol
(34) were also identified using NMR spectra in Naegleria lovaniensis, N. gruberi (Milankovic
2017) [62], and Acanthamoeba polyphaga [63], and cycloartenol was found in the amoeba
Dictyostelium discoideum [57].

The crude aqueous and EtOAc extracts of tropical Atlantic green alga Penicillus capitatus
(Bryopsidales) showed potent inhibition of the ubiquitous marine fungal pathogen
Lindra thallasiae. The authors studied the lipid composition and found two sulphate
esters named capisterones A (6) and B (7) [64]. The MeOH extract of the green alga
Tuemoya sp. showed inhibitory activity against Herpes Zoster protease, and the extract
yielded two steroids, cycloartane-3,28-disulfate-23-ol (8) and cycloart-24-en-23-one-28-
sulfate-3-ol (9). Both compounds demonstrated activity against both VZV and CMV
protease in the 4–7 µM range [65]. Three cycloartenol sulfates (8, 10, and 11) that inhibit
protein tyrosine kinase pp60v-src were isolated from a tropical deep-water siphonaceous
green alga Tydemania expeditions [66].
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Figure 1. Bioactive steroids containing an additional 3-membered ring in molecule. 

 

Figure 1. Bioactive steroids containing an additional 3-membered ring in molecule.
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Table 1. Biological activities of cyclopropane-containing carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

1

Antineoplastic (0.915)
Apoptosis agonist (0.892)

Antineoplastic (liver cancer) (0.822)
Chemopreventive (0.776)

Cytoprotectant (0.611)
Prostate cancer treatment (0.557)

Antimetastatic (0.528)

Anti-hypercholesterolemic (0.900)
Hypolipemic (0.897)

Atherosclerosis treatment (0.690)

Anti-osteoporotic (0.861)
Anti-eczematic (0.850)

Immunosuppressant (0.744)
Antiparkinsonian, rigidity relieving (0.720)

Anti-inflammatory (0.706)

2

Chemopreventive (0.968)
Apoptosis agonist (0.879)

Antineoplastic (0.867)
Cytoprotectant (0.645)
Antimetastatic (0.578)

Hypolipemic (0.874)
Anti-hypercholesterolemic (0.649)

Cholesterol synthesis inhibitor (0.614)
Lipid metabolism regulator (0.598)
Atherosclerosis treatment (0.594)

Anti-eczematic (0.889)
Anti-inflammatory (0.860)

Antifungal (0.821)
Immunosuppressant (0.742)

Anti-psoriatic (0.720)

3

Chemopreventive (0.923)
Antineoplastic (0.863)
Cytoprotectant (0.704)
Antimetastatic (0.655)

Antineoplastic (liver cancer) (0.608)
Anticarcinogenic (0.553)

Proliferative diseases treatment (0.551)
Antineoplastic (pancreatic cancer) (0.544)

Hypolipemic (0.879)
Anti-hypercholesterolemic (0.847)

Cholesterol synthesis inhibitor (0.705)
Atherosclerosis treatment (0.674)

Anti-eczematic (0.900)
Anti-inflammatory (0.843)

Antifungal (0.806)
Antipruritic (0.776)

Immunosuppressant (0.750)
Anti-psoriatic (0.744)

Anti-osteoporotic (0.716)

4

Chemopreventive (0.857)
Antineoplastic (0.839)

Apoptosis agonist (0.799)
Cytoprotectant (0.646)
Antimetastatic (0.623)

Antineoplastic (pancreatic cancer) (0.514)

Hypolipemic (0.883)
Anti-hypercholesterolemic (0.739)

Cholesterol synthesis inhibitor (0.731)
Atherosclerosis treatment (0.665)

Anti-eczematic (0.871)
Anti-fungal (0.823)

Anti-inflammatory (0.805)
Anti-osteoporotic (0.707)

Anti-psoriatic (0.683)

5

Chemopreventive (0.842)
Antineoplastic (0.840)
Cytoprotectant (0.680)
Antimetastatic (0.647)

Proliferative diseases treatment (0.555)
Prostatic (benign) hyperplasia treatment (0.540)

Antineoplastic (pancreatic cancer) (0.528)

Hypolipemic (0.857)
Anti-hypercholesterolemic (0.788)

Cholesterol synthesis inhibitor (0.697)
Atherosclerosis treatment (0.663)

Anti-eczematic (0.880)
Anti-inflammatory (0.808)

Anti-fungal (0.781)
Anti-psoriatic (0.719)

6 Chemopreventive (0.866)
Antineoplastic (0.715)

Hypolipemic (0.703)
Cholesterol synthesis inhibitor (0.521)

Antifungal (0.878)
Anti-inflammatory (0.771)

7 Chemopreventive (0.849)
Antineoplastic (0.766)

Hypolipemic (0.676)
Cholesterol synthesis inhibitor (0.554)

Antifungal (0.836)
Anti-inflammatory (0.737)

8
Chemopreventive (0.713)

Antineoplastic (0.690)
Apoptosis agonist (0.584)

Hypolipemic (0.742)
Atherosclerosis treatment (0.644)

Cholesterol synthesis inhibitor (0.593)

Antifungal (0.850)
Anti-inflammatory (0.759)

9

Chemopreventive (0.949)
Apoptosis agonist (0.822)

Antineoplastic (0.801)
Antimetastatic (0.558)

Hypolipemic (0.788)
Cholesterol synthesis inhibitor (0.572)

Atherosclerosis treatment (0.508)

Antifungal (0.884)
Anti-inflammatory (0.814)

10 Chemopreventive (0.765)
Antineoplastic (0.701)

Hypolipemic (0.711)
Cholesterol synthesis inhibitor (0.571)

11
Chemopreventive (0.836)
Apoptosis agonist (0.763)

Antineoplastic (0.755)

Hypolipemic (0.744)
Cholesterol synthesis inhibitor (0.546)

Atherosclerosis treatment (0.511)
Anti-eczematic (0.701)
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Table 1. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

12
Chemopreventive (0.938)

Antineoplastic (0.804)
Apoptosis agonist (0.623)

Hypolipemic (0.736)
Atherosclerosis treatment (0.641)

Cholesterol synthesis inhibitor (0.575)
Hepatoprotectant (0.900)

13
Chemopreventive (0.928)

Antineoplastic (0.812)
Apoptosis agonist (0.763)

Hypolipemic (0.800)
Atherosclerosis treatment (0.609)

Cholesterol synthesis inhibitor (0.532)
Hepatoprotectant (0.861)

14
Chemopreventive (0.956)
Apoptosis agonist (0.832)

Antineoplastic (0.825)

Hypolipemic (0.847)
Atherosclerosis treatment (0.657)

Cholesterol synthesis inhibitor (0.568)
Hepatic disorders treatment (0.898)

15
Chemopreventive (0.935)
Apoptosis agonist (0.821)

Antineoplastic (0.789)

Hypolipemic (0.796)
Atherosclerosis treatment (0.623)

Cholesterol synthesis inhibitor (0.618)
Hepatoprotectant (0.823)

16

Chemopreventive (0.944)
Apoptosis agonist (0.808)

Antineoplastic (0.795)
Anticarcinogenic (0.628)

Hypolipemic (0.842)
Cholesterol synthesis inhibitor (0.714)

Atherosclerosis treatment (0.708)

Hepatoprotectant (0.872)
Antifungal (0.831)

Anti-inflammatory (0.823)

17

Apoptosis agonist (0.864)
Antineoplastic (0.841)

Chemopreventive (0.824)
Antimetastatic (0.610)

Antineoplastic (melanoma) (0.570)
Proliferative diseases treatment (0.537)

Bone diseases treatment (0.529)
Antineoplastic (pancreatic cancer) (0.516)

Hypolipemic (0.816)
Atherosclerosis treatment (0.665)

Cholesterol synthesis inhibitor (0.579)

Anti-eczematic (0.865)
Antifungal (0.819)

18

Chemopreventive (0.909)
Apoptosis agonist (0.873)

Antineoplastic (0.847)
Antimetastatic (0.629)

Hypolipemic (0.894)
Atherosclerosis treatment (0.670)

Cholesterol synthesis inhibitor (0.625)
Anti-hypercholesterolemic (0.622)

Hepatic disorders treatment (0.842)
Antiinflammatory (0.839)

Antieczematic (0.831)
Antifungal (0.809)

* Only activities with Pa > 0.5 are shown.

Four steroids, 3β-methyl-25-dihydroxycycloart-23-en-29-oate 3-sulfate (12), 3β-methyl-
hydroxy-25-methoxycycloart-23-en-29-oate 3-sulfate (13), 3β-hydroxy-25-methoxycycloart-
23-ene 3-sulfate (14) and (3β-hydroxycycloart-24-en-23-one 3-sulfate (15) were isolated
from Vietnamese red alga Tricleocarpa fragilis. All isolated steroids showed potent inhibitory
activity against yeast α-glucosidase with IC50 values of 16.6, 36.3, 30.2 and 6.5 µM, respec-
tively [67]. The Far Eastern sea cucumber Eupentacta fraudatrix (Class Holothuroidea) are
sedentary and feed on plankton, algae, and organic debris extracted from bottom silt and
sand that is passed through the alimentary canal. Sulfated cycloartane (16), which was
found in sea cucumber extract, appears to be a metabolite of algae origin [68].

Two cycloartane-type triterpenoids, 3-epicyclomusalenol (17), and cyclosadol (18) were
isolated from brown algae Kjellmaniella crassifolia. Both compounds have been reported to
have moderate chemo preventive effects [69,70]. Six cycloartanes, 24-hydroperoxycycloart-25-
en-3β-ol (19, chemical structures 19–36 are shown in Figure 2, and their biological activity
is shown in Table 2), cycloart-25-en-3β24-diol (20), 25-hydroperoxycycloart-23-en-3β-ol
(21), cycloart-23-en-3β,25-diol (22), cycloart-23,25-dien-3β-ol (23), and cycloart-24-en-3β-ol
(24) were isolated from ethanol extract of marine green alga Cladophora fascicularis [71].
The small, floating plant Spirodela punctata (or Landoltia punctata, also known as dotted
duckmeat) is widespread in the Hawaiian Islands, Southern and Eastern United States,
and synthesized cycloartane glycoside (25). The biological activity of this glycoside has not
been studied [72].
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Table 2. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

19

Chemopreventive (0.858)
Antineoplastic (0.815)

Apoptosis agonist (0.811)
Antimetastatic (0.620)

Hypolipemic (0.863)
Cholesterol synthesis inhibitor (0.536)

Anti-eczematic (0.809)
Anti-ulcerative (0.765)

20

Chemopreventive (0.923)
Apoptosis agonist (0.847)

Antineoplastic (0.837)
Cytoprotectant (0.652)
Antimetastatic (0.634)

Hypolipemic (0.861)
Atherosclerosis treatment (0.624)

Cholesterol synthesis inhibitor (0.613)

Antieczematic (0.837)
Antiinflammatory (0.833)

Antifungal (0.829)

21

Antineoplastic (0.894)
Chemopreventive (0.851)
Apoptosis agonist (0.810)

Antimetastatic (0.589)
Cytoprotectant (0.576)

Hypolipemic (0.867)
Atherosclerosis treatment (0.512)

Anti-eczematic (0.850)
Anti-inflammatory (0.755)

22

Chemopreventive (0.959)
Antineoplastic (0.886)

Apoptosis agonist (0.858)
Cytoprotectant (0.701)

Antineoplastic (liver cancer) (0.641)
Antimetastatic (0.607)

Proliferative diseases treatment
(0.554)

Prostate cancer treatment (0.510)

Hypolipemic (0.877)
Atherosclerosis treatment (0.676)
Anti-hypercholesterolemic (0.609)

Cholesterol synthesis inhibitor (0.568)
Lipid metabolism regulator (0.553)

Hepatic disorders treatment (0.921)
Anti-eczematic (0.877)

Anti-inflammatory (0.872)
Anti-psoriatic (0.808)

23

Chemopreventive (0.967)
Antineoplastic (0.884)

Apoptosis agonist (0.881)
Cytoprotectant (0.638)
Antimetastatic (0.615)

Hypolipemic (0.881)
Atherosclerosis treatment (0.654)

Cholesterol synthesis inhibitor (0.568)
Lipid metabolism regulator (0.544)

Anti-eczematic (0.888)
Anti-inflammatory (0.827)

Antifungal (0.800)
Anti-psoriatic (0.739)

24

Chemopreventive (0.952)
Apoptosis agonist (0.897)

Antineoplastic (0.857)
Cytoprotectant (0.677)
Antimetastatic (0.657)

Anticarcinogenic (0.561)
Antineoplastic (liver cancer) (0.552)

Proliferative diseases treatment
(0.538)

Antineoplastic (pancreatic cancer)
(0.537)

Hypolipemic (0.900)
Atherosclerosis treatment (0.689)

Cholesterol synthesis inhibitor (0.671)
Anti-hypercholesterolemic (0.662)
Lipid metabolism regulator (0.529)

Anti-eczematic (0.879)
Anti-psoriatic (0.709)

25

Chemopreventive (0.991)
Antineoplastic (0.915)

Apoptosis agonist (0.879)
Anticarcinogenic (0.787)

Proliferative diseases treatment
(0.735)

Antimetastatic (0.579)
Antineoplastic (sarcoma) (0.533)

Hypolipemic (0.825)
Anti-hypercholesterolemic (0.816)
Atherosclerosis treatment (0.669)

Hepatoprotectant (0.987)
Antifungal (0.893)

Anti-inflammatory (0.882)
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Table 2. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

26

Chemopreventive (0.881)
Antineoplastic (0.854)

Apoptosis agonist (0.825)
Antimetastatic (0.544)

Hypolipemic (0.833)
Cholesterol synthesis inhibitor (0.821)

Anti-hypercholesterolemic (0.791)
Lipoprotein disorders treatment

(0.717)

Antifungal (0.867)
Anti-eczematic (0.830)

Anti-inflammatory (0.804)

27

Antineoplastic (0.867)
Apoptosis agonist (0.742)
Chemopreventive (0.707)

Cytoprotectant (0.656)
Proliferative diseases treatment

(0.606)
Antimetastatic (0.565)

Chemoprotective (0.558)
Antineoplastic (pancreatic cancer)

(0.544)
Anticarcinogenic (0.541)

Hypolipemic (0.698)
Atherosclerosis treatment (0.594)
Anti-hypercholesterolemic (0.550)

Cholesterol synthesis inhibitor (0.521)

Antieczematic (0.886)
Hepatoprotectant (0.861)

Antipsoriatic (0.714)

28

Antineoplastic (0.875)
Chemopreventive (0.780)
Apoptosis agonist (0.768)

Proliferative diseases treatment
(0.687)

Cytoprotectant (0.685)
Anticarcinogenic (0.639)

Antimetastatic (0.590)
Antineoplastic (pancreatic cancer)

(0.549)

Anti-hypercholesterolemic (0.714)
Hypolipemic (0.698)
Antipruritic (0.639)

Atherosclerosis treatment (0.582)
Cholesterol synthesis inhibitor (0.576)

Hepatoprotectant (0.858)
Immunosuppressant (0.751)

Hepatic disorders treatment (0.686)

29

Antineoplastic (0.881)
Chemopreventive (0.791)
Apoptosis agonist (0.669)

Proliferative diseases treatment
(0.666)

Anticarcinogenic (0.657)
Cytoprotectant (0.627)

Chemoprotective (0.565)
Antimetastatic (0.559)

Antineoplastic (pancreatic cancer)
(0.547)

Anti-hypercholesterolemic (0.738)
Hypolipemic (0.707)

Cholesterol synthesis inhibitor (0.559)
Atherosclerosis treatment (0.539)

Anti-eczematic (0.898)
Hepatoprotectant (0.866)

30

Antineoplastic (0.814)
Apoptosis agonist (0.801)
Chemopreventive (0.782)

Cytoprotectant (0.604)
Antineoplastic (pancreatic cancer)

(0.565)
Antimetastatic (0.526)

Hypolipemic (0.830)
Cholesterol synthesis inhibitor (0.679)

Anti-hypercholesterolemic (0.618)
Atherosclerosis treatment (0.546)

Anti-eczematic (0.847)
Antiinflammatory (0.794)

Antifungal (0.789)
Immunosuppressant (0.733)

Antiosteoporotic (0.727)

31

Antineoplastic (0.797)
Apoptosis agonist (0.766)
Chemopreventive (0.762)

Cytoprotectant (0.585)
Antineoplastic (pancreatic cancer)

(0.559)
Prostatic (benign) hyperplasia

treatment (0.519)
Antimetastatic (0.516)

Hypolipemic (0.742)
Cholesterol synthesis inhibitor (0.583)

Anti-eczematic (0.831)
Antiinflammatory (0.771)

Antifungal (0.751)
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Table 2. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

32

Antineoplastic (0.803)
Apoptosis agonist (0.719)
Chemopreventive (0.696)

Prostatic (benign) hyperplasia
treatment (0.599)

Antineoplastic (pancreatic cancer)
(0.538)

Erythropoiesis stimulant (0.743)
Diuretic (0.629)

Anesthetic general (0.611)

33

Chemopreventive (0.889)
Antineoplastic (0.837)

Apoptosis agonist (0.751)
Cytoprotectant (0.720)

Antineoplastic (pancreatic cancer)
(0.563)

Antineoplastic enhancer (0.558)
Antimetastatic (0.543)

Hypolipemic (0.752)
Anti-hypercholesterolemic (0.669)

Cholesterol synthesis inhibitor (0.607)
Atherosclerosis treatment (0.527)

34

Apoptosis agonist (0.854)
Antineoplastic (0.846)

Chemopreventive (0.831)
Cytoprotectant (0.687)
Antimetastatic (0.635)

Proliferative diseases treatment
(0.577)

Antineoplastic (pancreatic cancer)
(0.559)

Hypolipemic (0.875)
Anti-hypercholesterolemic (0.681)
Atherosclerosis treatment (0.639)

Cholesterol synthesis inhibitor (0.599)

Anti-eczematic (0.900)

35

Antineoplastic (0.816)
Apoptosis agonist (0.799)
Chemopreventive (0.738)

Cytoprotectant (0.661)
Antimetastatic (0.624)

Proliferative diseases treatment
(0.580)

Antineoplastic (pancreatic cancer)
(0.547)

Hypolipemic (0.852)
Atherosclerosis treatment (0.623)
Anti-hypercholesterolemic (0.594)

Cholesterol synthesis inhibitor (0.592)

Anti-eczematic (0.880)

36

Antineoplastic (0.886)
Chemopreventive (0.819)
Apoptosis agonist (0.769)

Antimetastatic (0.630)
Antineoplastic (renal cancer) (0.593)

Antineoplastic (lymphocytic
leukemia) (0.525)

Prostate cancer treatment (0.511)

Hypolipemic (0.795) Diabetic neuropathy treatment (0.884)
Antidiabetic symptomatic (0.778)

* Only activities with Pa > 0.5 are shown.

The uncommon 24-homo-30-nor-cycloartane (26), produced by the endophytic fun-
gus Mycoleptodiscus indicus FT1137, which was isolated from the Hawaiian Stenocereus sp.
(family Cactaceae). Obtained compound demonstrated cytotoxic activity against human
ovarian cancer cell line A2780 [73]. An endophytic fungus Trichoderma harzianum which
isolated from Kadsura angustifolia produce 3,4-secocycloarta-4(28),24-(Z)-diene-3,26-dioic
acid named nigranoic acid (27) and its highly oxygenated derivatives [74], and another
endophytic fungus Umbelopsis dimorpha transformed the triterpene nigranoic acid into
its derivatives (28) and (29) [75]. A steroid called cycloeucalenone (30) was isolated
from an unidentified fungus collected from New Jersey [76]. Akihisa and co-workers
reported that the fungus Glomerella fusarioides transformed cycloartenol (4) to cycloartane-
3,24-dione (31), rare 4α,4β,14α-trimethyl-9β,19-cyclopregnane-3,20-dione (32) and 24,25-
dihydroxycycloartan-3-one (33) [77].
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31-Norcycloartenol (34) and cycloartanol (5) are found in a fern oil from the family Polypo-
diaceae, Polypodium vulgare [78], and 29-nor-cycloartanol (35) and cycloartanol (5) was detected
in a flowering plant in the spurge family Euphorbiaceae, Euphorbia balsamifera [79].

The Parthenium argentatum (commonly known as guayule) extract contained a cyto-
toxic steroid named argentatin A (36), which showed a cytotoxic effect against the human
colon cancer cell lines (HCT15, HCT116, and SW620) and normal epidermal keratinocytes
cell line [80].

The triterpenoids named xuetonglactones E (37, chemical structures 37–52 are shown
in Figure 3, and their biological activity is shown in Table 3) and F (38) were isolated from
the stems of an evergreen climbing shrub Kadsura heteroclita. Both compounds showed
potent cytotoxic activities against human cervical cancer cell lines (HeLa) and human
gastric cancer cells (BGC 823) [81]. The rare ring-A seco-cycloartane carbon skeleton,
coronalolide methyl ester (39), and methyl coronalolate acetate (40) were isolated from the
leaves and stems of Gardenia coronaria. Both compounds showed broad cytotoxic activity
when evaluated against a panel of human cancer cell lines [82]. Cytotoxic cycloartane
triterpenoid, 25-O-acetyl-7,8-didehydrocimigenol-3-O-β-D-(2-acetyl)-xylopyranoside (41)
was found from Cimicifuga foetida [83]. This compound demonstrated antitumor activity
against cancerous MCF-7, HepG2/ADM, HepG2 and HELA cell lines. A medicinal plant
Schisandra chinensis contains two triterpenoids, kadsuphilactone B (42), and schinalactone
D (43), which showed anti-HIV-1 activity and antitumor effects [84].

Cycloartane derivatives, cimyunnin A (44) with an unusual fused cyclopentenone ring
G, together with cimyunnin D (45), possessing a highly rearranged c-lactone ring F, were
found in the fruit of Cimicifuga yunnanensis and their structures were determined using
physical-chemical methods [85]. 3,4-Seco-cycloartane triterpenoid which had rearranged
5/6 consecutive carbocycle rings C/D, named ananosins A (46), was isolated from the
stems of Kadsura ananosma [86].

Cycloartenol triterpene saponin, 7,8-didehydro-24S-O-acetylhydroshengmanol-3-O-β-
D-galactopyranoside named shengmaxinside C (47) has been isolated from the ethyl acetate
soluble fraction of an ethanol extract of Cimicifuga simplex roots [87]. A 24-methylene-
cycloartane-3β,16β,23β-triol, named longitriol (48) was isolated from ethanolic extract
of the leaves of Polyalthia longifolia var. pendula, and shown cytotoxic effects against
four human cancer cell lines and found to be most active against cervical carcinoma cell
lines [88].
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Table 3. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

37

Antineoplastic (0.877)
Apoptosis agonist (0.771)

Antiparasitic (0.631)
Chemopreventive (0.629)

Antimetastatic (0.577)

Spasmolytic, urinary (0.696)

38

Antineoplastic (0.852)
Apoptosis agonist (0.785)
Chemopreventive (0.665)

Antimetastatic (0.578)

Spasmolytic, urinary (0.671)

39

Antineoplastic (0.898)
Chemopreventive (0.849)
Apoptosis agonist (0.823)

Antimetastatic (0.554)

Hypolipemic (0.581)

40
Antineoplastic (0.785)

Chemopreventive (0.715)
Apoptosis agonist (0.588)

Hypolipemic (0.556)

41
Chemopreventive (0.994)

Antineoplastic (0.910)
Apoptosis agonist (0.826)

Hypolipemic (0.651)

42

Antineoplastic (0.775)
Apoptosis agonist (0.716)
Chemopreventive (0.626)

Antimetastatic (0.583)

Alzheimer’s disease treatment (0.831)
Neurodegenerative diseases

treatment (0.818)
Antiparkinsonian (0.556)

43
Antineoplastic (0.842)

Apoptosis agonist (0.575)
Antimetastatic (0.505)

44

Antineoplastic (0.860)
Apoptosis agonist (0.851)
Chemopreventive (0.797)

Antimetastatic (0.585)
Antineoplastic enhancer (0.571)
Antineoplastic (sarcoma) (0.548)

Hypolipemic (0.809)

45

Antineoplastic (0.857)
Chemopreventive (0.731)
Apoptosis agonist (0.702)

Antimetastatic (0.589)

Hypolipemic (0.787)

46

Antineoplastic (0.921)
Apoptosis agonist (0.822)
Chemopreventive (0.748)

Antimetastatic (0.607)
Antineoplastic (renal cancer) (0.538)

Hypolipemic (0.590)
Cholesterol synthesis inhibitor (0.525)

47

Chemopreventive (0.910)
Antineoplastic (0.892)

Apoptosis agonist (0.887)
Anticarcinogenic (0.554)

Antineoplastic (sarcoma) (0.554)
Antineoplastic (pancreatic cancer)

(0.543)

Hypolipemic (0.626) Antithrombotic (0.689)
Alzheimer’s disease treatment (0.540)
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Table 3. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

48

Antineoplastic (0.844)
Apoptosis agonist (0.814)
Chemopreventive (0.790)

Antimetastatic (0.602)
Antineoplastic (lymphocytic

leukemia) (0.524)

Hypolipemic (0.825)
Cholesterol synthesis inhibitor (0.622)

Atherosclerosis treatment (0.576)
Antiviral (HIV) (0.520)

49
Chemopreventive (0.967)

Antineoplastic (0.906)
Apoptosis agonist (0.655)

Hypolipemic (0.646)

50

Chemopreventive (0.936)
Antineoplastic (0.895)

Apoptosis agonist (0.722)
Anticarcinogenic (0.604)

Antineoplastic (genitourinary cancer)
(0.555)

Antimetastatic (0.555)

Hypolipemic (0.782) Diabetic neuropathy treatment (0.696)
Antidiabetic (0.610)

51

Antineoplastic (0.848)
Apoptosis agonist (0.767)
Chemopreventive (0.607)

Antimetastatic (0.587)

Hypolipemic (0.847) Antiprotozoal (Plasmodium) (0.629)

52

Antineoplastic (0.820)
Chemopreventive (0.735)

Cytoprotectant (0.629)
Apoptosis agonist (0.598)

Anti-hypercholesterolemic (0.614)
Atherosclerosis treatment (0.589)

Cholesterol synthesis inhibitor (0.581)

* Only activities with Pa > 0.5 are shown.

The aerial parts of Cimicifuga heracleifolia contained a 9,19-cycloartane-type triterpene,
cimiheraclein A (49) and showed weak activity against human tumor cell lines (HL-60,
SMMC-7721, A-549, MCF-7, and SW-480) [89]. The rhizomes of Beesia calthifolia resulted in
the isolation of cycloartane derivative (50) [90], and Abies faxoniana is the source of cycloar-
tane derivative (51) with spiro-side chain [91]. The 3,4-seco-cycloartane, macrocoussaric
acid F (52) has been isolated from Coussarea macrophylla [92].

Unique steroids, 4,4,8β-Trimethyl-7α-hydroxy-13α, 14α-methano-18-nor-5α-androsta-
1-ene-3,17-dione, named malabanone A (53) and 3,3,8β-trimethyl-7α-hydroxy-13α,14α-
methano-A (4),18-dinor-5α-androstane-2,17-dione named malabanone B (54), which incor-
porate a unique tricyclo [4.3.1.01,6] decane unit in the structures, were isolated from the
stem bark of Ailanthus malabarica. The authors suggest that both steroids are biosynthesized
from ailanthol (55, (23R,24S)-4,4,8β-Trimethyl-13α,14α-methano-21,23:24,25-diepoxy-18-
nor-5α-cholesta-20-ene-3α,7α-diol), which was also isolated from this plant [93]. Chemical
structures 53–65 are shown in Figure 4, and their biological activity is shown in Table 4.
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Table 4. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

53

Apoptosis agonist (0.768)
Antineoplastic (0.759)

Chemopreventive (0.574)
Antimetastatic (0.514)

Antineoplastic (pancreatic cancer)
(0.509)

Antiprotozoal (Plasmodium) (0.755)

54

Apoptosis agonist (0.778)
Antineoplastic (0.770)

Chemopreventive (0.634)
Antineoplastic (pancreatic cancer)

(0.562)
Antineoplastic (sarcoma) (0.555)

Antimetastatic (0.547)

Hypolipemic (0.506) Antiprotozoal (Plasmodium) (0.724)

55
Antineoplastic (0.881)

Apoptosis agonist (0.692)
Antimetastatic (0.602)

Hypolipemic (0.775) Cardiotonic (0.691)

56
Antineoplastic (0.752)

Apoptosis agonist (0.698)
Chemopreventive (0.619)

57 Antineoplastic (0.752)
Apoptosis agonist (0.698)

58 Antineoplastic (0.825)
Apoptosis agonist (0.690)

59

Antineoplastic (0.881)
Apoptosis agonist (0.728)
Chemopreventive (0.709)

Antineoplastic (genitourinary cancer)
(0.594)

Antimetastatic (0.546)
Antineoplastic (sarcoma) (0.532)

Antineoplastic (pancreatic cancer)
(0.503)

Hypolipemic (0.805)

60

Antineoplastic (0.804)
Chemopreventive (0.700)
Apoptosis agonist (0.669)

Antineoplastic (sarcoma) (0.521)
Antineoplastic (renal cancer) (0.512)

Hypolipemic (0.693)
Lipid metabolism regulator (0.525) Alzheimer’s disease treatment (0.571)

61

Antineoplastic (0.888)
Chemopreventive (0.864)
Anticarcinogenic (0.569)
Antimetastatic (0.559)

Hypolipemic (0.827)

62

Antineoplastic (0.869)
Chemopreventive (0.862)

Antimetastatic (0.560)
Antineoplastic (sarcoma) (0.503)

Hypolipemic (0.815)
Lipid metabolism regulator (0.520) Antithrombotic (0.608)

63

Antineoplastic (0.811)
Chemopreventive (0.790)
Apoptosis agonist (0.774)

Antineoplastic (pancreatic cancer)
(0.551)

Antimetastatic (0.518)

Hypolipemic (0.503) Genital warts treatment (0.759)
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Table 4. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

64

Antineoplastic (0.837)
Apoptosis agonist (0.803)
Chemopreventive (0.748)

Antineoplastic (myeloid leukemia)
(0.704)

Hypolipemic (0.708)
Lipid metabolism regulator (0.501) Immunosuppressant (0.632)

65

Chemopreventive (0.895)
Antineoplastic (0.875)

Antineoplastic (myeloid leukemia)
(0.677)

Hypolipemic (0.733)

* Only activities with Pa > 0.5 are shown.

Several steroids with an incorporated cyclopropane unit at positions 14 and 18 named
ailanthusins A (56), B (57) and D (58) have been found and isolated from the CH2Cl2
extracts of Thailand rainforest tree Ailanthus triphysa [94]. The dichloromethane extract of
the air-dried leaves of Dysoxylum mollissimum afforded two glabretal-type triterpenoids (59
and 60) [95]. Cytotoxic glabretal triterpene, pancastatin B (61) was detected in the immature
fruits of Poncirus trifoliata. This compound exhibited selective cytotoxicity against PANC-1
pancreatic cancer cells under low-glucose stress conditions [96]. Another glabretal-type
triterpenoid named dictabretol D (62) was isolated by activity-guided fractionation from
the root bark of Dictamnus dasycarpus (Rutaceae). This triterpenoid demonstrated inhibition
of proliferation of activated T cells [97]. A CHCl3-MeOH extract of the bark of Aglaia
crassinervia collected in Indonesia led to the isolation of aglaiaglabretols A (63) and C
(64) [98], and derivative (65) of aglaiaglabretols A was found in the stems of Spathelia excelsa
(Rutaceae) [99], and it exhibited larvicidal properties with LC50 of 4.8 µg/mL against
yellow fever mosquito, Aedes aegypti.

Series of antitumor triterpene glucosides, named cumingianosides A (66, chemical
structures 66–77 are shown in Figure 5, and their biological activity is shown in Table 5), D
(67), E (68), M (69), J (70) and N (71) containing a 14,18-cycloapotirucallane-type skeleton
were isolated from a cytotoxic fraction of the leaves of Dysoxylum cumingianum. The cyto-
toxic activity of cumingianosides showed that cumingianoside M (69) exhibited significant
(<4 µM) cytotoxicity, especially against leukemia and melanoma cell lines [100,101].

A hexane extract of the wood of Dysoxylum muelleri has a yielded triterpenoid called
dysoxin 3b (72), and dysoxylic acid A (73) was isolated from the hexane extract of the
wood and bark of Dysoxylum pettigrewianum [102,103]. Dichapetalins are a small group
of triterpenoids found primarily in the Dichapetalaceae and Euphorbiaceae. Thus, bioac-
tive dichapetalins A (74), C (75), E (76), and G (77) were found in extracts of the roots
of Dichapetalum madagascariense, and dichapetalin A (74) showed a strong and selective
cytotoxic activity [104,105]. The aerial parts of Phyllanthus acutissima contained in CH2Cl2
extracts of several dichapetalin-type triterpenoids, acutissimatriterpenes A (78, chemical
structures 78–89 are shown in Figure 6, and their biological activity is shown in Table 6),
B (79), C (80), D (81), and E (82). The obtained compounds were demonstrated cytotoxic
and anti-HIV-1 activities [106]. The 90% MeOH-soluble fraction of the leaves of Dysoxylum
cumingianum led to the isolation of triterpenoids (84 and 85), which showed significant
enhanced cytotoxicity in the presence of colchicine, indicating that they might have some
MDR-reversal effect [107].



Mar. Drugs 2021, 19, 324 17 of 75Mar. Drugs 2021, 19, x 10 of 64 
 

 

 

Figure 5. Bioactive steroids containing an additional 3-membered ring in the steroid molecule. 

 

Figure 5. Bioactive steroids containing an additional 3-membered ring in the steroid molecule.



Mar. Drugs 2021, 19, 324 18 of 75

Table 5. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

66

Chemopreventive (0.950)
Antineoplastic (0.846)

Proliferative diseases treatment
(0.745)

Anticarcinogenic (0.743)
Apoptosis agonist (0.701)

Antimetastatic (0.570)
Antineoplastic (myeloid leukemia)

(0.557)
Antineoplastic (pancreatic cancer)

(0.505)

Anti-hypercholesterolemic (0.769)
Hypolipemic (0.752)

Lipid metabolism regulator (0.730)
Atherosclerosis treatment (0.532)

Hepatoprotectant (0.912)

67

Chemopreventive (0.948)
Antineoplastic (0.861)

Anticarcinogenic (0.757)
Apoptosis agonist (0.740)

Proliferative diseases treatment
(0.712)

Antimetastatic (0.576)
Antineoplastic (myeloid leukemia)

(0.550)
Antineoplastic (lymphocytic

leukemia) (0.520)

Hypolipemic (0.744)
Anti-hypercholesterolemic (0.650)
Lipid metabolism regulator (0.649)

Hepatoprotectant (0.903)

68

Chemopreventive (0.954)
Antineoplastic (0.869)

Apoptosis agonist (0.803)
Anticarcinogenic (0.706)

Hypolipemic (0.773)
Lipid metabolism regulator (0.758)
Anti-hypercholesterolemic (0.751)

Hepatoprotectant (0.866)

69

Chemopreventive (0.943)
Antineoplastic (0.835)

Proliferative diseases treatment
(0.719)

Apoptosis agonist (0.690)
Anticarcinogenic (0.656)

Antineoplastic (pancreatic cancer)
(0.549)

Antimetastatic (0.544)
Antineoplastic (sarcoma) (0.505)

Anti-hypercholesterolemic (0.798)
Hypolipemic (0.675)

Lipid metabolism regulator (0.513)
Hepatoprotectant (0.834)

70

Chemopreventive (0.958)
Antineoplastic (0.859)

Apoptosis agonist (0.713)
Anticarcinogenic (0.634)

Proliferative diseases treatment
(0.597)

Antimetastatic (0.562)
Antineoplastic (sarcoma) (0.535)

Antineoplastic (myeloid leukemia)
(0.531)

Hypolipemic (0.754)
Anti-hypercholesterolemic (0.606)
Lipid metabolism regulator (0.511)

Anti-eczematic (0.955)
Anti-psoriatic (0.592)
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Table 5. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

71

Chemopreventive (0.974)
Antineoplastic (0.844)

Anticarcinogenic (0.782)
Proliferative diseases treatment

(0.718)
Antimetastatic (0.567)

Antineoplastic (myeloid leukemia)
(0.560)

Antineoplastic (lymphocytic
leukemia) (0.540)

Hypolipemic (0.730)
Lipid metabolism regulator (0.599)
Anti-hypercholesterolemic (0.519)

Respiratory analeptic (0.894)

72
Chemopreventive (0.808)

Antineoplastic (0.782)
Apoptosis agonist (0.683)

Lipid metabolism regulator (0.662)
Hypolipemic (0.652)

73

Antineoplastic (0.789)
Chemopreventive (0.787)
Apoptosis agonist (0.761)

Antimetastatic (0.576)
Proliferative diseases treatment

(0.568)
Antineoplastic (myeloid leukemia)

(0.552)
Cytoprotectant (0.509)

Anticarcinogenic (0.503)

Lipid metabolism regulator (0.843)
Hypolipemic (0.798)

Cholesterol synthesis inhibitor (0.635)
Anti-hypercholesterolemic (0.628)

Antithrombotic (0.638)

74
Antineoplastic (0.790)

Apoptosis agonist (0.736)
Antineoplastic (liver cancer) (0.640)

Hypolipemic (0.597) Genital warts treatment (0.831)

75

Antineoplastic (0.764)
Chemopreventive (0.677)

Antineoplastic (liver cancer) (0.571)
Apoptosis agonist (0.531)

Hypolipemic (0.679) Genital warts treatment (0.630)

76 Antineoplastic (0.688) Hypolipemic (0.553) Genital warts treatment (0.635)

77
Antineoplastic (0.867)

Apoptosis agonist (0.820)
Antineoplastic (liver cancer) (0.561)

Hypolipemic (0.590) Genital warts treatment (0.635)

* Only activities with Pa > 0.5 are shown.
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Table 6. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

78 Antineoplastic (0.820) Genital warts treatment (0.780)

79 Antineoplastic (0.841) Antimitotic (0.642)

80 Antineoplastic (0.820) Genital warts treatment (0.780)

81 Antineoplastic (0.841) Prostate disorders treatment (0.650)

82 Antineoplastic (0.831) Genital warts treatment (0.854)

83 Antineoplastic (0.866) Genital warts treatment (0.707)

84

Antineoplastic (0.759)
Chemopreventive (0.711)
Apoptosis agonist (0.644)

Cytoprotectant (0.631)
Antimetastatic (0.587)

Hypolipemic (0.764)
Atherosclerosis treatment (0.600)

Cholesterol synthesis inhibitor (0.525)
Lipid metabolism regulator (0.521)
Anti-hypercholesterolemic (0.519)

85

Antineoplastic (0.801)
Chemopreventive (0.780)
Apoptosis agonist (0.673)

Cytoprotectant (0.621)
Antimetastatic (0.597)

Hypolipemic (0.765)
Cholesterol synthesis inhibitor (0.577)

Lipid metabolism regulator (0.500)
Immunosuppressant (0.727)

86

Antineoplastic (0.773)
Apoptosis agonist (0.687)
Chemopreventive (0.609)

Cytoprotectant (0.583)

Cholesterol synthesis inhibitor (0.556)
Hypolipemic (0.511) Anti-ischemic, cerebral (0.973)

87

Antineoplastic (0.825)
Antineoplastic (myeloid leukemia) (0.645)

Apoptosis agonist (0.573)
Antineoplastic (carcinoma) (0.504)

Alzheimer’s disease treatment (0.824)
Neurodegenerative diseases

treatment (0.809)
Psychotropic (0.700)

88
Antineoplastic (0.889)

Apoptosis agonist (0.580)
Antimetastatic (0.515)

Hypolipemic (0.508) Hepatic disorders treatment (0.931)

89 Antineoplastic (0.870)
Apoptosis agonist (0.759)

Hepatic disorders treatment (0.952)
Hepatoprotectant (0.514)

* Only activities with Pa > 0.5 are shown.

Natural ecdysteroids are found in marine invertebrates, insects, or plants, and they provide
a remarkable resource of insect hormone analogues that influence insect development and
metamorphosis and thus play a significant role in the chemical interactions between some
marine invertebrates and insects [108]. Rare 14-deoxy-14,18-cyclo-20-hydroxyecdysone (86)
was obtained by photochemical transformation of 20-hydroxyecdysone [109].

Cinanthrenol A (87), an estrogenic aromatic steroid containing a phenanthrene and a
spiro[2,4]heptane systems has been isolated from a marine sponge Cinachyrella sp. [110].

Preschisanartanin (88) possessing a complex nortriterpenoid skeleton, was isolated
from Schisandra chinensis, and demonstrated anti-HIV-1 activity with an EC50 value of
13.8 µg/mL [111–113], and lancolide A (89), highly oxygenated Schisandra nortriterpenoid
was detected in the Schisandra lancifolia. This compound exhibited specific antiplatelet
aggregation induced by platelet-activating factor [114].

A pentacyclic 3α,5α-cyclopregnane-type framework steroids represent a small group
of natural lipids related to carbon-bridged steroids. These steroids have been found in both
marine invertebrates and some terrestrial species. Two cytotoxic steroids, vladimuliecins
A (90) and B (91), were isolated from the rhizome of Vladimiria muliensis. Both steroids
demonstrated the cytotoxicity against cancer cell lines, including human leukemia cell
(HL-60), human hepatoma cell (SMMC-7721), and human cervical carcinoma cell (HeLa)
lines [115]. Chemical structures 90–102 are shown in Figure 7, and their biological activity
is shown in Table 7.
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Table 7. Biological activities of carbon-bridged steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

90 Antineoplastic (0.715) Immunosuppressant (0.770)
Cardiotonic (0.726)

91 Antineoplastic (0.744) Immunosuppressant (0.735)
Cardiotonic (0.688)

92

Antineoplastic (0.901)
Apoptosis agonist (0.818)
Chemopreventive (0.732)

Cytostatic (0.606)
Antimetastatic (0.581)

Anticarcinogenic (0.546)
Antineoplastic (breast cancer) (0.539)

Anti-hypercholesterolemic (0.625)
Hypolipemic (0.617)

Respiratory analeptic (0.902)
Antidepressant (0.776)

93

Antineoplastic (0.839)
Proliferative diseases treatment

(0.804)
Chemopreventive (0.792)
Anticarcinogenic (0.722)
Apoptosis agonist (0.701)

Antineoplastic (sarcoma) (0.567)
Antimetastatic (0.503)

Lipoprotein disorders treatment
(0.800)

Anti-hypercholesterolemic (0.677)

Antidiabetic (0.902)
Spasmolytic (0.705)
Cardiotonic (0.682)

94

Antineoplastic (0.877)
Chemopreventive (0.709)
Apoptosis agonist (0.707)

Antineoplastic (sarcoma) (0.673)
Proliferative diseases treatment

(0.630)
Antineoplastic (lymphocytic

leukemia) (0.560)
Prostate disorders treatment (0.557)

Cytostatic (0.557)
Anticarcinogenic (0.556)

Antineoplastic (pancreatic cancer)
(0.538)

Antineoplastic (breast cancer) (0.522)
Antimetastatic (0.505)

Anti-hypercholesterolemic (0.862)
Lipid metabolism regulator (0.549)

Hypolipemic (0.532)
Respiratory analeptic (0.950)

95

Antineoplastic (0.856)
Chemopreventive (0.701)

Antineoplastic (sarcoma) (0.688)
Proliferative diseases treatment

(0.640)
Apoptosis agonist (0.615)
Anticarcinogenic (0.588)

Cytostatic (0.584)
Antineoplastic (lymphocytic

leukemia) (0.569)
Antineoplastic (pancreatic cancer)

(0.534)
Antineoplastic (renal cancer) (0.531)

Antimetastatic (0.512)

Anti-hypercholesterolemic (0.806)
Lipid metabolism regulator (0.539)

Respiratory analeptic (0.953)
Hepatoprotectant (0.901)
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Table 7. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

96

Antineoplastic (0.937)
Apoptosis agonist (0.827)
Chemopreventive (0.757)
Anticarcinogenic (0.741)

Proliferative diseases treatment
(0.718)

Antineoplastic (sarcoma) (0.673)
Antineoplastic (lymphocytic

leukemia) (0.587)
Antimetastatic (0.540)

Antineoplastic (breast cancer) (0.525)
Antineoplastic (pancreatic cancer)

(0.524)
Antineoplastic (renal cancer) (0.521)

Anti-hypercholesterolemic (0.863)
Lipid metabolism regulator (0.555) Respiratory analeptic (0.952)

97
Antineoplastic (0.801)

Antineoplastic (breast cancer) (0.603)
Apoptosis agonist (0.589)

Antidepressant (0.946)
Mood disorders treatment (0.944)

Psychotropic (0.922)

98

Antineoplastic (0.763)
Antineoplastic (genitourinary cancer)

(0.537)
Antimetastatic (0.514)

Antiprotozoal (0.955)
Antiprotozoal (Plasmodium) (0.950)

99

Antineoplastic (0.875)
Chemopreventive (0.648)

Antineoplastic (sarcoma) (0.633)
Apoptosis agonist (0.630)

Proliferative diseases treatment
(0.566)

Antimetastatic (0.523)
Antineoplastic (lymphocytic

leukemia) (0.512)
Anticarcinogenic (0.506)

Anti-ischemic, cerebral (0.770)
Immunosuppressant (0.747)

100

Antineoplastic (0.875)
Chemopreventive (0.648)

Antineoplastic (sarcoma) (0.633)
Apoptosis agonist (0.630)

Proliferative diseases treatment
(0.566)

Antimetastatic (0.523)
Anticarcinogenic (0.506)

Anti-ischemic, cerebral (0.770)
Immunosuppressant (0.747)

101

Antineoplastic (0.869)
Anticarcinogenic (0.823)

Proliferative diseases treatment (0.781)
Chemopreventive (0.717)
Apoptosis agonist (0.667)

Antineoplastic (sarcoma) (0.560)
Antimetastatic (0.516)

Anti-ischemic, cerebral (0.702)

102

Cytoprotectant (0.758)
Antineoplastic (0.720)

Chemopreventive (0.591)
Apoptosis agonist (0.564)

Hypolipemic (0.679)
Anti-hypercholesterolemic (0.599)
Atherosclerosis treatment (0.541)

Cholesterol synthesis inhibitor (0.533)

Choleretic (0.733)

* Only activities with Pa > 0.5 are shown.

An unusual steroid, named withawrightolide (92), was detected and isolated from the
aerial parts of Datura wrightii (family Solanaceae). Isolated steroid showed antiproliferative
activities against human glioblastoma (U251 and U87), head and neck squamous cell
carcinoma (MDA-1986), and normal fetal lung fibroblast (MRC-5) cancer cell lines [116].
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Glycoside, 6β-O-[β-D-glucopyranosyl-(1->6)-β-D-glucopyranosyl]-(20S,22R)-14α,17β,20-
trihydroxy-18-acetoxy-3α,5α-cyclo-1-oxowitha-24-enolide, named physacoztolide F (93),
was found in the CH2Cl2/MeOH extract of the aerial parts of Physalis coztomatl (family
Solanaceae) [117]. Withanolide-type steroids named cilistols P (94), PM (95) and U (96)
were isolated from the leaves of Solanum cilistum [118]. Psychotropic agent, 6β-hydroxy-
3:5-cyclopregnan-20-one (97) also known as cyclopregnol was developed in the 1950s [119].

The physalins are a group of 13,14-seco-16,24-cycloergostane triterpenoids, which
are produced by the Physalis species [120], and physalin S (98), isolated from the Physalis
alkekengi var. francheti, had a 6β-hydroxy-3,5-cyclo arrangement, a common acid rearrange-
ment product of 3-hydroxy-D5 steroids [121]. Steroidal compounds contained in Dracaena
surculosa (family Agavaceae) led to the isolation of two 3,5-cyclospirostanol saponins (99
and 100) and 3,5-cyclofurostanol saponin (101) [122].

Ganolearic acid A (102), a 3,4-seco-hexanortriterpenoid featuring, a rare 3/5/6/5
tetracyclic system with anti-inflammatory activity, was obtained in trace amounts from
Ganoderma cochlear [123].

3. Sterols and Triterpenoids with Cyclopropane Ring in the Side Chain

A cytotoxic steroid, aragusterol A (103, chemical structures 103–117 are shown in
Figure 8, and their biological activity is shown in Table 8), which possessing potent
antitumor activity, was isolated from the Okinawan sponge of the genus Xestospon-
gia. The compound strongly inhibited the cell proliferation of KB, HeLaS3, P388, and
LoVo cells in vitro, and showed potent in vivo antitumor activity toward P388 in mice
and L1210 in mice [124]. Additionally, 26,27-cyclosterols aragusterols B (104), C (105),
and D (106) have been identified and isolated from the Okinawan marine sponge of the
genus Xestospongia [124,125]. Steroids, aragusterol A (103), petrosterol (107), orthoesterol
B (108), and other cyclopropyl containing steroids (109 and 110) were isolated from the
marine sponge Petrosia weinbergi [126]. In additional, 24,28-Methylenestigmast-5-en-3-
ol (109) was detected in extracts of the marine chrysophyte alga, and pelagophtic alga
Pulvinaria sp. [127,128].
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Table 8. Biological activities of sterols and triterpenoids with cyclopropane ring in the side chain.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

103

Antineoplastic (0.911)
Apoptosis agonist (0.677)
Chemopreventive (0.658)

Cytoprotectant (0.630)
Antineoplastic (sarcoma) (0.558)

Anti-hypercholesterolemic (0.791)
Hypolipemic (0.789) Choleretic (0.885)

104

Antineoplastic (0.822)
Proliferative diseases treatment

(0.668)
Cytoprotectant (0.635)

Chemopreventive (0.557)
Apoptosis agonist (0.536)

Antineoplastic (sarcoma) (0.530)
Antimetastatic (0.518)

Anti-hypercholesterolemic (0.862)
Hypolipemic (0.757)

Cholesterol synthesis inhibitor (0.517)

Anti-ischemic, cerebral (0.952)
Choleretic (0.935)

105

Antineoplastic (0.934)
Proliferative diseases treatment

(0.644)
Prostate cancer treatment (0.585)
Antineoplastic (sarcoma) (0.575)

Cytoprotectant (0.544)
Antineoplastic (renal cancer) (0.520)

Apoptosis agonist (0.517)

Anti-hypercholesterolemic (0.828)
Hypolipemic (0.709)

Choleretic (0.879)
Anti-ischemic, cerebral (0.674)

106

Antineoplastic (0.839)
Chemopreventive (0.697)

Cytoprotectant (0.670)
Proliferative diseases treatment

(0.642)
Apoptosis agonist (0.607)

Prostatic (benign) hyperplasia
treatment (0.520)

Antimetastatic (0.515)
Antineoplastic (renal cancer) (0.513)

Anti-hypercholesterolemic (0.850)
Hypolipemic (0.728) Choleretic (0.910)

107

Antineoplastic (0.849)
Chemopreventive (0.789)

Proliferative diseases treatment
(0.785)

Apoptosis agonist (0.750)
Cytoprotectant (0.717)

Anticarcinogenic (0.658)
Prostate cancer treatment (0.601)

Antimetastatic (0.584)
Antineoplastic (sarcoma) (0.578)

Antineoplastic (pancreatic cancer)
(0.547)

Anti-hypercholesterolemic (0.964)
Hypolipemic (0.849)

Anti-hyperlipoproteinemic (0.801)
Cholesterol synthesis inhibitor (0.671)

Atherosclerosis treatment (0.610)

Respiratory analeptic (0.964)
Choleretic (0.856)

108 Antineoplastic (0.861)
Antimetastatic (0.552) Angiogenesis inhibitor (0.928)

109

Antineoplastic (0.821)
Chemopreventive (0.743)

Prostatic (benign) hyperplasia
treatment (0.663)

Cytoprotectant (0.660)
Proliferative diseases treatment

(0.648)
Apoptosis agonist (0.594)

Antimetastatic (0.550)
Prostate cancer treatment (0.538)

Anti-hypercholesterolemic (0.923)
Hypolipemic (0.732)

Atherosclerosis treatment (0.643)
Cholesterol synthesis inhibitor (0.640)

Respiratory analeptic (0.844)
Anesthetic general (0.834)
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Table 8. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

110

Antineoplastic (0.821)
Chemopreventive (0.743)

Prostatic (benign) hyperplasia
treatment (0.663)

Cytoprotectant (0.660)
Proliferative diseases treatment

(0.648)
Apoptosis agonist (0.594)

Antimetastatic (0.550)
Prostate cancer treatment (0.538)

Anti-hypercholesterolemic (0.923)
Hypolipemic (0.732)

Atherosclerosis treatment (0.643)
Cholesterol synthesis inhibitor (0.640)

111

Antineoplastic (0.898)
Apoptosis agonist (0.586)

Cytoprotectant (0.553)
Antineoplastic (sarcoma) (0.516)

Hypolipemic (0.778)
Anti-hypercholesterolemic (0.520)

Choleretic (0.711)
Antiprotozoal (Plasmodium) (0.640)

112

Antineoplastic (0.922)
Prostate disorders treatment (0.553)

Proliferative diseases treatment
(0.545)

Antineoplastic (sarcoma) (0.536)

Hypolipemic (0.692)
Anti-hypercholesterolemic (0.578) Choleretic (0.707)

113

Antineoplastic (0.845)
Chemopreventive (0.734)

Cytoprotectant (0.730)
Proliferative diseases treatment

(0.700)
Antimetastatic (0.634)

Anticarcinogenic (0.607)
Prostate cancer treatment (0.533)

Anti-hypercholesterolemic (0.909)
Hypolipemic (0.872)

Atherosclerosis treatment (0.639)
Cholesterol synthesis inhibitor (0.584)

Choleretic (0.962)

114

Antineoplastic (0.832)
Cytoprotectant (0.668)

Proliferative diseases treatment
(0.659)

Chemopreventive (0.611)
Antineoplastic (sarcoma) (0.555)
Prostatic (benign) hyperplasia

treatment (0.500)

Anti-hypercholesterolemic (0.865)
Hypolipemic (0.743)

Atherosclerosis treatment (0.553)
Cholesterol synthesis inhibitor (0.514)

Choleretic (0.934)
Respiratory analeptic (0.897)

115

Antineoplastic (0.858)
Cytoprotectant (0.699)

Antineoplastic (sarcoma) (0.685)
Antimetastatic (0.591)

Antineoplastic (renal cancer) (0.585)
Prostate disorders treatment (0.578)

Proliferative diseases treatment
(0.554)

Apoptosis agonist (0.549)
Antineoplastic (pancreatic cancer)

(0.531)
Chemopreventive (0.522)

Antineoplastic (genitourinary cancer)
(0.506)

Hypolipemic (0.713) Immunosuppressant (0.780)

116

Antineoplastic (0.682)
Prostate disorders treatment (0.670)

Apoptosis agonist (0.613)
Chemopreventive (0.604)

Cytoprotectant (0.566)
Prostatic (benign) hyperplasia

treatment (0.532)
Antimetastatic (0.527)

Anti-hypercholesterolemic (0.836)
Cholesterol synthesis inhibitor (0.587)

Hypolipemic (0.563)
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Table 8. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

117

Antineoplastic (0.706)
Prostate disorders treatment (0.630)

Cytoprotectant (0.600)
Antimetastatic (0.555)

Prostatic (benign) hyperplasia
treatment (0.510)

Hypolipemic (0.587)
Cholesterol synthesis inhibitor (0.509) Immunosuppressant (0.720)

* Only activities with Pa > 0.5 are shown.

Marine steroids having dimethylketal structure and named aragusteroketals A (111) and C
(112) with cytotoxic activity have been isolated from an Okinawan marine sponge of Xestospongia sp.
[125]. Many steroids have been found in the marine sponge Petrosia (Strongylophora) sp. col-
lected from the Similan Island (Thailand). In addition to the already known steroids
aragusterol A (103), petrosterol (107), and aragusteroketals A (111), compounds 113 and
114 were additionally identified [129]. Experimental data showed that aragusterol A (103)
exhibited weak to moderate cytotoxicity, with the IC50 values in the range of 11–103 µM.
The most potent was cytotoxic, with the IC50 values of 7.1 and 6.1 µM against HepG-2
and HeLa cell lines, respectively, while exhibiting moderate cytotoxicity with the IC50
values of 12.8, 37.9, 37.5, and 18.0 µM against the other four cancer cell lines, MOLT-3,
A549, HuCCA-1, and MDA-MB-231, respectively. In addition, this compound showed
broad-spectrum anti-proliferative activity against a panel of 14 human cancer cell lines
(IC50 = 0.01–1.6 µM) [130]. A cyclopropane-containing hydroxy sterol, phrygiasterol (115),
was isolated from starfish Hippasteria phrygiana [131], and an extract of the crown-of-thorns
starfish Acanthaster planci contained cyclopropane-containing sterol (116) [132].

The steroid, (3β,4α,5α)-4-methylgorgostan-3-ol (117), is synthesized by marine algae and
invertebrates, and it has been found in dinoflagellates Peridinium foliaceum and
Glenodinium foliaceum, corky sea finger Briareum asbestinum, rough leather coral
Sarcophyton glaucum, and soft coral Lobophytum sp. [133–135]. Steroidal saponins named
poecillastrosides E (118) and G (119), an oxidized methyl at C-18, into a primary alcohol
or a carboxylic acid, have been found in extracts of the Mediterranean deep-sea sponge
Poecillastra compressa. Poecillastroside E (118, chemical structures 118–130 are shown in
Figure 9, and their biological activity is shown in Table 9), bearing a carboxylic acid at C-18,
showed antifungal activity against Aspergillus fumigatus [136].

A 5α,8α-epidioxy steroid (120) obtained from MeOH extracts of the sponge Tethya sp.
possessing a cyclopropyl ring at C-24 of the sidechain [137]. Sterol ester, 24,26-cyclo-
5α-cholest-(22E)-en-3β-4′,8′12′-trimetyltridecanoate (121), has been isolated from a deep-
water marine sponge, Xestospongia sp. [138]. The steroid, (3β,24ξ,28ξ)-29-methyl-24,28-
methylenestigmast-5-en-3-ol (122) was found in the sponge Pseudaxinyssa sp. [139], and
another steroid, 25,28-cycloergost-5-en-3-ol, named sormosterol (123), was found in the
sponge Lissodendoryx topsenti [140].

Three steroids, 5,6,11-trihydroxy-33-norgorgost-2-en-1-one (124), 1,3,11-trihydroxy-23-
norgorgost-5-en-13-oic acid (125), and 3,11,24-Trihydroxy-9,11-secogorgost-5-en-9-one (126)
were isolated from the soft corals Clavularia viridis, Sinularia dissecta, and Pseudopterogorgia sp.,
respectively [141–143]. Two steroids, klyflaccisteroids K (127) and L (128), were isolated
from a soft coral Klyxum flaccidum. Klyflaccisteroid K is a rare 9,11-secosteroid with a
5,8-epidioxy-9-ene functional group, and klyflaccisteroid L has an unusual 11-norsteroid
skeleton and is the first example of 11-oxasteroid isolated from natural sources. The com-
pound (127) possessed moderate to weak cytotoxicity against multiple cancer cells [144].

A rare steroid named calysterol (129), the minor sterol component of the sponge
Calyx niceaensis and Petrosia ficiformis, possessing the unique feature of a cyclopropene ring
bridging C23,24 [145–147], and isocalysterol (130), was detected in the same sponge [148].
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Table 9. Biological activities of sterols and triterpenoids with cyclopropane ring in the side chain.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

118

Chemopreventive (0.963)
Proliferative diseases treatment

(0.931)
Antineoplastic (0.885)

Anticarcinogenic (0.861)
Apoptosis agonist (0.790)

Antineoplastic (sarcoma) (0.624)
Antimetastatic (0.569)

Antineoplastic (liver cancer) (0.529)
Antineoplastic (lymphocytic

leukemia) (0.516)
Antineoplastic (pancreatic cancer)

(0.502)

Anti-hypercholesterolemic (0.953)
Hypolipemic (0.758)

Lipid metabolism regulator (0.674)
Atherosclerosis treatment (0.513)

Respiratory analeptic (0.982)
Hepatoprotectant (0.979)

119

Chemopreventive (0.960)
Proliferative diseases treatment

(0.921)
Antineoplastic (0.904)

Anticarcinogenic (0.851)
Apoptosis agonist (0.824)

Antineoplastic (sarcoma) (0.633)
Antimetastatic (0.569)

Prostate disorders treatment (0.548)
Antineoplastic (liver cancer) (0.543)

Anti-hypercholesterolemic (0.939)
Hypolipemic (0.746)

Lipid metabolism regulator (0.599)

Respiratory analeptic (0.987)
Hepatoprotectant (0.984)

Antiprotozoal (Leishmania) (0.880)

120

Apoptosis agonist (0.975)
Chemopreventive (0.916)

Antineoplastic (0.845)
Prostate disorders treatment (0.615)

Cytoprotectant (0.611)
Antimetastatic (0.543)

Atherosclerosis treatment (0.731)
Hypolipemic (0.632) Antiprotozoal (Plasmodium) (0.768)

121

Antineoplastic (0.845)
Chemopreventive (0.832)
Apoptosis agonist (0.822)

Proliferative diseases treatment
(0.818)

Prostate cancer treatment (0.584)
Antimetastatic (0.537)

Antineoplastic (sarcoma) (0.531)

Anti-hypercholesterolemic (0.969)
Hypolipemic (0.810)

Lipid metabolism regulator (0.716)
Cholesterol synthesis inhibitor (0.707)

Atherosclerosis treatment (0.586)

Wound healing agent (0.916)
Respiratory analeptic (0.902)

122

Antineoplastic (0.818)
Chemopreventive (0.742)
Apoptosis agonist (0.690)

Prostatic (benign) hyperplasia
treatment (0.660)

Cytoprotectant (0.642)
Proliferative diseases treatment

(0.622)
Antimetastatic (0.556)

Prostate cancer treatment (0.541)

Anti-hypercholesterolemic (0.903)
Hypolipemic (0.709)

Atherosclerosis treatment (0.613)
Cholesterol synthesis inhibitor (0.595)

Anesthetic general (0.884)
Respiratory analeptic (0.876)
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Table 9. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

123

Chemopreventive (0.857)
Antineoplastic (0.850)

Apoptosis agonist (0.759)
Cytoprotectant (0.723)

Prostatic (benign) hyperplasia
treatment (0.685)

Proliferative diseases treatment
(0.671)

Antimetastatic (0.568)
Prostate cancer treatment (0.557)

Antineoplastic (pancreatic cancer)
(0.530)

Anticarcinogenic (0.517)
Antineoplastic (breast cancer) (0.516)

Anti-hypercholesterolemic (0.961)
Hypolipemic (0.755)

Atherosclerosis treatment (0.690)
Cholesterol synthesis inhibitor (0.652)

Anti-hyperlipoproteinemic (0.607)
Lipid metabolism regulator (0.572)

Respiratory analeptic (0.901)

124
Antineoplastic (0.753)

Apoptosis agonist (0.677)
Prostate disorders treatment (0.584)

125

Antineoplastic (0.791)
Prostate disorders treatment (0.613)

Proliferative diseases treatment
(0.556)

Anti-hypercholesterolemic (0.704)
Hypolipemic (0.556)

Cholesterol synthesis inhibitor (0.530)
Anti-inflammatory (0.833)

126 Antineoplastic (0.697) Anti-hypercholesterolemic (0.555)
Cholesterol synthesis inhibitor (0.504)

127 Apoptosis agonist (0.756)
Antineoplastic (0.660) Antiprotozoal (Plasmodium) (0.687)

128 Antineoplastic (0.731)
Apoptosis agonist (0.599)

Anti-hypercholesterolemic (0.571)
Hypolipemic (0.546)

129

Antineoplastic (0.824)
Chemopreventive (0.726)

Proliferative diseases treatment
(0.657)

Prostatic (benign) hyperplasia
treatment (0.656)

Cytoprotectant (0.654)
Apoptosis agonist (0.637)

Antimetastatic (0.539)
Prostate cancer treatment (0.538)
Antineoplastic (sarcoma) (0.537)

Antineoplastic (breast cancer) (0.507)

Anti-hypercholesterolemic (0.935)
Hypolipemic (0.731)

Anti-hyperlipoproteinemic (0.689)
Cholesterol synthesis inhibitor (0.600)

Anti-eczematic (0.961)
Respiratory analeptic (0.904)

130

Antineoplastic (0.813)
Chemopreventive (0.717)

Proliferative diseases treatment
(0.695)

Cytoprotectant (0.670)
Prostatic (benign) hyperplasia

treatment (0.649)
Antineoplastic (sarcoma) (0.628)

Apoptosis agonist (0.608)
Prostate cancer treatment (0.559)

Anticarcinogenic (0.556)
Antineoplastic (pancreatic cancer)

(0.550)
Antineoplastic (breast cancer) (0.528)

Antimetastatic (0.524)
Antineoplastic (renal cancer) (0.514)

Anti-hypercholesterolemic (0.908)
Hypolipemic (0.726)

Cholesterol synthesis inhibitor (0.589)
Anti-hyperlipoproteinemic (0.587)

Anti-eczematic (0.960)
Respiratory analeptic (0.905)

* Only activities with Pa > 0.5 are shown.
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The dichloromethane-2-propanol (1:1) extract of the Indonesian marine sponge Strepsi-
chordaia aliena yielded 20,24-bishomoscalarane sesterterpenes named honulactones A (131),
B (132), E (133), F (134), and G (135). Honulactones A and B exhibited cytotoxicity against
P-388, A-549, HT-29, and MEL-28 (at IC50 1 µg/mL) human tumor cell lines [149], and
honu’enone (136) [150]. Chemical structures 131–142 are shown in Figure 10, and their
biological activity is shown in Table 10.
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Table 10. Biological activities of cyclopropane-containing steroids and triterpenoids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

131

Antineoplastic (0.780)
Apoptosis agonist (0.559)

Antimetastatic (0.549)
Antineoplastic (myeloid leukemia)

(0.537)

Hypolipemic (0.577)
Lipid metabolism regulator (0.567)

132

Antineoplastic (0.780)
Apoptosis agonist (0.559)

Antimetastatic (0.549)
Antineoplastic (myeloid leukemia)

(0.537)

Hypolipemic (0.577)
Lipid metabolism regulator (0.567)

133
Antineoplastic (0.769)

Apoptosis agonist (0.576)
Antimetastatic (0.547)

Hypolipemic (0.660)
Lipid metabolism regulator (0.604)

134
Antineoplastic (0.769)

Apoptosis agonist (0.576)
Antimetastatic (0.547)

Hypolipemic (0.660)
Lipid metabolism regulator (0.604)

135

Antineoplastic (0.811)
Apoptosis agonist (0.639)
Chemopreventive (0.560)

Antineoplastic (myeloid leukemia)
(0.545)

Antimetastatic (0.562)

Hypolipemic (0.629)
Lipid metabolism regulator (0.544)

136

Antineoplastic (0.795)
Apoptosis agonist (0.625)

Prostate disorders treatment (0.605)
Antineoplastic (sarcoma) (0.574)

Chemopreventive (0.573)
Antineoplastic (myeloid leukemia)

(0.538)

Hypolipemic (0.597)
Lipid metabolism regulator (0.537) Hepatoprotectant (0.791)

137

Antineoplastic (0.758)
Chemopreventive (0.661)

Prostate disorders treatment (0.654)
Apoptosis agonist (0.643)

Cytoprotectant (0.621)
Proliferative diseases treatment

(0.590)
Antimetastatic (0.588)

Prostatic (benign) hyperplasia
treatment (0.512)

Anti-hypercholesterolemic (0.895)
Hypolipemic (0.707)

Cholesterol synthesis inhibitor (0.549)
Atherosclerosis treatment (0.533)

Anti-eczematic (0.849)
Anti-psoriatic (0.691)

138

Antineoplastic (0.758)
Chemopreventive (0.661)

Prostate disorders treatment (0.654)
Apoptosis agonist (0.643)

Cytoprotectant (0.621)
Proliferative diseases treatment

(0.590)
Antimetastatic (0.588)

Anti-hypercholesterolemic (0.895)
Cholesterol synthesis inhibitor (0.549)

Atherosclerosis treatment (0.533)

Anti-eczematic (0.849)
Anti-psoriatic (0.691)
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Table 10. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

139

Antineoplastic (0.809)
Cytoprotectant (0.681)

Chemopreventive (0.670)
Apoptosis agonist (0.647)

Antimetastatic (0.635)
Proliferative diseases treatment

(0.635)
Prostate disorders treatment (0.632)
Antineoplastic (pancreatic cancer)

(0.509)

Anti-hypercholesterolemic (0.797)
Hypolipemic (0.709)

Cholesterol synthesis inhibitor (0.557)

Anti-eczematic (0.921)
Anti-psoriatic (0.780)

140
Antineoplastic (0.724)
Antimetastatic (0.695)

Apoptosis agonist (0.626)

141
Antineoplastic (0.855)

Apoptosis agonist (0.637)
Antimetastatic (0.504)

142 Antineoplastic (0.688)
Antineoplastic (renal cancer) (0.524)

143

Apoptosis agonist (0.908)
Antineoplastic (0.857)

Chemopreventive (0.804)
Antineoplastic (liver cancer) (0.797)

Proliferative diseases treatment
(0.587)

Prostate cancer treatment (0.507)

Hypolipemic (0.788)
Atherosclerosis treatment (0.625)

Cholesterol synthesis inhibitor (0.548)
Anti-eczematic (0.828)

144

Antineoplastic (0.812)
Chemopreventive (0.619)

Cytoprotectant (0.558)
Antimetastatic (0.521)

Hypolipemic (0.701) Anti-inflammatory (0.862)

145
Apoptosis agonist (0.870)

Antineoplastic (0.824)
Chemopreventive (0.647)

Hypolipemic (0.710) Anti-inflammatory (0.801)

146

Chemopreventive (0.987)
Antineoplastic (0.858)

Anticarcinogenic (0.815)
Apoptosis agonist (0.802)

Proliferative diseases treatment
(0.660)

Atherosclerosis treatment (0.640)
Anti-hypercholesterolemic (0.635)

Hypolipemic (0.511)

Hepatoprotectant (0.993)
Wound healing agent (0.872)

147

Chemopreventive (0.980)
Antineoplastic (0.852)

Anticarcinogenic (0.792)
Apoptosis agonist (0.787)

Proliferative diseases treatment
(0.631)

Atherosclerosis treatment (0.645)
Anti-hypercholesterolemic (0.640)

Hepatoprotectant (0.988)
Wound healing agent (0.925)

148

Chemopreventive (0.969)
Antineoplastic (0.867)

Apoptosis agonist (0.801)
Anticarcinogenic (0.775)

Proliferative diseases treatment
(0.625)

Atherosclerosis treatment (0.663)
Anti-hypercholesterolemic (0.611)

Hypolipemic (0.539)

Hepatoprotectant (0.987)
Wound healing agent (0.949)

* Only activities with Pa > 0.5 are shown.
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It is known that human skin is responsible for the production of vitamin D. When
exposed to ultraviolet radiation, which penetrates the epidermis and photolysis provitamin
D3 to previtamin D3, and is photolyzed to 5,6-transvitamin D3 and two cyclopropane-
containing derivatives of vitamin D3, suprasterol I (137) and suprasterol II (138). The
resulting photolysis products are used for the treatment and prevention of psoriasis [151].
Mushrooms are a rich source of ergosterol, which is a precursor to vitamin D2. Wild-grown
mushrooms have been shown to contain small amounts of vitamin D2. In addition, it is
known that the content of vitamin D2 and its derivatives such as suprasterol I and II in
cultivated mushrooms increases when exposed to artificial ultraviolet radiation. In addi-
tion, vitamin D2 and its derivatives suprasterol I and II have been found in mushrooms
Agaricus bisporus, Pleurotus ostreatus, and Lentinula edodes, as well as several mushroom
powders, Pleurotus eryngii, and Agaricus bisporus [152]. When studying the photosyn-
thesis of vitamin D, using the modelling of non-adiabatic molecular dynamics, another
cyclopropane-containing metabolite (139) was identified [153].

A limonoid named hortiolide D (140) was found in CH2Cl2 and MeOH extracts from
the stem of Hortia oreadica [154]. The stem bark of Cedrelopsis gracilis (Ptaeroxylaceae) has
yielded pentanortriterpenoid, cedkathryn A (141) [155]. Phragmalin-type limonoid, ve-
lutabularin F (142) was isolated from the stem bark of Chukrasia tabularis var. velutina [156].
Rare cytotoxic metabolite, 3-oxo-cycloart-22Z,24E-dien-26-oic acid (143) isolated from
propolis collected in Myanmar, showed the most potent cytotoxicity against B16-BL6 cell,
colon 26-L5, LLC A549, and HeLa HT -1080 cancer cell lines [157]. Chemical structures
143–148 are shown in Figure 11, and their biological activity is shown in Table 10.Mar. Drugs 2021, 19, x 27 of 64 
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Two cyclopropanic oleanane triterpenoids named donellanic acid B (144) and C
(145) were obtained from Donella ubanguiensis, and its compounds showed cytotoxic and
antimicrobial activities [158]. Rare triterpenoid saponins possessing the unique 15,27-
cyclooleanane skeleton with different aromatic acyl moieties named verbesinosides A (146),
C, (147) and F (148) were isolated from the leaves and flowers of Verbesina virginica [159].

It is known that carbon-bridged steroids are a rare group of synthetic lipids that are
interesting, both in the beauty of the chemical structure, and show a wide range of biological
activities. We have selected several carbon-bridged steroids containing a cyclopropane
ring in the molecule that are not found in nature (149–164, chemical structures 149–164
are shown in Figure 12, and their biological activity is shown in Table 11). This is done to
compare the biological activities of natural and synthetic steroids [18].
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Table 11. Biological activities of synthetic cyclopropane-containing steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

149 Antineoplastic (0.891)
Apoptosis agonist (0.665)

Antidepressant (0.954)
Psychotropic (0.919)

150

Antineoplastic (0.871)
Apoptosis agonist (0.814)

Prostate disorders treatment (0.699)
Cytoprotectant (0.670)

Antidepressant (0.961)
Psychotropic (0.953)

151 Antineoplastic (0.845) Atherosclerosis treatment (0.600) Cardiovascular analeptic (0.828)

152

Antineoplastic (0.827)
Prostate disorders treatment (0.723)

Prostatic (benign) hyperplasia
treatment (0.619)

Anti-hypercholesterolemic (0.642) Anti-seborrheic (0.905)

153 Antineoplastic (0.877)
Apoptosis agonist (0.611) Anti-seborrheic (0.849)

154

Antineoplastic (0.864)
Prostate disorders treatment (0.731)

Prostatic (benign) hyperplasia
treatment (0.652)

Prostate cancer treatment (0.564)

Anti-seborrheic (0.844)

155

Antineoplastic (0.905)
Prostate disorders treatment (0.742)

Prostatic (benign) hyperplasia
treatment (0.621)

Anti-seborrheic (0.823)

156

Antineoplastic (0.791)
Cytoprotectant (0.713)

Proliferative diseases treatment
(0.662)

Anti-hypercholesterolemic (0.881)
Hypolipemic (0.735)

Cholesterol synthesis inhibitor (0.641)
Anti-eczematic (0.850)

157

Antineoplastic (0.744)
Prostate disorders treatment (0.677)

Cytoprotectant (0.653)
Prostatic (benign) hyperplasia

treatment (0.589)

Anti-hypercholesterolemic (0.873)
Hypolipemic (0.789)

Cholesterol synthesis inhibitor (0.619)
Respiratory analeptic (0.898)

158

Antineoplastic (0.851)
Apoptosis agonist (0.634)

Prostate cancer treatment (0.613)
Prostatic (benign) hyperplasia

treatment (0.592)

Aldosterone antagonist (0.842)
Anti-hyperaldosteronism (0.842)

Diuretic (0.973)
Mineralocorticoid antagonist (0.956)

Antihypertensive (0.802)

159

Antineoplastic (0.841)
Prostatic (benign) hyperplasia

treatment (0.636)
Cytoprotectant (0.620)

Anti-seborrheic (0.892)

160

Antineoplastic (0.749)
Prostate disorders treatment (0.737)

Prostatic (benign) hyperplasia
treatment (0.603)

Anti-hypercholesterolemic (0.580) Respiratory analeptic (0.765)
Cardiovascular analeptic (0.745)

161

Antineoplastic (0.792)
Prostate disorders treatment (0.742)

Prostatic (benign) hyperplasia
treatment (0.657)

Anti-hypercholesterolemic (0.909)
Hypolipemic (0.602)

162

Antineoplastic (0.849)
Prostate disorders treatment (0.733)

Prostatic (benign) hyperplasia
treatment (0.665)

Anti-hypercholesterolemic (0.666) Erythropoiesis stimulant (0.816)
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Table 11. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

163

Antineoplastic (0.849)
Apoptosis agonist (0.750)

Prostate disorders treatment (0.744)
Prostate cancer treatment (0.601)

Anti-hypercholesterolemic (0.964)
Atherosclerosis treatment (0.610)

Respiratory analeptic (0.964)
Anesthetic general (0.898)

164
Antineoplastic (0.714)
Cytoprotectant (0.710)

Prostate disorders treatment (0.619)

Hypolipemic (0.689)
Anti-hypercholesterolemic (0.625)

Respiratory analeptic (0.863)
Erythropoiesis stimulant (0.784)

* Only activities with Pa > 0.5 are shown.

Thus, 6β-hydroxy-3α,5-cyclo-5α-androstan-17-one (149), and other analogues (150,
151 and 158) were synthesized as steroidal blood pressure-lowering hormones [160,161].
Cyclosteroids (152 and 153), which show an anabolic effect, were synthesized from 19-nor
steroids, and would be of great interest for sports medicine as representatives of anabolic
steroids [162,163], although other cyclosteroids (154–157) were synthesized as potential
agents with antitumor properties [164–166].

A series of cyclopropane containing carbon-bridges steroids (159–164) have been
synthesized in various laboratories, but the biological activity of these lipid molecules has
not been determined [160,161,167,168].

4. Cyclobutane Containing Steroids and Triterpenoids

The cyclobutane unit is found as a basic structural element in a wide range of naturally
occurring compounds in bacteria, fungi, plants, and marine invertebrates [18,19,169–174]. The
chemistry and biochemistry of cyclobutanes is widely described in the scientific literature and
is of great interest to chemists and pharmacologists, since many representatives of this class of
compounds demonstrate a wide range of biological activities [18,19,73,175–178].

Unusual triterpenoids with an unprecedented skeleton named belamchinanes A (165),
C (166), and D (167) were isolated from the seeds of Belamcanda chinensis. These belam-
chinanes feature a 4/6/6/6/5 polycyclic system, in which a four-membered carbocyclic
ring bridges the C-1 and C-11 positions of a classical triterpenoid framework. Experi-
mental studies showed that 165-167 dose-dependently protect age-related renal fibrosis
in vitro [179]. Chemical structures 165–183 are shown in Figure 13, and their biological
activity is shown in Table 12.
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Table 12. Biological activities of cyclobutane-containing steroids and triterpenoids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

165

Antineoplastic (0.754)
Chemopreventive (0.703)

Cytoprotectant (0.609)
Apoptosis agonist (0.602)

Antineoplastic (pancreatic cancer)
(0.532)

Antimetastatic (0.523)
Prostate disorders treatment (0.505)

Hypolipemic (0.541) Anti-eczematic (0.905)
Anti-psoriatic (0.650)

166

Antineoplastic (0.730)
Chemopreventive (0.693)

Cytoprotectant (0.608)
Apoptosis agonist (0.572)

Antimetastatic (0.517)
Antineoplastic (pancreatic cancer)

(0.512)

Hypolipemic (0.571) Anti-eczematic (0.899)
Anti-psoriatic (0.650)

167

Antineoplastic (0.744)
Chemopreventive (0.706)

Cytoprotectant (0.627)
Apoptosis agonist (0.526)

Antimetastatic (0.510)
Antineoplastic (pancreatic cancer)

(0.503)

Hypolipemic (0.515) Anti-eczematic (0.895)
Anti-psoriatic (0.656)

168

Antineoplastic (0.796)
Apoptosis agonist (0.667)

Cytoprotectant (0.621)
Chemopreventive (0.599)

Hypolipemic (0.588)
Atherosclerosis treatment (0.528)

169
Antineoplastic (0.768)

Chemopreventive (0.628)
Apoptosis agonist (0.574)

Hypolipemic (0.638)

170

Antineoplastic (0.780)
Apoptosis agonist (0.675)

Cytoprotectant (0.602)
Chemopreventive (0.599)

Hypolipemic (0.560)

171

Antineoplastic (0.821)
Apoptosis agonist (0.740)
Chemopreventive (0.726)

Cytoprotectant (0.707)
Proliferative diseases treatment

(0.553)
Prostate cancer treatment (0.551)

Antineoplastic (pancreatic cancer)
(0.538)

Lipid metabolism regulator (0.794)
Anti-hypercholesterolemic (0.738)

Hypolipemic (0.709)
Cholesterol synthesis inhibitor (0.574)

Anti-secretoric (0.823)

172
Antineoplastic (0.847)

Antineoplastic (myeloid leukemia)
(0.624)

173

Antineoplastic (0.786)
Apoptosis agonist (0.725)

Antineoplastic (sarcoma) (0.643)
Antimetastatic (0.580)

Antineoplastic (renal cancer) (0.500)

Hypolipemic (0.543)

174

Antineoplastic (0.781)
Apoptosis agonist (0.722)

Antineoplastic (sarcoma) (0.635)
Antimetastatic (0.572)

Hypolipemic (0.534)
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Table 12. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

175

Antineoplastic (0.897)
Chemopreventive (0.718)
Apoptosis agonist (0.658)

Antimetastatic (0.649)
Antineoplastic (renal cancer) (0.611)

Prostate cancer treatment (0.595)
Antineoplastic (pancreatic cancer)

(0.547)

Hypolipemic (0.663)

176

Antineoplastic (0.850)
Chemopreventive (0.847)
Apoptosis agonist (0.829)

Cytoprotectant (0.665)
Antimetastatic (0.604)

Antineoplastic (pancreatic cancer)
(0.539)

Hypolipemic (0.567)
Cholesterol synthesis inhibitor (0.529)

Anti-inflammatory (0.902)
Choleretic (0.726)

177 Antineoplastic (0.819)
Apoptosis agonist (0.746) Antiviral (Influenza) (0.647)

178

Antineoplastic (0.820)
Apoptosis agonist (0.795)
Chemopreventive (0.601)

Cytoprotectant (0.594)
Antimetastatic (0.533)

Hypolipemic (0.592) Anti-inflammatory (0.826)

179

Antineoplastic (0.820)
Apoptosis agonist (0.795)
Chemopreventive (0.601)

Cytoprotectant (0.594)
Antimetastatic (0.533)

Hypolipemic (0.592) Anti-inflammatory (0.826)

180

Antineoplastic (0.853)
Apoptosis agonist (0.848)
Chemopreventive (0.717)

Cytoprotectant (0.636)
Antimetastatic (0.543)

Antineoplastic (myeloid leukemia)
(0.523)

Hypolipemic (0.616) Anti-inflammatory (0.757)

181

Antineoplastic (0.853)
Apoptosis agonist (0.848)
Chemopreventive (0.717)

Cytoprotectant (0.636)
Antimetastatic (0.543)

Antineoplastic (myeloid leukemia)
(0.523)

Hypolipemic (0.616) Anti-inflammatory (0.757)

182

Antineoplastic (0.772)
Apoptosis agonist (0.764)

Cytoprotectant (0.684)
Antineoplastic (multiple myeloma)

(0.631)
Antineoplastic (pancreatic cancer)

(0.589)
Antineoplastic (carcinoma) (0.571)

Antineoplastic (squamous cell
carcinoma) (0.571)

Antimetastatic (0.565)

Hypolipemic (0.765) Anti-inflammatory (0.855)



Mar. Drugs 2021, 19, 324 43 of 75

Table 12. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

183

Antineoplastic (0.774)
Apoptosis agonist (0.730)

Cytoprotectant (0.597)
Antineoplastic (pancreatic cancer)

(0.573)
Antineoplastic (multiple myeloma)

(0.565)
Antineoplastic (carcinoma) (0.559)

Antineoplastic (squamous cell
carcinoma) (0.559)

Antimetastatic (0.510)

Hypolipemic (0.797)
Lipid metabolism regulator (0.571) Anti-inflammatory (0.851)

* Only activities with Pa > 0.5 are shown.

Three triterpenoids, with an unusual four-membered ring skeleton, produced by a
bond across C-1 to C-11, ganosinensic acid A (168), B (169), and methyl ganosinensate A
(170) were isolated from the fruiting body of Ganoderma sinense [180]. A protolimonoid
named capulin (171), containing a four membered ring in its side chain, was isolated from
stem barks of Capuronianthus mahafalensis (family Meliaceae), endemic to Madagascar [181].
Triterpenoid steroid, named solanoeclepin A (172), as a cyst nematode-hatching stimulant,
was isolated from potato roots [182].

A rare limonoid named entanutilin A (173) was identified from the stem barks of
Entandrophragma utile collected in Ghana (Africa). This limonoid possessing a cyclobutanyl
ring, incorporating C-19 and a cycloheptanyl ring C, including C-30 [183], and the hexane
extract of the bark of Entandrophragma delevoyi has yielded tetranortriterpenoid, delevoyin
C (174) with similar skeleton [184].

Unusual two malabaricane type triterpenes, (14S,17S,20S,24R)-25-hydroxy-14,17-cyclo-
20,24-epoxy-malabarican-3-one (175) и(14S,17S,20S,24R)-20,24,25-trihydroxy-14,17-cyclo-
malabarican-3-one (176) were isolated from the oleoresin of the wounded trunk,
Ailanthus malabarica [185]. Unusual triterpenoid bearing a monoterpene unit at C-16 (177)
has been identified from Croton limae (Euphorbiaceae) [186].

Triterpenoids, 12α-acetoxy-13β,18β-cyclobutane-20,24-dimethyl-24-oxoscalar-16-en-25-ol
(178, α-OH, and 179, β-OH) was detected in the marine sponge Phyllospongia papyracea, col-
lected in Papua New Guinea [187]. Compound (179) has also been isolated from the
marine Australian sponge Strepsichordaia lendenfeldi from Great Barrier Reef [188]. The
dichloromethane fraction of the marine sponge Phyllospongia lamellosa, collected from the
Red Sea, resulted in the isolation and characterization of two scalarane-type compounds,
12α-acetoxy-13β,18β-cyclobutane-24-methyl-24-oxoscalar-16-en-25β-ol (180, phyllospon-
gin D) and 12a-acetoxy-13β,18β-cyclobutane-24-methyl-24-oxoscalar-16-en-25α-ol (181,
phyllospongin E) [189]. The 12α-acetoxy-23,25-cyclo-16β,25-dihydroxy-20,24-dimethyl-
24-oxoscalarane (182) was isolated from the Neo Guinean sponge Carteriospongia foliascens
[190–192], and similar cyclobutanol-containing metabolite is the related ester, 12α-acetoxy-
16β-(3′-hydroxy-butanoyloxy)-13β,18β-cyclobutan-20,24-dimethyl-24-oxosca-laran-25β-ol
(183) was found in extracts of the Australian sponge Strepsichordaia lendenfeldi collected at
the Great Barrier Reef [188].

Scalarane sesterterpenoids 20,24-bishomoscalaranes, carteriofenones Е(184), F (185),
G (186), and H (187) were obtained from the marine sponge Carteriospongia foliascens,
collected from the South China Sea. These compounds represented rare, naturally occur-
ring scalaranes with a cyclobutane ring [193]. Chemical structures 184–196 are shown
in Figure 14, and their biological activity is shown in Table 13.
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Table 13. Biological activities of cyclobutane-containing steroids and triterpenoids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

184

Antineoplastic (0.805)
Apoptosis agonist (0.787)
Chemopreventive (0.603)

Cytoprotectant (0.586)
Antimetastatic (0.533)

Hypolipemic (0.615)
Lipid metabolism regulator (0.511)
Anti-hypercholesterolemic (0.503)

Anti-inflammatory (0.817)
Choleretic (0.771)

185

Antineoplastic (0.805)
Apoptosis agonist (0.787)
Chemopreventive (0.603)

Cytoprotectant (0.586)
Antimetastatic (0.533)

Hypolipemic (0.615)
Lipid metabolism regulator (0.511)
Anti-hypercholesterolemic (0.503)

Anti-inflammatory (0.817)
Choleretic (0.771)

186

Antineoplastic (0.802)
Apoptosis agonist (0.782)
Chemopreventive (0.636)

Antimetastatic (0.547)

Hypolipemic (0.598)
Anti-hypercholesterolemic (0.515)

Anti-inflammatory (0.803)
Choleretic (0.706)

187

Antineoplastic (0.802)
Apoptosis agonist (0.782)
Chemopreventive (0.636)

Antimetastatic (0.547)

Hypolipemic (0.598)
Anti-hypercholesterolemic (0.515)

Anti-inflammatory (0.803)
Choleretic (0.706)

188 Antineoplastic (0.866)
Apoptosis agonist (0.671) Genital warts treatment (0.744)

189 Antineoplastic (0.863)
Apoptosis agonist (0.584) Genital warts treatment (0.736)

190 Antineoplastic (0.846)
Apoptosis agonist (0.553) Genital warts treatment (0.745)

191 Antineoplastic (0.850)
Apoptosis agonist (0.577) Genital warts treatment (0.675)

192 Antineoplastic (0.847) Genital warts treatment (0.671)

193 Antineoplastic (0.844) Genital warts treatment (0.664)

194 Apoptosis agonist (0.684) Genital warts treatment (0.707)

195 Antineoplastic (0.845) Genital warts treatment (0.682)

196 Antineoplastic (0.863) Genital warts treatment (0.736)

* Only activities with Pa > 0.5 are shown.

The shrub Phyllanthus hainanensis, which is endemic to the island of Hainan province
of China, has been used in traditional Chinese medicine for over 1000 years, has great
pharmaceutical potential to treat diseases such as cancer and diabetes, and is also used to
prevent, and treat, chronic hepatitis B virus infection [194,195]. Several highly modified
triterpenoids, with a new carbon skeleton by incorporating two unique motifs of a 4,5-
and a 5,5-spirocyclic systems and containing cyclopropane and cyclobutene fragments,
named phainanoids A (188), B (189), C (190), D (191), E (192), F (193), G (194), H (195), and
I (196), have been determined in the extracts of the Phyllanthus hainanensis [196,197]. All
compounds exhibited exceptionally potent immunosuppressive activities in vitro against
the proliferation of T and B lymphocytes. The most potent one, phainanoid F, showed
activities against the proliferation of T cells with IC50 value of 2 nM (positive control
CsA = 14 nM) and B cells with IC50 value of <1.6 nM (CsA = 352.8 nM), which is about 7
and 221 times as active as CsA, respectively.

Trichoside B (197, chemical structures 197–212 are shown in Figure 15, and their
biological activity is shown in Table 14), withanolide glucoside, has been isolated from the
n-butanolic fraction of the 75% methanolic extract of aerial parts of Tricholepis eburnea [198],
and other unusual cyclobutene, containing secosteroid (198), was detected in oil from a
pineal tropical plant Sida cordata (family Malvaceae), which is used to treat various diseases
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and ailments in many complementary and alternative medicine systems [199]. Studying the
photoproducts obtained by photochemical processes of vitamin D, cyclobutane, containing
vitamin D (199), was identified [200]. Toxisterol (200), as a minor transformation product
of vitamin D2, has been found in various mushrooms [152].
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Table 14. Bioactive natural and synthetic cyclobutane-containing steroids and triterpenoids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

197

Antineoplastic (0.929)
Prostatic (benign) hyperplasia

treatment (0.663)
Prostate cancer treatment (0.570)

Anti-hypercholesterolemic (0.696)
Immunosuppressant (0.672)

Lipid metabolism regulator (0.604)
Anti-seborrheic (0.907)

198

Antineoplastic (0.784)
Apoptosis agonist (0.627)

Cytoprotectant (0.558)
Chemopreventive (0.542)

Anti-hypercholesterolemic (0.724)
Hypolipemic (0.645)

Anesthetic (0.921)
Neuroprotector (0.880)

Psychostimulant (0.675)

199

Antineoplastic (0.889)
Proliferative diseases treatment

(0.676)
Prostate disorders treatment (0.628)

Cytoprotectant (0.627)
Antimetastatic (0.617)

Apoptosis agonist (0.614)
Chemopreventive (0.606)

Antineoplastic (pancreatic cancer)
(0.530)

Anti-hypercholesterolemic (0.902)
Hypolipemic (0.721)

Cholesterol synthesis inhibitor (0.534)

Anti-eczematic (0.911)
Choleretic (0.839)

200

Antineoplastic (0.801)
Apoptosis agonist (0.706)

Proliferative diseases treatment
(0.667)

Chemopreventive (0.665)
Cytoprotectant (0.616)
Antimetastatic (0.598)

Prostatic (benign) hyperplasia
treatment (0.528)

Anti-hypercholesterolemic (0.932)
Hypolipemic (0.695)

Cholesterol synthesis inhibitor (0.588)

Anti-eczematic (0.871)
Choleretic (0.791)

201

Antineoplastic (0.865)
Cytoprotectant (0.669)

Antineoplastic (breast cancer) (0.662)
Antineoplastic (renal cancer) (0.602)

Apoptosis agonist (0.602)
Antineoplastic (sarcoma) (0.588)
Prostate cancer treatment (0.557)
Proliferative diseases treatment

(0.548)

Anti-hypercholesterolemic (0.740)
Lipid metabolism regulator (0.643)

Hypolipemic (0.613)

Anti-seborrheic (0.946)
Anti-eczematic (0.723)

202

Antineoplastic (0.757)
Prostate disorders treatment (0.652)

Antineoplastic (breast cancer) (0.637)
Apoptosis agonist (0.541)

Anti-seborrheic (0.841)
Cardiotonic (0.654)

Psychosexual dysfunction treatment
(0.575)

203 Antineoplastic (0.719)
Antineoplastic (breast cancer) (0.540) Hypolipemic (0.810) Anti-seborrheic (0.818)

Cardiotonic (0.691)

204

Antineoplastic (0.872)
Antineoplastic (sarcoma) (0.683)

Antineoplastic (breast cancer) (0.625)
Apoptosis agonist (0.621)

Antineoplastic (renal cancer) (0.605)
Prostate cancer treatment (0.548)

Antineoplastic (pancreatic cancer)
(0.546)

Anti-hypercholesterolemic (0.616)
Lipid metabolism regulator (0.565)

Hypolipemic (0.546)

Anti-seborrheic (0.917)
Anti-secretoric (0.908)
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Table 14. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

205

Antineoplastic (0.778)
Prostate disorders treatment (0.737)

Prostatic (benign) hyperplasia
treatment (0.617)

Cytoprotectant (0.616)
Antimetastatic (0.571)

Proliferative diseases treatment
(0.527)

Anti-hypercholesterolemic (0.638)
Hypolipemic (0.542)

Cholesterol synthesis inhibitor (0.535)

Anti-eczematic (0.831)
Anti-osteoporotic (0.799)

206

Antineoplastic (0.908)
Prostate disorders treatment (0.703)

Antineoplastic (breast cancer) (0.635)
Antineoplastic (renal cancer) (0.596)

Antineoplastic (sarcoma) (0.567)
Prostate cancer treatment (0.553)

Apoptosis agonist (0.536)

Anti-seborrheic (0.884)
Anti-osteoporotic (0.848)

207

Antineoplastic (0.785)
Prostate disorders treatment (0.758)

Prostatic (benign) hyperplasia
treatment (0.673)

Cytoprotectant (0.656)
Antineoplastic (sarcoma) (0.568)

Antimetastatic (0.565)
Apoptosis agonist (0.563)

Proliferative diseases treatment
(0.540)

Antineoplastic (pancreatic cancer)
(0.520)

Antineoplastic (breast cancer) (0.518)

Anti-hypercholesterolemic (0.813)
Hypolipemic (0.648)

Cholesterol synthesis inhibitor (0.578)

Anesthetic general (0.901)
Choleretic (0.725)

208

Antineoplastic (0.832)
Prostate disorders treatment (0.740)

Apoptosis agonist (0.711)
Cytoprotectant (0.697)

Chemopreventive (0.677)
Proliferative diseases treatment

(0.651)
Prostate cancer treatment (0.613)

Antineoplastic (breast cancer) (0.608)
Antineoplastic (renal cancer) (0.552)
Antineoplastic (pancreatic cancer)

(0.525)

Anti-hypercholesterolemic (0.886)
Lipid metabolism regulator (0.837)

Hypolipemic (0.709)
Cholesterol synthesis inhibitor (0.605)

Atherosclerosis treatment (0.523)

Respiratory analeptic (0.969)
Neuroprotector (0.924)

Psychostimulant (0.707)

209

Antineoplastic (0.839)
Chemopreventive (0.781)
Apoptosis agonist (0.722)

Proliferative diseases treatment
(0.714)

Cytoprotectant (0.654)
Prostate disorders treatment (0.636)

Antimetastatic (0.591)

Anti-hypercholesterolemic (0.782)
Hypolipemic (0.702)

Cholesterol synthesis inhibitor (0.604)
Respiratory analeptic (0.949)

210

Antineoplastic (0.878)
Prostate disorders treatment (0.807)

Prostate cancer treatment (0.721)
Antineoplastic (sarcoma) (0.719)

Antineoplastic (breast cancer) (0.701)
Cytoprotectant (0.631)

Apoptosis agonist (0.599)

Anti-hypercholesterolemic (0.538) Cardiovascular analeptic (0.862)
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Table 14. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

211

Antineoplastic (0.845)
Prostate disorders treatment (0.648)
Antineoplastic (myeloid leukemia)

(0.645)
Antineoplastic (sarcoma) (0.626)

Cytoprotectant (0.585)
Antineoplastic (breast cancer) (0.580)
Antineoplastic (renal cancer) (0.561)
Antineoplastic (carcinoma) (0.521)

Antineoplastic (squamous cell
carcinoma) (0.521)

Hypolipemic (0.929)
Lipoprotein disorders treatment

(0.687)
Anti-seborrheic (0.902)

212

Antineoplastic (0.804)
Cytoprotectant (0.719)

Chemopreventive (0.678)
Proliferative diseases treatment

(0.622)
Prostate disorders treatment (0.614)

Antimetastatic (0.596)

Anti-hypercholesterolemic (0.832)
Hypolipemic (0.820)

Cholesterol synthesis inhibitor (0.627)

Anesthetic general (0.931)
Respiratory analeptic (0.888)

* Only activities with Pa > 0.5 are shown.

A unique non-olefinic product containing a cyclobutane fragment (201) was ob-
tained from 5,10-seco steroid containing ∆1(10)—and ∆5(6) -double bonds in the AB ring
during photochemical transformation [201]. The steroid altrenogest, a progestin of the
19-nortestosterone group, which is widely used in veterinary medicine to suppress or syn-
chronize estrus in horses and pigs, using photolysis experiments gives two photoproducts:
(202) and (203) [202].

In the chemistry of steroid hormones, the modification of the skeleton of natural
steroids is used to obtain compounds with a narrower and more targeted spectrum of
biological action, which makes it possible for their practical application. Among the many
types of such transformed steroids, compounds containing an additional carbocycle are of
great interest [203–205].

Photochemical [2 + 2]-cycloaddition is a common method for the construction of pen-
tacyclic steroids and, in contrast to dark reactions, allows the introduction of a cyclobutane
moiety anywhere in the steroid molecule. Several pentacyclic steroids, with an additional
four-membered cycle (204–212), have been synthesized using various photochemical meth-
ods, while the biological activity of synthetic steroids has not been studied [18,204,205].

As a potent inhibitor of aromatase [206,207], 2,19-Methano-androstenedione (213)
was synthesized, and the steroid (214) has a 3,9-carbon bridge like that of the steroid,
trichoside B [208]. Two 6,19-cycloprogesterones (215 and 216) were synthesized from 11,19-
epithiopregnane, and the end products showed increased affinity for glucocorticoid recep-
tors [209]. Steroids (218–221), with a cyclobutane moiety anywhere in the steroid molecule,
have been synthesized with the aim of finding bioactive anticancer agents [160,167,168,210].
Chemical structures 213–221 are shown in Figure 16, and their biological activity is shown
in Table 15.
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Table 15. Biological activities of synthetic cyclobutane-containing steroids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

213 Antineoplastic (0.891)
Male reproductive disfunction

treatment (0.923)
Aromatase inhibitor (0.717)

214

Antineoplastic (0.909)
Prostatic (benign) hyperplasia

treatment (0.663)
Prostate cancer treatment (0.570)

Anti-hypercholesterolemic (0.696)
Lipid metabolism regulator (0.604)

Anti-seborrheic (0.914)
Respiratory analeptic (0.756)

215

Antineoplastic (0.860)
Prostate disorders treatment (0.717)

Prostatic (benign) hyperplasia
treatment (0.621)

Ovulation inhibitor (0.794)
Neuroprotector (0.716)

216
Antineoplastic (0.805)

Prostatic (benign) hyperplasia
treatment (0.591)

Hepatic disorders treatment (0.601)
Anti-hypercholesterolemic (0.589)

Respiratory analeptic (0.871)
Anti-inflammatory (0.837)

217
Antineoplastic (0.805)

Prostatic (benign) hyperplasia
treatment (0.591)

Anti-hypercholesterolemic (0.592) Respiratory analeptic (0.874)
Anti-inflammatory (0.839)

218 Antineoplastic (0.736)
Prostate disorders treatment (0.589)

Anti-hypercholesterolemic (0.582)
Atherosclerosis treatment (0.534)

Anti-seborrheic (0.915)
Alopecia treatment (0.893)

219

Antineoplastic (0.750)
Prostate disorders treatment (0.713)

Prostatic (benign) hyperplasia
treatment (0.501)

Anti-seborrheic (0.917)
Anti-osteoporotic (0.904)

220 Antineoplastic (0.786)
Apoptosis agonist (0.567)

Anti-seborrheic (0.924)
Anti-osteoporotic (0.752)

221

Antineoplastic (0.854)
Proliferative diseases

treatment (0.588)
Antimetastatic (0.552)

Hypolipemic (0.832)
Anti-hypercholesterolemic (0.635)

Cholesterol synthesis inhibitor (0.612)

Anti-eczematic (0.814)
Anti-osteoporotic (0.657)

* Only activities with Pa > 0.5 are shown.
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5. Miscellaneous Cyclosteroids and Triterpenoids Derived from Marine and
Terrestrial Sources

Two unique pentacyclic polyhydroxylated sterols (23S-16/S,23-cyclo-3α,6α,7ϕ8,23-
tetrahydroxy-5α,14|9-cholestan-15-one, named xestobergsterol A (222), and 23S-16/3,23-
cyclo-l/8,2/3,3α,6α,7|8,23-hexahydroxy-5α,14/3-cholestan-15-one, named xestobergsterol
B (223)) have been found and identified from marine sponge Xestospongia bergquistia [211],
and xestobergsterol C (224) was detected in the Okinawan marine sponge Ircinia sp. [212].
Chemical structures 222–235 are shown in Figure 17, and their biological activity is shown
in Table 16.
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Table 16. Biological activities of steroids containing additional 5-membered ring in molecule.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

222

Antineoplastic (0.783)
Prostate disorders treatment (0.679)

Cytoprotectant (0.622)
Apoptosis agonist (0.607)

Antineoplastic (sarcoma) (0.603)
Prostatic (benign) hyperplasia

treatment (0.519)
Antimetastatic (0.514)

Antineoplastic (pancreatic cancer)
(0.509)

Hypolipemic (0.551) Anti-inflammatory (0.778)

223

Antineoplastic (0.813)
Apoptosis agonist (0.683)

Prostate disorders treatment (0.654)
Antineoplastic (sarcoma) (0.593)

Antineoplastic (pancreatic cancer)
(0.541)

Anti-inflammatory (0.775)
Antiprotozoal (Plasmodium) (0.622)

224

Antineoplastic (0.787)
Prostate disorders treatment (0.685)

Apoptosis agonist (0.629)
Antineoplastic (sarcoma) (0.589)
Prostatic (benign) hyperplasia

treatment (0.550)
Antineoplastic (pancreatic cancer)

(0.506)

Anti-inflammatory (0.829)
Antiprotozoal (Plasmodium) (0.625)

225

Antineoplastic (0.931)
Apoptosis agonist (0.899)

Antineoplastic enhancer (0.537)
Cytostatic (0.519)

Antineoplastic (genitourinary cancer)
(0.512)

Cardiotonic (0.763)
Immunosuppressant (0.683)

226

Apoptosis agonist (0.876)
Antineoplastic (0.873)

Antineoplastic (genitourinary cancer)
(0.530)

Inflammatory Bowel disease
treatment (0.704)

Immunosuppressant (0.681)

227

Antineoplastic (0.885)
Apoptosis agonist (0.824)

Antineoplastic (genitourinary cancer)
(0.550)

Antimetastatic (0.513)

Cardiotonic (0.698)

228

Antineoplastic (0.878)
Apoptosis agonist (0.861)
Chemopreventive (0.717)

Proliferative diseases treatment
(0.581)

Anti-hypercholesterolemic (0.808)
Hypolipemic (0.788)

Atherosclerosis treatment (0.534)
Immunosuppressant (0.813)

229 Antineoplastic (0.668) Respiratory analeptic (0.874)

230 Antineoplastic (0.735)
Apoptosis agonist (0.545) Anti-inflammatory (0.604)

231

Antineoplastic (0.846)
Cytostatic (0.771)

Apoptosis agonist (0.613)
Antineoplastic (sarcoma) (0.526)

Hepatic disorders treatment (0.977)
Macular degeneration treatment

(0.882)

232 Antineoplastic (0.788)
Apoptosis agonist (0.645)

Hepatic disorders treatment (0.937)
Antiprotozoal (Plasmodium) (0.820)

233 Antineoplastic (0.709)
Apoptosis agonist (0.632) Anti-eczematic (0.636)
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Table 16. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

234 Antineoplastic (0.840)
Apoptosis agonist (0.749) Cardiotonic (0.572)

235 Antineoplastic (0.840)
Apoptosis agonist (0.749) Anti-inflammatory (0.637)

236

Apoptosis agonist (0.814)
Antineoplastic (0.647)
Cytoprotectant (0.613)

Chemopreventive (0.564)
Prostate disorders treatment (0.564)

Anti-hypercholesterolemic (0.578)
Hypolipemic (0.546)

Cholesterol synthesis inhibitor (0.534)
Anti-inflammatory (0.716)

* Only activities with Pa > 0.5 are shown.

Carbon-bridged steroids which were isolated from Jaborosa bergii presented a norbornane-
type structure in ring D of the steroid nucleus (225–227), resulting from a carbon−carbon bond
between C-15 and C-21. Jaborosalactols 18 (225) and 22 (227) have a 14α-hydroxy group
while jaborosalactol 20 (226) contains 8,14-double bond [213].

The unusual cytotoxic steroid named gymnasterones A (228) was isolated from the micro-
scopic fungus Gymnascella dankaliensis, associated with the sponge Halichondria japonica [214].

A steroidal alkaloid with a C-C linkage between C-16 and C-23, 3β-amino-16,23-cyclo-
23β-hydroxy-5∝,16ξ,25β-22,26-epiminocholestan-17(20),22(N)-diene named solanocastrine
(229) has been identified from extracts of the leaves of Solanum capsicastrum [215].

The spiranoid-γ-lactone steroid series have been found in lipid extracts in the genus
Jaborosa. Interestingly, the first triterpenoid with a spiranoid-γ-lactone side chain was jaboros-
alactone P (230), which was collected over 30 years ago in extracts of Jaborosa odonelliana
collected in Argentina [216]. Other related metabolites, such as jaborosalactone 12 (231),
jaborosalactone 15 (232), and jaborosalactone 31 (233), were isolated from Jaborosa odonelliana,
and jaborosalactone P was the major component in all samples collected in both spring
and summer. In addition, jaborosalactone 31 (230) was found in extracts of all species
studied, J. rotacea, J. odonelliana, J. runcinata, and J. araucana [217–219]. The triterpenes,
named vannusals A (234) and B (235), with unusual skeletons, were obtained from the
marine ciliate Euplotes vannus [220–225], and both compounds showed strong cytotoxic
activity. Unusual 2,3-secofernane triterpenoid, alstonic acid B (236) has been isolated from
Alsonia scholaris [226].

Several steroids (237–264), containing an additional 5- or 6-membered ring (s) in the
steroid molecule, have been synthesized in various laboratories and demonstrate a wide
range of biological activities [18,160,161,164,167,168,210,227–232], and their structures are
shown in Figures 18 and 19. Their pharmacological profile is presented in Tables 16 and 17.
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Table 17. Biological activities of Bioactive cyclopentane- and cyclohexane-containing steroids and triterpenoids.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

237

Antineoplastic (0.761)
Prostate disorders treatment (0.755)

Prostatic (benign) hyperplasia
treatment (0.683)

Anti-hypercholesterolemic (0.829)
Hypolipemic (0.756)

Atherosclerosis treatment (0.632)

Anesthetic general (0.901)
Respiratory analeptic (0.884)

238
Antineoplastic (0.830)

Prostatic (benign) hyperplasia
treatment (0.532)

Antiprotozoal (0.781)
Cardiotonic (0.773)

239

Antineoplastic (0.820)
Prostate disorders treatment (0.784)

Prostatic (benign) hyperplasia
treatment (0.684)

Prostate cancer treatment (0.627)

Cardiovascular analeptic (0.913)

240

Antineoplastic (0.910)
Apoptosis agonist (0.765)

Cytoprotectant (0.593)
Prostate cancer treatment (0.538)

Cardiovascular analeptic (0.888)

241

Antineoplastic (0.765)
Prostatic (benign) hyperplasia

treatment (0.653)
Cytoprotectant (0.641)

Anti-hypercholesterolemic (0.824)
Hypolipemic (0.686)

Atherosclerosis treatment (0.629)

Anti-eczematic (0.862)
Anti-osteoporotic (0.826)

Antiparkinsonian, rigidity relieving
(0.625)

242

Antineoplastic (0.803)
Prostatic (benign) hyperplasia

treatment (0.617)
Prostate cancer treatment (0.518)

Neurodegenerative diseases
treatment (0.642)

Anti-osteoporotic (0.972)
Anti-psoriatic (0.884)

243

Antineoplastic (0.797)
Prostate disorders treatment (0.680)

Prostatic (benign) hyperplasia
treatment (0.551)

Alzheimer’s disease treatment (0.750)
Anti-osteoporotic (0.965)
Anti-seborrheic (0.891)
Anti-psoriatic (0.864)

244

Antineoplastic (0.775)
Prostate disorders treatment (0.706)

Cytoprotectant (0.638)
Prostatic (benign) hyperplasia

treatment (0.624)
Apoptosis agonist (0.620)

Anti-hypercholesterolemic (0.772)
Hypolipemic (0.617)

Anti-eczematic (0.846)
Anti-osteoporotic (0.787)

245

Antineoplastic (0.777)
Cytoprotectant (0.689)

Prostate disorders treatment (0.677)
Prostatic (benign) hyperplasia

treatment (0.581)

Anti-hypercholesterolemic (0.866)
Hypolipemic (0.705)

Cholesterol synthesis inhibitor (0.588)

Anti-eczematic (0.840)
Anti-osteoporotic (0.792)

246

Antineoplastic (0.918)
Aromatase inhibitor (0.903)
Apoptosis agonist (0.894)

Prostate disorders treatment (0.699)
Prostatic (benign) hyperplasia

treatment (0.597)
Cytoprotectant (0.597)

Anti-hypercholesterolemic (0.674)
Hypolipemic (0.622) Anti-eczematic (0.907)

247

Antineoplastic (0.943)
Prostate disorders treatment (0.705)

Prostatic (benign) hyperplasia
treatment (0.601)

Apoptosis agonist (0.596)

Neuroprotector (0.734)
Immunosuppressant (0.650)
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Table 17. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

248

Antineoplastic (0.937)
Aromatase inhibitor (0.903)

Prostate disorders treatment (0.697)
Prostatic (benign) hyperplasia

treatment (0.591)

Neuroprotector (0.735)
Immunosuppressant (0.654)

249

Antineoplastic (0.902)
Prostate disorders treatment (0.740)

Prostatic (benign) hyperplasia
treatment (0.662)

Prostate cancer treatment (0.569)

Cardiovascular analeptic (0.854)
Anesthetic (0.698)

Cardiotonic (0.605)

250

Antineoplastic (0.892)
Apoptosis agonist (0.710)

Prostate disorders treatment (0.662)
Prostatic (benign) hyperplasia

treatment (0.541)

Anti-osteoporotic (0.972)

251

Antineoplastic (0.742)
Prostate disorders treatment (0.726)

Prostatic (benign) hyperplasia
treatment (0.662)

Anti-hypercholesterolemic (0.622) Neuroprotector (0.734)
Immunosuppressant (0.705)

252

Antineoplastic (0.769)
Prostate disorders treatment (0.753)

Prostatic (benign) hyperplasia
treatment (0.663)

Anticonvulsant (0.733)
Neuroprotector (0.727)

253

Antineoplastic (0.810)
Prostate disorders treatment (0.726)

Prostatic (benign) hyperplasia
treatment (0.647)

Anti-hypercholesterolemic (0.705) Immunosuppressant (0.764)
Neuroprotector (0.749)

254 Antineoplastic (0.754) Antiprotozoal (Plasmodium) (0.648)

255
Antineoplastic (0.774)
Cytoprotectant (0.633)

Prostate disorders treatment (0.572)

Hypolipemic (0.766)
Anti-hypercholesterolemic (0.652)

Cholesterol synthesis inhibitor (0.615)

256

Antineoplastic (0.858)
Proliferative diseases treatment

(0.604)
Apoptosis agonist (0.583)

Cytoprotectant (0.561)
Antimetastatic (0.549)

Prostate disorders treatment (0.535)

Hypolipemic (0.838)
Anti-hypercholesterolemic (0.611)

Cholesterol synthesis inhibitor (0.601)

257
Antineoplastic (0.694)

Prostate disorders treatment (0.621)
Antineoplastic (breast cancer) (0.572)

Anti-seborrheic (0.928)
Cardiovascular analeptic (0.674)

258
Antineoplastic (0.854)

Prostatic (benign) hyperplasia
treatment (0.621)

Anti-hypercholesterolemic (0.682) Neuroprotector (0.756)
Acute neurologic disorders treatment

(0.741)

259

Antineoplastic (0.845)
Apoptosis agonist (0.654)

Prostatic (benign) hyperplasia
treatment (0.585)

Hypolipemic (0.548) Cardiotonic (0.917)
Antiarrhythmic (0.809)

260

Antineoplastic (0.823)
Prostate disorders treatment (0.746)

Prostatic (benign) hyperplasia
treatment (0.615)

Anesthetic general (0.841)
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Table 17. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

261

Antineoplastic (0.715)
Prostate disorders treatment (0.701)

Prostatic (benign) hyperplasia
treatment (0.619)

Anesthetic general (0.712)

262 Antineoplastic (0.834) Anti-hypercholesterolemic (0.794) Anesthetic general (0.805)

263
Antineoplastic (0.796)

Apoptosis agonist (0.723)
Prostate disorders treatment (0.676)

Anti-hypercholesterolemic (0.527) Anti-osteoporotic (0.934)
Anti-seborrheic (0.918)

264

Antineoplastic (0.757)
Prostate disorders treatment (0.658)

Apoptosis agonist (0.550)
Prostatic (benign) hyperplasia

treatment (0.503)

Spasmolytic, urinary (0.961)

* Only activities with Pa > 0.5 are shown.

Carbon-bridged steroids, called taccalonolides (265–271), are a class of microtubule-
stabilizing agents that exhibit selective cancer-fighting properties [233]. Tacca species are
known to contain highly oxygenated ixocarpalactone-type steroids, with an additional ring
formed by a carbon–carbon bond between C-16 and C-24, taccalonolide A being the first
example of these compounds [120]. Chemical structures 265–272 are shown in Figure 20,
and their biological activity is shown in Table 18. Carbon-bridged steroids, related to
taccalonolide A, were isolated from Tacca plantaginea, Tacca subflaellata, and the Vietnamese
plant Tacca paxiana [234–238]. Taccalonolides AF (272) and AJ (273), showing antiprolifera-
tive properties, were isolated from a fraction of an ethanol extract of T. plantaginea [239],
and a carbon-bridged steroid, named physanolide A (274), with an unprecedented skeleton
containing a seven-membered ring was isolated from Physalis angulate [240].

Trinor-cycloartane glycosides, 15α-hydroxy-16-dehydroxy-16(24)-en-foetidinol-3-O-
β-D-xylopyranoside (275) and 28-hydroxy-foetidinol-3-O-β-D-xylopyranoside (276) were
isolated from the butanol fraction of the roots of Cimicifuga foetida [241]. Chemical structures
273–276 are shown in Figure 21, and their biological activity is shown in Table 18.
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Table 18. Bioactive synthetic steroids containing an additional 5- or 6-membered ring in molecule.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

265 Antineoplastic (0.933)
Apoptosis agonist (0.667) Antimitotic (0.843)

266
Antineoplastic (0.942)

Apoptosis agonist (0.619)
Antineoplastic (sarcoma) (0.510)

Antimitotic (0.848)

267

Antineoplastic (0.934)
Apoptosis agonist (0.890)

Cytostatic (0.688)
Antineoplastic (sarcoma) (0.647)

T cell inhibitor (0.608)
Prostate disorders treatment (0.606)
Antineoplastic (pancreatic cancer)

(0.573)

Antimitotic (0.829)
Antiprotozoal (Plasmodium) (0.650)

268

Antineoplastic (0.936)
Apoptosis agonist (0.720)

Antimetastatic (0.515)
Antineoplastic (pancreatic cancer)

(0.504)

Antimitotic (0.849)

269
Antineoplastic (0.922)

Apoptosis agonist (0.641)
Antimetastatic (0.515)

Antimitotic (0.819)
Antiprotozoal (Plasmodium) (0.694)

270
Antineoplastic (0.929)

Apoptosis agonist (0.669)
Antineoplastic (renal cancer) (0.570)

Antimitotic (0.853)

271

Antineoplastic (0.930)
Apoptosis agonist (0.753)

Cytostatic (0.735)
Antineoplastic (renal cancer) (0.603)

Antineoplastic (sarcoma) (0.602)
Antineoplastic (pancreatic cancer)

(0.551)
Antineoplastic (lymphocytic

leukemia) (0.548)
Antineoplastic (myeloid leukemia)

(0.529)
Antineoplastic (genitourinary cancer)

(0.523)

Antimitotic (0.776)
Immunosuppressant (0.665)

272

Antineoplastic (0.933)
Apoptosis agonist (0.805)

Antimetastatic (0.535)
Antineoplastic (pancreatic cancer)

(0.524)

Antimitotic (0.808)
Immunosuppressant (0.745)

273

Antineoplastic (0.934)
Apoptosis agonist (0.805)

Antineoplastic (sarcoma) (0.530)
Antineoplastic (pancreatic cancer)

(0.524)

Antimitotic (0.804)
Immunosuppressant (0.731)

Antiprotozoal (Plasmodium) (0.668)
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Table 18. Cont.

No. Antitumor & Related Activity, (Pa) * Lipid Metabolism Regulators, (Pa) * Additional Predicted Activity, (Pa) *

274

Antineoplastic (0.875)
Apoptosis agonist (0.728)
Chemopreventive (0.693)

Prostate disorders treatment (0.670)
Proliferative diseases treatment

(0.659)
Anticarcinogenic (0.630)

Antineoplastic (breast cancer) (0.551)
Antineoplastic (pancreatic cancer)

(0.540)
Prostatic (benign) hyperplasia

treatment (0.526)
Antineoplastic (sarcoma) (0.517)

Anti-hypercholesterolemic (0.858)
Hypolipemic (0.767)

Cholesterol synthesis inhibitor (0.608)
Atherosclerosis treatment (0.600)

Lipid metabolism regulator (0.590)

Anti-ischemic, cerebral (0.932)
Antiprotozoal (Leishmania) (0.559)

275
Chemopreventive (0.966)
Apoptosis agonist (0.896)

Antineoplastic (0.866)
Hypolipemic (0.575)

276
Chemopreventive (0.958)
Apoptosis agonist (0.842)

T cell inhibitor (0.620)
Hypolipemic (0.540)

* Only activities with Pa > 0.5 are shown.
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6. Comparison of Biological Activities of Natural and Synthetic CBS
and Triterpenoids

It is known that the chemical structure of both natural and synthetic molecules pre-
determines biological activity, which makes it possible to analyze the structure-activity
relationships (SAR). Such a wise idea was first proposed by Brown and Fraser more than
150 years ago, in 1868 [242]; although, according to other sources, SAR originates from
the field of toxicology, according to which Cros, in 1863, determined the relationship be-
tween the toxicity of primary aliphatic alcohols and their solubility in water [243]. More
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than 30 years later, Richet in 1893 [244], Meyer in 1899 [245], and Overton in 1901 [246]
separately found a linear correlation between lipophilicity and biological effects. By 1935,
Hammett [247,248] presented a method of accounting for the effect of substituents on reac-
tion mechanisms using an equation that considered two parameters, namely the substituent
constant and the reaction constant. Complementing Hammett’s model, Taft proposed, in
1956, an approach for separating the polar, steric, and resonance effects of substituents in
aliphatic compounds [249]. Combining all previous developments, Hansch and Fujita laid
out the mechanistic basis for the development of the QSAR method [250], and the linear
Hansch equation, and Hammett’s electronic constants, are detailed in the book by Hansch
and Leo published in 1995 [251].

Some well-known computer programs can, with some degree of reliability, estimate the
pharmacological activity of organic molecules isolated from natural sources or synthesized
compounds [252–254]. It is known that classical SAR methods are based on the analysis of
(quantitative) structure-activity relationships for one or more biological activities, using
organic compounds belonging to the same chemical series as the training set [255].

Computer program PASS, which has been continuously updating and improving for
the past thirty years [256], is based on the analysis of a heterogeneous training set included
information about more than 1.3 million known biologically active compounds with data
on ca. 10,000 biological activities [257,258]. Chemical descriptors implemented in PASS,
which reflect the peculiarities of ligand-target interactions, and the original realization
of the Bayesian approach for elucidation of structure-activity relationships provides the
average accuracy, and predictivity, for several thousand biological activities equal to about
96% [259,260]. In several comparative studies, it was shown that PASS outperforms, in
predictivity, some other recently developed methods for the estimation of biological ac-
tivity profiles [261–263]. Freely available via the Internet, PASS Online web-service [264]
is used by more than thirty thousand researchers from almost a hundred countries to
determine the most promising biological activities for both natural and synthetic com-
pounds [258–260,265]. To reveal the hidden pharmacological potential of the natural
substances, we are successfully using PASS for the past fifteen years [266–270].

In the current study, we obtained PASS predictions for about three hundred steroids
and triterpenoids produced by different living organisms. PASS estimates are presented as
Pa values, which correspond to the probability of belonging to a class of “actives” for each
predicted biological activity. The higher the Pa value is, the higher the confidence that the
experiment will confirm the predicted biological activity [260].

6.1. Antitumor Activity of Cyclopropane-Containing CBS and Triterpenoids

Analyzing the data obtained using the PASS of natural cyclopropane containing
steroids and triterpenoids, it can be stated that, out of 102 lipid molecules (1–102, see
Figures 1–7 and Tables 1–7), only 27 showed antitumor activity with a reliability of more
than 90 percent, with two steroidal glycosides, (25) and (41), showed antitumor activity
with more than 99% confidence. Thus, PASS has confirmed the cytotoxic properties of these
steroids, which have been determined experimentally. Other sterols and triterpenoids,
with a cyclopropane ring, demonstrated weak to moderate antitumor activity with 70 to
90 percent confidence.

Among sterols and triterpenoids with a cyclopropane ring in the side chain, com-
pounds were also found that demonstrate antitumor activity with a confidence level of
more than 90 percent. These are steroids (103, 91.1%), (105, 93.4%), (112, 92.2%), (118,
96.3%), (119, 96.0%), and (120, 97.5%), which were isolated from the marine sponges
Petrosia weinbergi, Xestospongia sp., Poecillastra compressa, and Tethya sp. A 3D graph of the
predicted antitumor and related activities is shown in Figure 22.
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(CBS) with a cyclopropane ring in the side chain (compound numbers: 103, 105, 112, 118, 119 and 120) showing the highest
degree of confidence, more than 91%. These steroids derived from marine sponges Petrosia weinbergi, Xestospongia sp.,
Poecillastra compressa, and Tethya sp., and can be used in clinical medicine as potential agents with strong antitumor activity.

Triterpenoid saponins, (146, 98.7%), (147, 98.0%), and (148, 96.9%), containing the
cyclopropane ring at position 15:27, were isolated from the leaves and flowers extracts of
Verbesina virginica, demonstrating the highest degree of confidence—more than 96%. A 3D
graph of the predicted antitumor and related activities is shown in Figure 23.

1 
 

 
Figure 23. The 3D graph shows the predicted and calculated antitumor and related activities of
cyclopropane-containing triterpenoid saponins (compound numbers: 146, 147, and 148) showing
the highest degree of confidence, more than 96%, which were isolated from the leaves and flowers
extracts of Verbesina virginica, and can be used in clinical medicine as potential agents with strong
antitumor activity.

6.2. Antitumor Activity of Cyclobutane-Containing CBS and Triterpenoids

Cyclobutane containing steroids and triterpenoids (165–221), isolated from natural
sources as well as semi- and synthetic compounds, were also analyzed using PASS. Most of
these lipid molecules showed moderate antitumor activity with 70 to 90 percent confidence,
and only three, (197, 92.9%), (206, 90.8%), and (214, 90.9%), steroids showed antitumor
activity with more than 90% confidence. A 3D graph of the predicted antitumor and related
activities is shown in Figure 24.
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Figure 24. The 3D graph shows the predicted and calculated antitumor and related activities of
cyclobutane-containing steroids (compound numbers: 197, 206, and 214) showing the highest degree
of confidence, more than 90%.

The withanolide glucoside named trichoside B (197) is of type A-nor-sterols, and was
isolated from the methanolic extract of aerial parts of Tricholepis eburnea, which is native
to Afghanistan, compound (206) is a testosterone derivative dimer, and the steroid (214)
contains a cyclobutane ring in ring A of the steroid.

6.3. Miscellaneous Cyclosteroids and Triterpenoids

Miscellaneous cyclosteroids and triterpenoids (222–276, see Figures 17–21, and
Tables 16–18) make up one-fifth of all compounds presented in this work. Two-thirds
of lipid molecules demonstrate moderate activity, and seventeen compounds show strong
antitumor activity with a confidence level of more than 90%, and the triterpenoid called
taccalonolide Q (271) has the widest spectrum of biological activities among antitumor
agents. A 3D graph of the predicted antitumor activities is shown in Figure 25. The data
we obtained using PASS are supported by the data just published by Peng and colleagues,
which shows a wide range of biological activities of taccalonolides [271].
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Figure 25. The 3D graph shows the predicted and calculated pharmacological activities of taccalono-
lide Q (271). Taccalonolide Q, similar to other taccalonolides, is a class of highly acetoxylated
pentacyclic steroids containing 28 carbons, known microtubule stabilizing cytotoxic agents isolated
from the genus Tacca that have selective anti- cancer properties. Taccalonolide Q has a C2–C3
epoxide group and an enol-γ-lactone fused with the unique E ring. In addition to total antineo-
plastic activity with a high confidence level of 93%, taccalonolide Q demonstrates selective activity
against renal cancer, sarcoma, pancreatic cancer, lymphocytic leukemia, myeloid leukemia, and
genitourinary cancer.

7. Conclusions

This review focuses on a rare group of carbon-bridged steroids (CBS) and triterpenoids
found in lipid extracts from various natural sources such as green, yellow-green, and red
algae, sea sponges, soft corals, ascidians, starfish, and other marine invertebrates. These
compounds are also found in amoebas, fungi, fungal endophytes, and plants. There
are 276 steroids and triterpenoids presented in this review, which demonstrate a wide
range of biological activities, but the most pronounced antitumor profile. This review
summarizes biological activities as experimentally obtained and published in the open
press, as well as by using the extensive PASS program. We must state that two-thirds
of carbon-bridged steroids and triterpenoids show moderate activity levels with 70 to
90% confidence, and only one-third of these lipids show strong antitumor activity with
more than 90% confidence. All lipid material presented is divided into four groups,
which include: (a) CBS and triterpenoids containing a cyclopropane moiety; (b) CBS and
triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing
a cyclobutane moiety; (d) CBS and triterpenoids containing cyclopentane, cyclohexane,
or cycloheptane moieties. The most important conclusion shows that some CBS and
triterpenoids from different lipid groups demonstrate selective action on different types of
tumor cells, such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic
leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with different degree
of reliability.
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