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Abstract

Interleukin 6 (IL-6) is a cytokine secreted from skeletal muscle in response to

exercise which, based on animal and cell studies, has been suggested to con-

tribute to glucose metabolism by increasing secretion of the incretin hormone

glucagon-like peptide-1 (GLP-1) and affecting secretion of insulin and gluca-

gon from the pancreatic islets. We investigated the effect of IL-6 on GLP-1

secretion in GLP-1 producing cells (GLUTag) and using the perfused mouse

small intestine (harboring GLP-1 producing cells). Furthermore, the direct

effect of IL-6 on insulin and glucagon secretion was studied using isolated

perfused mouse pancreas. Incubating GLUTag cells with 1000 ng/mL of IL-6

for 2 h did not significantly increase secretion of GLP-1 whereas 10 mmol/L

glucose (positive control) did. Similarly, IL-6 (100 ng/mL) had no effect on

GLP-1 secretion from perfused mouse small intestine whereas bombesin (posi-

tive control) increased secretion. Finally, administering IL-6 (100 ng/mL) to

perfused mouse pancreases did not significantly increase insulin or glucagon

secretion regardless of perfusate glucose levels (3.5 vs. 12 mmol/L glucose).

Acute effects of IL-6 therefore do not seem to include a stimulatory effect on

GLP-1 secretion in mice.

Introduction

Interleukin-6 (IL-6) is a cytokine, secreted from immune

cells and other cells, which has both pro-inflammatory

and anti-inflammatory effects (Fischer 2006; Scheller et al.

2011). Previous studies have linked IL-6 to metabolic dis-

eases, including type 2 diabetes (Pedersen et al. 2001).

However, the role of IL-6 in regulation of glucose meta-

bolism is not well-characterized (Xu et al. 2003; Fischer

2006; Ellingsgaard et al. 2008; Timper et al. 2016). Con-

flicting evidence regarding both harmful and beneficial

effects of IL-6 have been reported: thus in humans, adi-

pose tissue derived IL-6 was found to contribute to

insulin resistance in type 2 diabetes, whereas skeletal mus-

cle derived IL-6, secreted in response to an acute bout of

exercise, may be associated with improved beta-cell func-

tion and insulin sensitivity (Ostrowski et al. 1998; Steens-

berg et al. 2000; Carey et al. 2006). Recent animal and

cell studies have suggested that acute IL-6-induced insulin

secretion (IL-6 exposure below 24 h) involves a direct

effect on enteroendocrine L-cells, resulting in an increased

secretion of the incretin hormone, glucagon-like peptide-

1 (GLP-1) (Ellingsgaard et al. 2011; Kahles et al. 2014;

Wueest et al. 2018). GLP-1 is normally secreted from

L-cells in response to nutrient ingestion and binds to its

cognate receptor expressed on pancreatic beta-cells,

ª 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

2018 | Vol. 6 | Iss. 13 | e13788
Page 1

Physiological Reports ISSN 2051-817X

https://doi.org/10.14814/phy2.13788
http://creativecommons.org/licenses/by/4.0/


leading to potentiation of glucose-induced insulin secre-

tion (insulinotropic effects); it also inhibits the secretion

of glucagon (glucagonostatic effects) (Hare et al. 2010)

and through this combined action, may lower hepatic

glucose production and decrease plasma glucose concen-

trations (Hvidberg et al. 1994). Today, these effects are

utilized in the treatment of type 2 diabetes with GLP-1

receptor agonists (Drucker et al. 2017).

We were therefore interested in knowing more about

IL-6-mediated regulation of GLP-1 secretion, and investi-

gated the acute effect of exogenous IL-6 in perfused

mouse small intestine and in cultured GLP-1 producing

cells. The potential direct effects of IL-6 on insulin and

glucagon secretion were then studied using the perfused

mouse pancreas.

Methods

Ethical approvals

Handling of the animals was performed in accordance

with internationally accepted guidelines and with permis-

sion from the Danish Animal Experiments Inspectorate

(license no. 2013-15-2934-00833).

Perfusion studies

Female C57BL/6JRj mice (Janvier, Saint Berthevin Cedex,

France) fed ad libitum and weighing between 25 and 30 g

were used as donors. Animals were housed under a

12:12 h light-dark cycle and after approximately 1 week

of acclimatization they were used for experiments. The

mice were anesthetized with an intraperitoneal injection

of ketamine/xylazine (Ketamine 90 mg/kg (Ketaminol

Vet.; MSD Animal Health, Madison, NJ, USA) + xylazine

10 mg/kg (Rompun Vet.; Bayer Animal Health, Lev-

erkusen, Germany) before surgery.

After lack of reflexes was established, the pancreas or

the proximal small intestine was isolated and perfused

in situ as described previously (Svendsen et al. 2016;

Orgaard and Holst 2017). Briefly, the pancreas or the

proximal half of the small intestine was perfused in a sin-

gle-pass system through a catheter inserted into the sup-

plying abdominal aorta. All other aortic branches were

ligated. The venous effluent was collected for 1 min inter-

vals via a draining catheter inserted into the portal vein,

and stored at �20°C until analysis. We used equipment

dedicated for rodent organ perfusion (Hugo Sachs Elek-

tronik, March-Hugstetten, Germany), and the flow rate

was kept constant at 1.5 mL/min (pancreas perfusion) or

2.5 mL/min (small intestine perfusion). The perfusion

medium consisted of a modified Krebs-Ringer bicarbon-

ate buffer containing in addition 5% dextran T-70

(Pharmacosmos, Holbæk, Denmark), 0.1% bovine serum

albumin (Faction V, Merck, Ballerup, Denmark),

3.5 mmol/L glucose, and 5 mmol/L pyruvate, fumarate

and glutamate. The perfusion medium was heated to

37°C and continuously gassed throughout the experiment

with 95% O2 and 5% CO2. Prior to protocol start, the

organ was perfused with the basal perfusion medium for

a 30 min equilibrium period. Mouse IL-6 protein (R&D

Systems, Minneapolis, USA, cat.no. 406-ML-200) was dis-

solved in PBS containing 0.1% human serum albumin

and further diluted in perfusion buffer. IL-6 was infused

through a sidearm syringe infusion pump into the arterial

supply of the pancreas or the proximal small intestine to

reach a final concentration of 100 ng/mL. L-Arginine

monohydrochloride (10 mmol/L) (Sigma-Aldrich, Stein-

heim, Germany, cat.no. A6969) dissolved in perfusion

buffer was used as a positive control to the perfused pan-

creas. Bombesin (Bachem, Bubendorf, Switzerland, cat.no.

H-2155) was dissolved in dimethyl sulfoxide and perfu-

sion buffer and added in a final concentration of

10 nmol/L as a positive control in the perfused small

intestine.

Cell studies

GLUTag cells were maintained at 37°C, 5% CO2 and

grown in low glucose (1.0 g/L) DMEM supplemented

with 10% (v/v) fetal bovine serum (FBS), 1% (v/v) peni-

cillin/streptomycin and 1% (v/v) L-glutamine. Cells were

kept until 70–80% confluent and then split and plated on

24 well plates precoated with matrigel (1:100; cat.no.

354234; BD Biosciences, Bedford, MA). The following

day, cells were examined for visual appearance and proper

monolayer formation. Cells (~75% confluent) were thor-

oughly washed with PBS and incubated with 250 lL test

substance for 2 h (at 37°C, 5% CO2). Test substances

consisted of mouse IL-6 (100 and 1000 ng/mL, R&D Sys-

tems, Minneapolis, USA, cat.no. 406-ML-200), or

10 mmol/L glucose (positive control) diluted in same

bath solution as baseline. Supernatants were collected and

centrifuged (1500g, 5 min, room temperature) to remove

potential floating cells or cell debris. Samples were stored

at �20°C until analysis.

The A20 mouse B-lymphocyte cell line (A gift from S.

Buus, Department of Immunology and Microbiology,

University of Copenhagen, Denmark) was maintained in

complete medium (RPMI 1640 GlutaMAX (cat.no.

61870-010) supplemented with 10% FBS (cat.no. 26140-

079), 1% penicillin/streptomycin (cat.no 15140-122),

10 mmol/L HEPES (cat.no. 15630-056), 1 mmol/L

sodium pyruvate (cat.no. 11360-070), 50 lmol/L b-mer-

captoethanol (cat.no. 31350-010), 4500 mg/L D-glucose

(cat.no. A24940-01) [all from Life Technologies, Paisley,
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United Kingdom]) at 37°C in a humidified atmosphere

containing 5% CO2. Cells were passaged every 3 days and

precultured for 24 h prior to experimental procedure.

Experiments were performed within passage numbers

25–28.

STAT3 phosphorylation assay

Two million A20 mouse B-cells were seeded in 35 mm cul-

ture dishes (VWR, Søborg, Denmark) in 2 mL complete

medium. After 24 h of preculture, cells were collected in

Eppendorf tubes, briefly centrifuged at 100 rpm, gently

resuspended in 2 mL Krebs-Ringer bicarbonate buffer con-

taining 100 ng/mL IL-6 (positive control), no IL-6 (nega-

tive control) or perfusion samples (#1-#4). The four

perfusion samples were pooled effluents collected from four

different perfusion experiments (4 mice) during infusion of

IL-6. Cells were plated on 35 mm culture and incubated at

37°C, 5% CO2. After one hour, cells were collected in

Eppendorf tubes, centrifuged (153 g, 10 min, 4°C), and the

pellet was lysed in lysis buffer (50 mmol/L Tris pH 8,

150 mmol/L NaCl, 5 mmol/L KCl, 5 mmol/L MgCl2, 0.5%

NP-40) supplemented with protease (Roche, Mannheim,

Germany, cat.no. 11 836 153 001) and phosphatase inhibi-

tors (Roche, Mannheim, Germany, cat.no. 04 906 845 001).

After 30 min on ice, lysates were centrifuged (20,817 g,

20 min, 4°C) and supernatants were stored at �80°C. Pro-
tein concentrations in lysates were determined using Brad-

ford Reagent (Bio-Rad, cat.no. 5000006) to adjust for

protein concentration. Samples were prepared in Laemmli

Sample Buffer (Bio-Rad, cat.no. 161-0747) with b-mercap-

toethanol (Sigma-Aldrich, Steinheim, Germany, cat.no.

M3148), protein separated on NuPAGETM 4–12% Bis-Tris

Protein Gels (Life Technologies, Paisley, United Kingdom,

cat.no. NP0336BOX) and transferred to PVDF membranes

(Life Technologies, Paisley, United Kingdom, cat.no.

IB24002). Membranes were blocked in 5% bovine serum

albumin (BSA, Sigma-Aldrich, Steinheim, Germany, cat.no.

A7906) in Tris-buffered saline (50 mmol/L Tris,

150 mmol/L NaCl; TBS). Primary antibodies were diluted

in 2.5% BSA in TBS + 0.1% Tween (TBST) and incubated

with membranes overnight at 4°C. Secondary HRP-conju-

gated antibodies were diluted 1:10,000 in 5% nonfat milk

in TBST. Blots were developed using a chemiluminescence

detection system (ClarityTM Western ECL Substrate, Bio-

Rad, cat.no. 170-5061) and the light emission was captured

using a Syngene G:BOX system (Syngene, Cambridge, Uni-

ted Kingdom).

Antibodies used: anti-Phospho-STAT3 (Cell Signaling,

USA, cat.no. 9131) at 1:1000, anti-STAT3 (Cell Signaling,

USA, cat.no. 4904) at 1:2000, anti-a-tubulin (Sigma-

Aldrich, Steinheim, Germany, cat.no. T 6047) at 1:10,000,

anti-rabbit IgG HRP-linked antibody (Cell Signaling,

USA, cat.no. 7074), anti-mouse IgG HRP-linked antibody

(Cell Signaling, USA, cat.no. 7076).

Biochemical measurements

Total GLP-1 concentrations (the sum of GLP-1 1–36NH2,

7–36NH2 and 9–36NH2) were determined using an in-

house radioimmunoassay (RIA) (codename 89390) (Ørskov

et al. 1994; Wewer Albrechtsen et al. 2015). Insulin concen-

trations were determined using an in-house RIA (codename

2006-3) that cross-reacts with both human, rat and mouse

insulin (Brand et al. 1995). Glucagon was measured using a

C-terminally directed antiserum (codename 4305), which

measures fully processed glucagon (Orskov et al. 1991).

Presence of IL-6 protein in infusion solutions and

effluent perfusion samples was measured by ELISA (R&D

Systems, Minneapolis, USA, cat.no M6000B), carried out

according to the protocol supplied by the manufacturer.

Each sample was measured using different dilutions and

in duplicates.

Statistical analysis

To assess distribution and homoscedasticity in datasets,

the Shapiro–Wilk test (swilk command) was applied and

residual plots were drafted. Areas under the curves (AUC)

were calculated using the trapezoidal rule. For perfusion

studies, baseline was defined as 5 min before stimulation

and 5 min before the next stimulation. Student t-test was

used to assess differences between two groups whereas

one-way ANOVA, corrected by a post hoc analysis

(Sidak) for multiple testing, was used for testing differ-

ences between more than two groups of data. Power cal-

culation was performed in order to allow an alpha value

of 0.05 (two-sided), with an effect size of 20% and a beta

value of ~0.90.
Calculations were made using GraphPad Prism version

6.04 for Windows, GraphPad Software, La Jolla California

USA, www.graphpad.com and STAT14 (SE), College Sta-

tion, Texas 77845, USA. For illustrations the Adobe CC

software suite was used (San Francisco, CA 94103, USA).

Results

Acute administration of IL-6 to isolated
perfused mouse small intestine and GLP-1
producing GLUTag cells did not significantly
increase secretion of GLP-1

To address whether elevated circulating IL-6 has an impact

on enteroendocrine GLP-1 secretion, we infused recombi-

nant IL-6 protein (100 ng/mL) into the arterial supply of

the in situ perfused proximal mouse small intestine
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(n = 6). Addition of IL-6 had no significant impact on

GLP-1 secretion (Fig. 1A and B, P = 0.36), whereas secre-

tion was significantly (P < 0.01) increased after administra-

tion of 10 nmol/L bombesin (phospholipase C activator,

positive control). To verify that the IL-6 which was infused

in these experiments was still bioactive during the perfu-

sion, we used the phosphorylation of Signal Transducer

and Activator of Transcription 3 (STAT3) as a bioassay, by

incubating mouse B-lymphocytic A20 cells with perfusion

effluents from same experiments as shown in Figure 1A

and B. Protein levels of phosphorylated STAT3, but not

STAT3, were increased in all of the samples tested from

four mice compared to buffer alone (Fig. 1C).

GLP-1 producing (GLUTag cell line) cells were incu-

bated for 2 h with mouse IL-6 protein (100 or 1000 ng/

mL) to further evaluate any effect of IL-6 on GLP-1 secre-

tion (n = 4). GLP-1 secretion was not significantly

affected by IL-6 administration (P > 0.90) in either group

compared to buffer alone (Fig. 1D). In contrast,

10 mmol/L glucose (positive control) led to a ~ninefold
increase in GLP-1 secretion (P < 0.001).

Acute administration of IL-6 to isolated
perfused mouse pancreases did not
significantly increase secretion of insulin or
glucagon

The acute effect of IL-6 (100 ng/mL) on insulin and glu-

cagon secretion was examined at both low (3.5 mmol/L)

and high (12 mmol/L) glucose levels using the in situ

perfused mouse pancreas (n = 6). Pancreatic insulin

secretion was unaffected by IL-6 infusion in the presence

of low (P = 0.83) or high (P = 0.86) glucose, whereas

insulin secretion increased 3-fold (P = 0.02) in the pres-

ence of high glucose compared to low glucose, as

expected (Fig. 2A and B).

Glucagon secretion was not influenced by IL-6 infusion

at either 3.5 (P = 0.96) or 12 mmol/L glucose concentra-

tion (P = 0.19) (Fig. 2C and D). Raising the glucose

concentration to 12 mmol/L inhibited glucagon secretion

5-fold (P = 0.03).

Administering 10 mmol/L arginine (positive control) in

combination with 12 mmol/L glucose significantly

Figure 1. Lack of effect of IL-6 on GLP-1 Secretion in the Perfused Mouse Small Intestine and in GLP-1 producing GLUTag cells. (A) GLP-1

secretion (pmol/L) in perfused mouse small intestines (n = 6). Infusion of IL-6 (100 ng/mL) (10–20 min), followed by a period in the absence of

IL-6 (21–39 min), and finally, a period in the presence of 10 nmol/L of bombesin (positive control; 40–45 min). (B) Hormone output (secretion)

calculated as area under the curve, with (gray) or without (white) IL-6 (100 ng/mL), was calculated for each mouse and illustrated collectively as

bar and whiskers (Tukey distribution). (C) IL-6 bioactivity in perfusion samples (#1-#4) was determined by the ability of these perfusates to

induce STAT3 phosphorylation (P-STAT3) as analyzed by SDS-PAGE and Western blotting. One-hundred ng/mL of mIL-6 was used as positive

control (pos.) and Krebs-Ringer bicarbonate buffer as negative control (neg.). Total STAT3 and a-tubulin were used as loading controls. (D) GLP-

1 levels in cell media after 2 h incubation with buffer, 100 or 1000 ng/mL IL-6, or 10 mmol/L glucose (n = 4). IL-6 had no effect on GLP-1

secretion compared to basal levels in either of these experimental models. Data in panel A and D are shown as mean � SEM and in panel B as

box and whisker (Tukey distribution).

2018 | Vol. 6 | Iss. 13 | e13788
Page 4

ª 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

IL-6 Does Not Increase Secretion of GLP-1 in Mice C. B. Christiansen et al.



(P < 0.05) stimulated both insulin and glucagon secretion

at the end of the experiments.

Discussion

The present studies were carried out to elucidate the pos-

sible effects of IL-6 on glucose metabolism in more detail,

with a focus on its effects on endocrine secretion from

the gut and the pancreas, inspired by the findings

reported by Ellingsgaard et al. (2011). However, in the

present study, we were unable to demonstrate a signifi-

cant acute effect of IL-6 on GLP-1 secretion from GLP-1

producing cells (GLUTag) or from perfused mouse small

intestine.

We measured IL-6 concentrations in all in vitro experi-

ments in order to assess whether IL-6 was degraded or

whether lower than calculated amounts of IL-6 had been

added. However, concentrations of IL-6 were always

within �10% of the expected concentrations. Further-

more, using phosphorylation of STAT3 induced by IL-6

containing effluents as bioassay, we prove that the IL-6

administered was biologically active and not degraded

during the perfusion (Harder-Lauridsen et al. 2014). The

concentrations of IL-6 used in this study (100 or

1000 ng/mL) were chosen based on levels previously

reported to result in increased GLP-1 secretion (Ellings-

gaard et al. 2011; Kahles et al. 2014; Wueest et al. 2018).

On the other hand, it was impossible, within the frame-

work of the current experiments, to study effects of pro-

longed, chronic administration of IL-6 (more than 24 h),

which would have been relevant, given the reported up-

regulation by IL-6 of proglucagon expression in the gut

(Ellingsgaard et al. 2011). Furthermore, another theoreti-

cal limitation might be that we did not include an addi-

tional stimulus for GLP-1 secretion (e.g. costimulation

with glucose). However, the perfusion buffer does contain

some glucose (~3.5 mmol/L), and the preparation has a

significant basal secretion of GLP-1. Moreover, bombesin,

added as a positive control, did markedly stimulate secre-

tion, suggesting that the intracellular machinery for GLP-
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Figure 2. The effect of IL-6 on Insulin and Glucagon Secretion in the Perfused Mouse Pancreas. (A) Insulin secretion (pmol/L) from perfused

mouse pancreases (n = 6). IL-6 (100 ng/mL) was infused for 10 min (10–20 min) during perfusion with medium containing 3.5 mmol/L glucose

(0–39 min). The infusion was repeated (at 70–80 min) during perfusion with 12 mmol/L glucose in the medium. Finally, 10 mmol/L of

L-arginine (positive control) was administered during perfusion with 12 mmol/L glucose (100–105 min). (B) Insulin output (secretion), calculated

as area under the curve, with (gray) or without (white) IL-6 (100 ng/mL) as shown in panel A, was calculated for each mouse during low

(3.5 mmol/L) and high (12 mmol/L) glucose, and shown as bar and whiskers (tukey). (C) Glucagon secretion (pmol/L) from perfused mouse

pancreases (n = 6) in the same experiments as those shown in panel A. (D) Glucagon output (secretion) calculated as area under the curve

from the data shown in panel C. IL-6 did not change insulin or glucagon secretion from basal levels in perfused mouse pancreases. Data in

panel A and C are shown as mean � SEM and in panel B and D as box and whisker (Tukey distribution).
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1 secretion was activated and able to respond to addi-

tional stimulation. It seems unlikely that any increase in

GLP-1 secretion escaped detection since the GLP-1 assay

we used is very sensitive and has been validated in several

studies (Bak et al. 2014; Wewer Albrechtsen et al. 2015).

It is directed toward the amidated C-terminus of the

GLP-1 molecule which is appropriate since, in the mouse,

nearly all extractable GLP-1 is amidated (Kuhre et al.

2014). Moreover, by using a C-terminal assay, all molecu-

lar forms carrying the amidation would be detected,

including any extended or degraded molecular forms

(Windeløv et al. 2017). In addition, using the isolated

perfused mouse intestine allowed us to determine any

effect on secretion with much greater sensitivity compared

to what would have been possible in in vivo studies in

mice (Windeløv et al. 2017).

Previous human studies have shown ambiguous insu-

lin responses to IL-6, since IL-6 administration increased

insulin-stimulated glucose disposal in a study by Carey

et al. (2006), but decreased insulin secretion relative to

placebo in a study by Harder-Lauridsen et al. (2014).

However, the first study was performed in healthy sub-

jects, while the latter was performed in subjects with

type 2 diabetes, which might explain the opposing out-

comes, as the latter are less sensitive to insulin (Vilsboll

and Holst 2004; Holst et al. 2011). In the present exper-

iments, IL-6 neither increased nor decreased insulin

secretion, at least not acutely via a direct mechanism.

Similarly, pancreatic glucagon secretion appears not to

be under the direct control of circulating IL-6, in con-

trast with earlier reports describing increased alpha-cell

derived glucagon secretion from human islets upon IL-6

incubation (Ellingsgaard et al. 2008). In a recently pub-

lished human study, there was no acute stimulatory

effect of IL-6 on GLP-1 secretion, but IL-6 did seem to

improve glycemic tolerance. This, however, was consid-

ered to be related to a delayed gastric emptying, inde-

pendent of GLP-1 receptor signaling (Lehrskov et al.

2018). High expression of the IL-6 receptor in the endo-

crine pancreas, especially on alpha-cells, has been

reported in both mice and rats (Ellingsgaard et al.

2008), but our data do not support that activation of

this receptor impacts glucagon secretion, at least not in

an acute manner in mice.

Our data do not support that IL-6 stimulates GLP-1

secretion from the mouse intestine, and therefore also

question the existence of an IL-6 -induced cross-talk

between the gut, the endocrine pancreas and insulin sen-

sitive tissues. Rather, the present findings are in line with

a recent study demonstrating no GLP-1 response to IL-6

in individuals with type 2 diabetes (Harder-Lauridsen

et al. 2014). In the intestine, GLP-1 is generated by PC1/3

processing of proglucagon while, in the pancreatic alpha

cells, proglucagon is cleaved by PC2, resulting in the for-

mation of glucagon (Deacon and Holst 2009). Small

amounts of two other N-terminally extended GLP-1 iso-

forms (inactive) may also be formed in the pancreas

(GLP-1(1–37) and GLP-1(1–36 NH2)) (Holst 1997). Theo-

retically, in vivo, an effect of IL-6 on GLP-1 plasma levels

could be due to stimulation of the alpha cells. However,

our results also indicate that IL-6 does not directly affect

the endocrine pancreas. Reprogramming of pancreatic

alpha-cells to express PC1/3, and hence to be capable of

secreting active GLP-1, has attracted great interest

(Ellingsgaard et al. 2011). It cannot, therefore, be

excluded that IL-6 might provoke such reprogramming,

and given the time required for this to happen, it would

not be possible for us to observe this effect in our experi-

ments. However, to date, we have not been able to detect

active GLP-1 in the pancreas of healthy mice (Galsgaard

et al. 2018).

Immune cells and adipocytes are among the various tis-

sues that produce and secrete IL-6 protein (Fischer 2006).

In addition, Pedersen et al. have shown that IL-6 is

acutely secreted from human skeletal muscle during

intensive exercise and is associated with improved insulin

sensitivity (Ostrowski et al. 1998; Steensberg et al. 2000;

Carey et al. 2006). Similarly, muscle damage induced by

exhaustive exercise is associated with production of

inflammatory cytokines, leading to recruitment of

immune cells responsible for postexercise repair mecha-

nisms (Ostrowski et al. 1998; Steensberg et al. 2003a).

During rest, increased insulin-mediated glucose uptake

was found in healthy men after IL-6 administration

(Carey et al. 2006). However, other studies in both indi-

viduals with type 2 diabetes and healthy subjects found

no change in insulin-mediated glucose uptake or plasma

glucose concentrations following IL-6 administration

(Steensberg et al. 2003b; Harder-Lauridsen et al. 2014).

Taken together, these studies raise the possibility that

IL-6 could have differential roles in glucose homeostasis,

one depending on long-term effects of IL-6 receptor acti-

vation (potentially mediated by adaptation of progluca-

gon expression in L-and alpha-cells) and another acting

independently of the incretin-axis.

In conclusion, an acute direct effect of IL-6 on GLP-

1, insulin and glucagon secretion was not observed in

this study. Future studies investigating chronic effects of

IL-6 on GLP-1 secretion in humans are therefore war-

ranted.
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