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Cardiovascular disease is currently one of the most important diseases causing

death in China and the world, and acute myocardial infarction is a major cause

of cardiovascular disease. This study provides an analytical technique for

predicting the prognosis of patients with severe acute myocardial infarction

using a support vector machine (SVM) technique based on information gleaned

from electronic medical records in the Medical Information Marketplace for

Intensive Care (MIMIC)-III database. The MIMIC-III database provided

4785 electronic medical records data for inclusion in the model

development after screening 7070 electronic medical records of patients

admitted to the intensive care unit for treatment of acute myocardial

infarction. Adopting the APS-III score as the criterion for identifying

anticipated risk, the dimensions of data information incorporated into the

mathematical model design were found using correlation coefficient matrix

heatmaps and ordered logistic analysis. An automated prognostic risk-

prediction model was developed using SVM, and the fit was evaluated by 5×

cross-validation. We used a grid search method to further optimize the

parameters and improve the model fit. The excellent generalization ability of

SVM was fully verified by calculating the 95% confidence interval of the area

under the receiver operating characteristic curve (AUC) for six algorithms (linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and SVM). Compared to

the remaining fivemodels, its confidence interval was the narrowest with higher

fitting accuracy and better performance. The patient prognostic risk prediction

model constructed using SVM had a relatively impressive accuracy (92.2%) and

AUC value (0.98). In this study, a model was designed for fitting that can

maximize the potential information to be gleaned in the electronic medical

records data. It was demonstrated that SVM models based on electronic

medical records data can offer an effective solution for clinical disease

prognostic risk assessment and improved clinical outcomes and have great

potential for clinical application in the clinical treatment of myocardial

infarction.
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1 Introduction

Cardiovascular disease is currently one of the most critical

diseases causing death and disability worldwide, and it places a

significant burden of disease on the population around the world.

(Vos et al., 2020). Acute myocardial infarction is ischemic

necrosis of myocardial cells and can occur during the natural

course of coronary atherosclerosis as an acute coronary

syndrome (Reed et al., 2017). As one of the most common

cardiovascular diseases, myocardial infarction (MI) is a

condition of widespread myocardial necrosis caused by

interruption of coronary artery blood supply, resulting in

persistent ischemia in the blood supply area, usually

complicated by heart failure, heart rupture, and cardiogenic

shock. In recent years, the incidence of MI has rapidly

increased, and the age composition of MI patients is showing

a younger trend, seriously threatening the life and health of

human beings. (R. Nasimov et al., 2020). It is estimated

that >3 million people suffer an acute ST-segment–elevation

MI (STEMI) and >4 million people suffer a non–ST-

segment–elevation MI each year. (G. A. Roth et al., 2020).

Patients with MI are also at progressively greater risk of re-

infarction after discharge from the hospital, and re-infarction or

multiple infarctions are a major cause of death in patients with

MI (Mal et al., 2019). As a result, it is critical to minimize the

mortality rate of MI patients as well as the rate of re-infarction

after discharge from the hospital (Nordenskjöld et al., 2019). An

accurate evaluation of the prognosis of MI patients may assist

health care professionals in devising more appropriate treatment

and care plans and in providing more reasonable diagnostic and

rehabilitation care in order to enhance the survival rate of MI

patients and their quality of life (Than et al., 2019).

The flourishing development of computer technology has

played a significant role in enhancing modern health care

management, optimizing the allocation of resources,

improving efficiency, and reducing medical costs since the

third industrial revolution and the gradual maturation of the

Internet in the new era. Machine learning algorithms are

constantly evolving and have shown effective in medical

prediction (Johnson et al., 2021). Machine learning–based

predictive models can help less experienced doctors diagnose

diseases and improve survival rates by overcoming the drawbacks

of relying solely on doctors’ personal subjective experience (He

et al., 2022). Prognostic predictive models can also assist health

care professionals in developing more reasonable care plans and

improving survival rates. Furthermore, electronic medical

records (EMRs), which contain medical data, have good

guarantee, especially when it comes to using data mining

techniques to analyze and process pertinent medical records

data (Okamoto et al., 2020). Compared to traditional paper

medical records, EMRs can record more information and are

easier to keep. As a result, more and more hospitals are choosing

to use EMRs to preserve patient-related information. Through

appropriate data mining methods, the large amount of

information contained in EMRs can be extracted more easily

(Ayaad et al., 2019). Machine learning can be used to efficiently

use information from electronic medical records in order to

achieve a more personalized medicine perspective (Latif et al.,

2020).

In this paper, we propose an approach based on a support

vector machine (SVM) technique, which can overcome the

problems of non-linearity, high dimensionality, and local

minima (Hossain et al., 2021) and has a good generalization

ability. The support vector machine approach is based on the VC

dimensional theory of statistical learning theory and the principle

of structural risk minimization, which seeks the best compromise

between model complexity and learning ability based on limited

sample information in order to obtain the best generalization

ability. SVM requires a relatively small number of samples, which

is good at coping with the situation of linear indistinguishability

of sample data, and also can effectively avoid overfitting to a

certain extent. Compared to algorithms such as ordered logstic

regression, which are most commonly used in traditional

prediction methods, SVMs are structured and stable and have

a high generalisation capability. We developed an algorithm that

can be used to find out the relationship between the physiological

indicators of MI patients and their prognosis using case data

screened from the Medical Information Marketplace for

Intensive Care (MIMIC)-III database. The model may be used

to forecast the prognosis of MI patients, and it can be used in

conjunction with the Acute Physiology Score III (APS-III) to

precisely assess the prognosis of MI patients (Huang et al., 2021),

assuring its dependability. The prediction model constructed in

this study can be applied to clinical research. At the same time,

however, it can also provide assistance to doctors during

diagnosis; may improve their work efficiency; and could

alleviate the current situation of medical resources tension in

various hospitals, which is of great significance to the treatment

and prognosis of MI Figure 1.

The paper is structured as follows. Section 2 of this paper

describes the public database required to conduct this experiment

and the application of SVM for predictive model building.

Section 3 focuses on the evaluation of the model effects in

this study. Section 4 of this study synthesizes the current state

of research at home and abroad, and provides an objective

discussion based on the areas for improvement of this

experiment. Section 5 of this study draw a conclusion of the

paper and provides future research directions.
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2 Materials and methods

2.1 Data sources

In this study, data analysis and model construction were

performed based on sample data from the MIMIC-III database

(Wang et al., 2020; Goldberger et al., 2000). In recent years, EMRs

have gradually replaced traditional paper charts for recording

patient information and have many advantages, such as ease of

storage, accuracy of data, and ease of extraction and analysis.

MIMIC-III is a large, freely accessible single-center database

(Johnson et al., 2016). Developed at the Massachusetts

Institute of Technology, it integrates clinical data from

patients admitted to the intensive care unit (ICU) at Beth

Israel Deaconess Medical Center and is widely used by

researchers internationally (Singh and Mayo, 2018; Scherpf

et al., 2019).

To protect the security of private patient data, the MIMIC-III

database is de-identified using structured data cleansing and date

conversion in line with United States Health Insurance

Portability and Accountability Act (HIPAA) requirements. All

identifiable data element fields listed in HIPAA, such as patient

name, phone number, address, and date, are removed

throughout the de-identification process for structured data.

The removal of protected health information, such as

diagnostic reports and medical prescriptions, from strings is

completed using a de-identification system based on extensive

dictionary look-ups and regular expression patterns. The

MIMIC-III database is available as a collection of comma-

separated value files and not only has a large sample size and

variety of samples but also good reliability (Gentimis et al., 2017).

The researchers responsible for data collection in this project

completed a HIPAA-required Protecting Human Research

Participants course, signed a data use agreement, and passed

the PhysioNet accreditation.

2.2 Data acquisition and filtering

To select patients for inclusion, We searched the MIMIC-III

database using the keyword “MIMICiii.d_icd_diagnoses where

long_title like ’%yocardial infarctio%’ in the table diagnoses_icd.”

We obtained information on all patients admitted to the ICU due

to a MI from the MIMIC-III database. We retrieved materialized

views MIMICiii.apsiii to obtain a prognostic evaluation of the

patient in question. We also retrieved tables of admissions, chart

events, laboratory events, microbiology events, and prescriptions

to obtain patient-related monitoring data. A total of

7070 relevant data were gathered.

Patients with a high number of missing indicators or EMR

data that were incomplete, patients who died while receiving in-

hospital care, and patients who suffered a huge number of

problems or for whom an MI was just one of many

conditions were excluded. A total of 4785 relevant data were

finally included.

2.3 Data content

Relevant personal information about the patient included

length of stay, time treated in the ICU, height, weight, type of

health insurance the patient had, and ethnicity. Patient

laboratory tests of interest included glucose, triglycerides,

N-terminal prenatremic peptide, potassium, platelets, total

cholesterol, troponin I, high-density lipoprotein, creatine

kinase, troponin T, low-density lipoprotein, C-reactive protein,

and creatine kinase isoenzyme. We also considered the following

patient pathogenic microbial infections: number of

Staphylococcus aureus flora, number of Escherichia coli flora,

and number of Streptococcus pneumoniae flora.

Finally, we recorded the total dose of different drugs

administered during treatment, including aspirin, heparin,

atorvastatin, mycoplasma, and nitroglycerin. The prognostic

model score for patients was the APS-III score.

2.4 Details of the proprietary software

In this study, the software used to construct the model was

MatLab (R2021a 9.10.0.1602886; The MathWorks, Inc. Natick,

MA, United States). To describe the correlation between features,

a correlation coefficient matrix heatmap was drawn using the R

language (version 4.1.3; The R Foundation for Statistical

Computing, Vienna, Austria).

2.5 Theory/calculation

2.5.1 Prognosis evaluation method
The concept of objective evaluation of critically ill patients’

conditions has become widely accepted by clinical workers alike

as an important tool in their daily work, and various scores were

widely used in clinical applications of this study. In the MIMIC-

III database, in addition to the APS-III scale (Knaus et al., 1991)

there exist such scales as the Oxford Acute Severity of Illness

Score (OASIS) (Holland and Moss, 2017), Sepsis-related Organ

Failure Assessment (SOFA) (Lambden et al., 2019), Logistic

Organ Dysfunction Score (LODS) (Marshall, 2020), Scale for

Assessing Positive Symptoms (SAPS) (Le Gall et al., 1993), and

many other scales used in critical care medicine.

Compared to the above-mentioned scales, the APS-III

scale—as one of the widely used tools for critical illness

assessment—has been shown in many studies to be

significantly associated with patient survival evaluation

(Pathmanathan, 2005). The APS-III scale was designed to

reflect individual differences in acute physiological status, age,
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and chronic disease status (Godinjak, 2016; Sadaka et al., 2017).

Excellent predictive results have been achieved in evaluating the

effectiveness of medical measures, predicting patient prognosis,

making predictions about the risk of death in individuals and

groups, classifying patients according to their condition, and

comparing treatment outcomes (Moreno and Nassar Júnior,

2017).

The APS-III scale has been widely used in the medical

community as an important tool for predicting the risk of

death prediction in ICU patients. In a recent study on

prognosis prediction of ICU patients (Zhang et al., 2022), the

results showed that the independent receiver operating

characteristic curve (ROC) curve results of the APS-III scale

were superior compared to those of the SAPS-II, LODS, OASIS,

and SOFA scales, indicating that the former has a more

promising accuracy in the prognosis prediction of critically ill

patients. Thus, the results of the APS-III scale were used to

evaluate the prognosis of patients in this study Figure 2.

2.5.2 Feature extraction and analysis
Redundant or less relevant variable features often exist in

multidimensional data, which affects the accuracy of machine

learning output (Ho et al., 2019). Feature selection can solve this

drawback, reduce the burden of machine learning, and improve

the generalization performance, prediction performance and

operational efficiency of the algorithm (Chandrashekar and

Sahin, 2014).

Correlation analysis between features and APS-III can select

features that are meaningful for classification prediction results

from all features of sample data, so as to exclude the interference

of chance factors in the data. Therefore, in this paper, the

correlation coefficients between features and APS-III are

calculated and the heat map of the correlation coefficient

matrix is drawn to investigate whether there is a correlation

between features and APS-III, and the direction and magnitude

of the correlation relationship (Haarman et al., 2015).

In this study, first the corrplot package was installed and

imported in R language and a dataset in csv format was loaded,

then the calculation of the matrix of correlation coefficients

between all features was started and two decimal places were

retained, and finally the matrix of correlation coefficients was

plotted using the corrplot package to create a heat map of the

correlation coefficient matrix for all features (as in Figure 3).

In the correlation coefficient matrix heatmap, each number

represents the correlation coefficient between the

corresponding features, and the color shades of the

corresponding squares also symbolize the size of the

correlation coefficient, i.e., the darker the color, the larger

the correlation coefficient, and vice versa. The color of the

squares is related to the direction of correlation, with blue

representing a positive correlation and red representing a

negative correlation. In this study, APS-III was used as a

predictor of patient prognosis evaluation. The correlation

coefficients between “Length of hospital stay”, “Platelets”,

“C-reactive protein”, “Creatine kinase isoenzyme”,

“Creatine kinase”, “Length of stay in ICU”, “Triglycerides”,

“Total dose of atorvastatin “, “total nitroglycerin dose”,

“Streptococcus pneumoniae” and APS-III scores were all

low, all <0.2. These indicators were removed in the later

model construction. Indicators included in the final model

construction were: blood potassium, blood glucose, total

cholesterol, troponin I, troponin T, HDL, LDL, N-terminal

prenatremic peptide, height, weight, E. coli, total aspirin dose,

total mycoplasma dose.

2.5.3 SVM
Based on statistical learning theory and the notion of

structural risk minimization, Vapnik and others at AT&T Bell

Labs introduced SVM for classification and regression

investigations (Vapnik, 2000). SVM classifies data by

determining the optimum hyperplane for successfully

separating a data point class from another (Figure 4). By non-

linearly mapping the input space to the high-dimensional feature

space, the kernel function can make classification more

convenient and effective. The Gaussian radial basis kernel

function SVM classification ability is significantly superior to

other approaches in the face of non-linear classification issues

(Liu et al., 2012), and using SVM on this basis can provide more

scientifically accurate results.

The kernel parameter (γ) is the only variable parameter in

the space mapped by the Radial Basis Function kernel function,

i.e., the value of γ directly influences the distribution of sample

data in the kernel space; hence, the optimal value of γ

substantially affects the model fit accuracy (Padierna et al.,

2018).

The penalty term C is used to limit the model’s complexity

and accuracy, i.e., to adjust the learning machine’s confidence

range to the empirical risk in a specific feature subspace, so that

the learning machine can generalize as well as possible. The

greater the C value, the better the model fits, although this does

not guarantee generalization (Tharwat, 2019). In each subspace,

there is only 1 optimal penalty term for constraining the entire

model; nevertheless, in order to attain high accuracy, this single

element must be examined in isolation.

The basis of SVMs is the structural risk minimization

(SRM) principle (Shawe-Taylor et al., 1998). The core of the

SRM principle is to reduce the complexity of the learning

machine, that is the Vapnik-Chervonenkis dimension (VC

dimension), while maintaining classification accuracy

(experience risks), which allows the expected risk of the

learning machine to be controlled over the entire sample

set (as in Figure 5). Because the SRM principle’s premise is for

a specific subspace in the feature space and the data contain

different divisions in the non-stop subspace, there are

different optimal SVM algorithms in different subspaces;

therefore, the SVM kernel parameters and the penalty term
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C must be optimized at the same time. In this study, we used a

grid search approach to discover the optimum combination

of C and hyperplane, then produced the best-fitting SVM

model.

2.5.4 Algorithm steps
SVM is a new type of machine learning algorithm. The ideal

hyperplane fulfills the following inequality for a given sample set

of variables (xi, yi) i = 1,2,. . .,n. In the case of the input variable

FIGURE 1
The process of acquiring data from a database and constructing a predictive model.

FIGURE 2
APS-III scale scores for patients included in the study.
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xi ∈ Rd and the output variable yi ∈ {−1, 1}, φ(·) is a nonlinear

function, the optimal hyperplane satisfies the following

inequality:

yi[wTφ(xi) + b]≥ 1 − ξi (1)

where wT is a multidimensional vector, b is a constant, and ξi is a

slack variable related to the classification error. To maximize the

distance between the 2 categories, the above inequality can be

rewritten as:

min⎡⎣1
2
|w|2 + C∑n

i�1
ξ i⎤⎦ (2)

where C is a penalty term that adjusts the relaxation variable ξi
to determine the classification error and also the

classification interval 1
2|w|2. For non-linear indistinguishable

sample points, a kernel function is introduced to map

the sample points to a higher dimensional

space, thus achieving an effective classification of the

sample points.

The radial basis kernel function is expressed as follows:

K(x, x′) � exp( −
����x − x′

����2
2σ2

) � exp( − γ
����x − x′

����2) (3)

where the radial basis function (RBF)kernels of two samples, x

and x′, are represented as eigenvectors in some input space; σ is

the bandwidth of the Gaussian radial basis kernel function; γ is

the parameter of the Gaussian radial basis kernel function; and

exp denotes the exponential function with natural constant e as

the base. Also, γ takes the general values

γ � {2−15, 2−14, . . . , 215}. In this study, by the grid search

method, γ is substituted sequentially into the following

equation:

FIGURE 3
Thermalmatrix diagram of correlation coefficients for each feature. Description of the abbreviations in Figure 3: K (blood potassium), GLU
(blood glucose), TIME (length of hospital stay), PLT (platelets), TC (total cholesterol), TnI (troponin I), TnT (troponin T), LDL (low-density lipoprotein),
Nt. proBNP (N-terminal prenatriuretic peptide), CRP (C-reactive protein), CK. MB (creatine kinase isoenzyme), CK (creatine kinase), ICU (patient’s
time in ICU), HEIGHT (patient’s height), WEIGHT (patient’s weight), HDL (high-density lipoprotein), APC (total aspirin dose), TG (triglycerides),
E.coli (number of Escherichia coli flora), Atorvastatin (total atorvastatin dose), NS (total bacteriocin does), TNG (total nitroglycerin dose), SP
(Streptococcus pneumoniae).
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D(c1 ,c2) � ‖m1 −m2
2‖

� 1
l21
∑l1
i�1

∑l1

j�1 exp( − γ
����x(1)

i − x(1)
j

����2) + 1
l22
∑l2
i�1

∑l2

j�1 exp(
− γ

����x(2)
i − x(2)

j

����2) − 1
l1l2

∑l1
i�1

∑l2

j�1 exp(
− γ

����x(1)
i − x(2)

j

����2)
(4)

The grid search method is an exhaustive search method

that divides all of the parameters γ and C to be searched into

a grid of the same length in a given space, traverses each

grid, and then writes a program to optimize the SVM model

using MatLab to find the best combination of parameters

with the smallest mean square error (Fayed and Atiya, 2019).

Compared to the traditional exhaustive search method, this

method is more accurate and easier to use when looking for

the best combination of parameters. This work involves the

use of cross-validation to evaluate the classification accuracy

of the model created for each parameter combination in

order to improve its fitting effect and acquire a better

generalization capability.

In Formula (4),D(c1 ,c2) is the distance measure obtained from

measure learning. The optimal kernel parameter is that which

corresponds to the largest kernel space mean distance where m1

and m2 are the feature space centroid vectors for the first and

second classes of data, respectively. The formula for the

particular derivative is as follows:

m1 � 1
l1
∑l1
i�1

Φ(x(1)
i ) (5)

m2 � 1
l2
∑l2
i�1

Φ(x(2)
i ) (6)

In conclusion, the optimum parameter combination for the

following tests in this study is a box constraint level of 30 and a

kernel scale value of 250. The soft interval size in SVM, which is

stated as the penalty term (C) in RBF, is connected to the box

constraint. The lower the value, the lower the penalty, which

impacts the model fit, and the higher the value, the higher the

penalty, which reduces the model accuracy. It is simple to know

that KernelScale �
�
1
γ

√
because KernelScale � �

2
√

σ (σ is the

bandwidth) and Eq. 3 are combined. As a result, the kernel

parameters dictate the value of the kernel scale, which affects the

model’s accuracy.

3 Results

By plotting the correlation coefficient matrix heatmap of all

features, the researchers removed indicators with low

correlations with APS-III scores. After ensuring the relevance

of the data, validation of the accuracy of the model is equally

essential. The 5× cross-validation method was used to verify the

model accuracy in predicting the prognosis of acute MI disease.

The samples in the dataset were separated into five groups, with

four groups used to train the model and one used to test it. Five

FIGURE 4
SVM schematic.

FIGURE 5
Schematic diagram of the principle of structural risk
minimization.
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rounds of the above experiments were run, and the average value

of the five training results was used to determine the model’s

accuracy.

The Receiver Operating Character curve (ROC curve), with

the false-positive rate (FPR) as the horizontal axis and the true-

positive rate (TPR) as the vertical axis, is a commonly used model

evaluation metric in the medical field. The area under the ROC

curve, or AUC (Area Under ROC Curve), is a visual

representation of the model’s performance. The number of

AUCs is a measure of the model’s overall quality, with a

greater AUC indicating better model performance. To verify

the effectiveness of the model fit in this study, we plotted the

linear discriminant, support Vector Machine (SVM) tree, Kernel

Naive Bayes, random undersampling boost (RUSBoost), and K-

NearestNeighbor (KNN) ROC curves to show the performance

of the currently selected training classifiers. As shown in Figure 6,

in terms of model classification performance, the SVM algorithm

obtained the ROC curve closest to the upper left corner and the

largest AUC with an AUC of 0.97598. Kernel Naive Bayes has the

second highest AUC value of 0.96213, which proves that the

algorithm is also able to meet certain clinical needs in terms of

model fitting. However, the best performing model was still the

prognostic prediction model constructed by SVM.

For data with a large sample content, the AUC approximates a

normal distribution, so the 95% confidence interval (CI) for the AUC

can be calculated as described in the CI of the sampling distribution.

The CI is equal to C ± se − zcrit , where zcrit is the two-tailed

critical value of the standard normal distribution.

se �
�����������������������
q0 + (n1 − 1)q1 + (n2 − 1)q2

n1n2

√
n1 and n2 are the sizes of the 2 samples, respectively.

q0 � AUC(1 − AUC) q1 � AUC

2 − AUC
− AUC2

q2 � 2AUC2

1 + AUC
− AUC2

The DeLong test is a relatively common method of AUC

significance test. The principle is as follows. Taking two different

models as an example, let the two AUCs be A1 and A2

respectively.

1 First calculate the difference between the two AUC values.

θ � A1 − A2

2 Calculate the variances var (A1) and var (A2) of A1 and A2,

and the covariance cov (A1, A2) of the two.

3 Calculate the Z-value

Z � θ

var(A1) + var(A2) − 2cov(A1, A2)

4 Finally, take the Z-value distribution as a normal

distribution, do a significance test, and get the P value.

If the p value is less than 0.05, it means that there is a

significant difference between the two AUCs, which is

statistically significant, otherwise, it is not significant.

FIGURE 6
ROC curves for the models.
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In this study, we had a total sample of 4785 cases and used

5× cross-validation to calculate the values of AUC for linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and

SVM, as shown in Figure 7 Using this method, it can be

concluded that the algorithm with the highest value of AUC

and the narrowest CI is the SVM algorithm. As shown in

Table 1, the DeLong test was performed on the ROC of SVM

and the ROC of other algorithms, and the obtained p-values

were all less than 0.05, indicating that there was a significant

difference between the AUC of the SVM algorithm and the

use of other algorithms, which was statistically significant,

further indicating that the model built using the SVM

algorithm has better accuracy. The AUC values for linear

discriminant, tree, Kernel Naive Bayes, RUSBoost, KNN, and

SVM increased sequentially, indicating that the predictive

ability of each model increased sequentially and the CI

decreased sequentially, which implies that there is a

decreasing uncertainty in the prognostic effect of each

model in predicting patients with MI. Therefore, we can

conclude that when using the existing dataset for

prediction model construction, the prediction model

constructed by SVM has a more promising fit than the

remaining five algorithms.

4 Discussion

The scale-based assessment of patient condition is one of

the foundations of our project, but this study has considerable

advantages over scale-based assessment. Compared to the

current predictive model, scales are time-consuming and

difficult to obtain when used alone and can even more

difficult to obtain if a patient has specific conditions, such

as hearing or vision loss or speech impairment, making it

difficult for health care professionals to accurately determine a

patient’s condition in a timely manner (Arnetz et al., 2008). In

this study, using the obtained scales as the basis for the

prognosis of the model can largely reduce the process of

obtaining the patient’s scale scores and can present the

findings in a dynamic manner to obtain more accurate and

rapid predictions, which can reduce the workload of the

clinical staff and help physicians to accurately determine

the progress of the disease, thus assisting them in making

individualized adjustments to the treatment plan. In other

words, the present system will help doctors to make

personalized adjustments to treatment plans.

In this study, the biomarkers of our prognostic prediction

model are widely used clinically. This may ensure the general

applicability of our study results and provides a useful adjunct for

clinical treatment. Due to the combination of machine learning

and medicine, the large, complex, and multidimensional datasets

present in EMRs can be analyzed. For instance, Lee et al. (2021)

developed a deep learning–based method used to screen fundus

FIGURE 7
Visual overview of the AUC and 95% CI values for each model.

TABLE 1 Conclusion of DeLong test of SVM with other five classifiers.

Classifier Z-value p-value

KNN 16.536 <2.2e-16
RUBoost 34.198 <2.2e-16
Naïve Bayes 10.448 <2.2e-16
Tree 9.0918 <2.2e-16
Liner Discriminant 28.143 <2.2e-16
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abnormalities in patients with high specificity and sensitivity. In

addition, Zhao et al., using artificial intelligence–based

algorithms combined with 12-lead electrocardiogram (ECG)

data, developed an accurate early warning system based on

ECG data, and the sensitivity of the model was 99%. They

also proposed a wearable ECG vest, and smartphones and

real-time warning systems coupled with an automatic

diagnosis will greatly improve the diagnosis rate for STEMI

patients and reduce patient delay times (Zhao et al., 2020).

In recent years, in the context of the era of big data in

healthcare, with the development of artificial intelligence

technology, more and more researchers are using machine

learning, such as K-NearestNeighbor (KNN), the Bayes

algorithm, and the decision tree to build predictive models.

The KNN method is a lazy learning method that uses instances

to discover the K training dataset that is the most similar to the

unknown data. Its sample pool size is necessary, which severely

restricts its practical application if the sample set is complex or

if training samples are not available (Zhang and Zhou, 2007).

The Bayesian classification algorithm is a probabilistic

statistics-based classification method that considers all

qualities and theoretically yields the best solution with the

least amount of error. However, the accuracy of its

classification may be affected because Bayes’ theorem

presupposes that the effect of an attribute value on a given

class is independent of the values of other attributes, which is

frequently false (Manino et al., 2019). A decision tree is a tree-

like instance-based inductive classification algorithm that can

classify and predict at the same time. However, due to its

extreme bifurcation, it is prone to overfitting, and the error can

rapidly increase when there are too many categories (Myles

et al., 2004). In contrast, SVM, as a supervised learning

algorithm, has a rigorous mathematical theoretical support,

possesses good interpretability, and does not rely on statistical

methods to some extent. SVM’s final decision function is

determined by only a few vectors, has no significant

correlation with sample space dimensionality, and can

identify support vectors that are critical to the project

(Noble, 2006). SVM has been widely used by the

international medical community in recent years to solve

the classification regression aspects of biological data, such

as in the prognosis prediction of patients with serious diseases

like laryngeal cancer (Chen et al., 2007), prostate cancer (Çınar

et al., 2009), hepatocellular carcinoma (Ali et al., 2021), and

renal cell tumors (Giulietti et al., 2021).

Past studies (Than et al., 2019; Doudesis et al., 2022) used a

single physiological condition as an indicator to assess the

prognosis of patients or their mortality. However, we believe

that the underlying individual circumstances of the patient, as

well as their status in society and ethnicity, also largely influence the

progression of their disease (Khraim and Carey, 2009). In addition,

the different treatment strategies received by different patients

during their in-hospital stay also have a significant impact on

the prognosis (Anderson and Morrow, 2017). Thus, in this study,

we not only included the physical condition of patients in the

screening of characteristics but also their health insurance status,

height, weight, age, ethnicity, and even the length of time they were

treated for in the ICU and the dosage of the injected drugs. The

inclusion of multiple dimensions of the patient’s condition

inevitably allows for a more comprehensive perspective on the

progression of said condition. The collection of these characteristics

largely facilitates the completeness of the model and allows for an

accurate evaluation of the patient frommultiple perspectives, which

in turn leads to more valid predictive conclusions.

In this study, the data used in this study came from

Massachusetts General Hospital in the United States, which

limits the model’s applicability. More localization is needed to

improve the model’s applicability so that it can help health care

professionals make more accurate predictions about the

prognosis of MI patients in the future, assisting in the

development of appropriate treatment and care plans and

improving the prognosis.

5 Conclusion

We retrieved EMRs from the MIMIC-III database and

analyzed them with R to discover that 13 markers, such as

blood potassium, blood glucose, and total cholesterol, have a

strong link with the prognosis of MI patients. A patient

prognostic model was built by comparing plain Bayesian, KNN,

linear discriminant, RUSBoost trees, and SVM algorithms, and the

prognostic model based on the SVM algorithm was found to have

a good fit, with an accuracy rate of 92.2% and an AUC of 0.989,

demonstrating that the model still has a certain (necessarily

higher) accuracy and conviction compared to other algorithms.

SVM feature extraction from EMR data enhances prediction

accuracy, and this technology is universally applicable, allowing

it to be used for prognostic prediction of different diseases.
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