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Abstract
The main discussion above of the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
has focused substantially on the immediate risks and impact on the respiratory system; however, the effects induced to the central
nervous system are currently unknown. Some authors have suggested that SARS-CoV-2 infection can dramatically affect brain
function and exacerbate neurodegenerative diseases in patients, but the mechanisms have not been entirely described. In this
review, we gather information from past and actual studies on coronaviruses that informed neurological dysfunction and brain
damage. Then, we analyzed and described the possible mechanisms causative of brain injury after SARS-CoV-2 infection. We
proposed that potential routes of SARS-CoV-2 neuro-invasion are determinant factors in the process. We considered that the
hematogenous route of infection can directly affect the brain microvascular endothelium cells that integrate the blood-brain
barrier and be fundamental in initiation of brain damage. Additionally, activation of the inflammatory response against the
infection represents a critical step on injury induction of the brain tissue. Consequently, the virus’ ability to infect brain cells
and induce the inflammatory response can promote or increase the risk to acquire central nervous system diseases. Here, we
contribute to the understanding of the neurological conditions found in patients with SARS-CoV-2 infection and its association
with the blood-brain barrier integrity.
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Neurotropism

Coronaviruses

Coronaviruses (CoVs) belong to the order Nidovirales and
family Coronaviridae which is grouped on four genera based
on phylogeny: Alphacoronavirus, Betacoronavirus,
Gammacoronavirus, and Deltacoronavirus (International
Committee for Taxonomy of Virus; https://talk.ictvonline.
org/). CoVs are envelopment and spherical particles of 80 to
120 nm in diameter with a crown-like structures. This family
contains the largest and non-segmented RNA genome, which
is formed with a single-strand positive-sense around 27 to
32 kb in size [1]. CoVs’ genome shares structural organiza-
tion, although differs in the base pairs number and sequence,
even among closely related CoVs. The open reading frames
1a/b (ORF1a and ORF1b), located at the 5′ end encode non-
structural components, the polyproteins pp1a and pp1b. Two
viral proteases cleave these proteins to generate 16 non-
structural proteins (nsp1 to nsp16), including the RNA-
dependent RNA polymerase (RdRP), an important protein
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involved in genome transcription and replication. The 3′
end includes ORFs that encode four major structural pro-
teins: the spike surface glycoprotein (S), a small envelope
protein (E), membrane protein (M), and nucleocapsid pro-
tein (N) that covers the RNA (Fig. 1). Besides, the CoV
genome maintains genes that encode accessory proteins in-
dispensable for adaptation and virulence and be successful
to specific host [2, 3].

The Betacoronavirus are zoonotic pathogens that have a
wild animal origin, for example, bat or rodent origin. This
group includes pathogenic human CoVs (HCoVs), such as
HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-
HKU1, that infect mammals and provoke mild related respi-
ratory illness in infants, young children, elderly individuals,
and immunocompetent hosts [1, 3]. However, the severe acute
respiratory syndrome-related CoV (SARS-CoV) and the
Middle East respiratory syndrome-related CoV (MERS-
CoV) cause a severe respiratory syndrome in humans that
aroused large-scale pandemics during 2002–2003 and 2012,
respectively [4, 5]. Importantly, late in December 2019,
Wuhan Municipal Health Commission, China, reported a
cluster of cases of atypical pneumonia in Wuhan, Hubei
Province, China, associated with a virus that rapidly spread
all over the world.

Severe Acute Respiratory Syndrome CoV-2
(SARS-CoV-2)

Briefly, on December 26, 2019, a male patient of 41 years old,
who worked at the local seafood market, was hospitalized in
the Central Hospital of Wuhan. The patient-reported symp-
toms are fever, chest tightness, cough, pain, weakness, sputum
production, and dyspnea [6]. For its origin, it was speculated
that the disease could be associated with a CoV. This infor-
mation was confirmed after the unknown virus was isolated
from bronchial-alveolar lavage fluid from the patient [6]. On
January 12, 2020, China publicly shared the genetic sequence
of a new CoV.

Metagenomic RNA sequencing identified a new RNA vi-
rus whose genome sequence of 29,903 nucleotides was des-
ignated as WH-Human1 coronavirus [6], later referred to as
2019 novel coronavirus, and at present named as SARS CoV
type 2 (SARS-CoV-2) by the World Health Organization
(WHO). SARS-CoV-2 has an overall genome sequence iden-
tity of 82% with SARS-CoV [7] and 96.2% with batCoV
RaTG13 (Rhinolophus affinis) from Yunnan province, sug-
gesting a bat origin [8]. Although the origin of SARS-CoV-
2 is zoonotic, there is no certainty of its intermediate animal
host. Some studies indicated that snakes were the intermediate
hosts, but the most recent research concluded that some pan-
golin species are the missing link [9–11].

On January 30, 2020, the WHO declared SARS-CoV-2
outbreak a Public Health Emergency of International
Concern and pandemic on March 11, 2020. The global situa-
tion by SARS-CoV-2 infections reported to the WHO by
August 15, 2020, includes 21,026,758 confirmed cases and
755,786 deaths, while the America region reported
11,271,215 confirmed cases (https://covid19.who.int/).

Clinical Features of CoV Coronavirus Disease
2019 (COVID-19)

Pathogenicity and transmission capacity of any pathogen are
indicated from the R0 value. Epidemiologically, R0 is defined
as the average number of people who will acquire a disease
from an infected person. Therefore, R0 indicates the potential
spread (contagious) or decline of disease. When Ro < 1, the
condition will decline and eventually disappear; if R0 = 1, the
disease will stay alive, but will not turn in to an epidemic; with
values of Ro > 1, cases could grow exponentially and cause an
epidemic or a pandemic [12]. The transmissibility and mortal-
ity rate of SARS-CoV-2 have been reported by several au-
thors, and the estimated value is so far under debate (for more
detail, see reference Liu et al. [12]). However, according to
Chen et al. [13], it is estimated that SARS-CoV-2 has

Fig. 1 SARS-CoV-2 genome
organization. The SARS-CoV-2
genome size is around 32 kb and
is an RNA single-strand positive-
sense that encodes 16 non-
structural proteins (5′ end) and 4
structural proteins (3′ end) (S, E,
M, and N) and 6 accessory pro-
teins. SARS-CoV-2 genome. The
genome contains a PoliA tail at 3′
end
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relatively low pathogenicity (3%) and moderate transmissibil-
ity (R0 = 1.4–5.5).

COVID-19 is the illness caused by SARS-CoV-2 infec-
tion. SARS-CoV-2 infects the higher upper respiratory
tract, but with increased disease severity, the lower respira-
tory tract is also affected. The main routes of transmission
are respiratory droplets and human-to-human, close contact
[7, 14, 15]. However, oral-fecal transmission, tears secre-
tion, aerosols, fomites, and even air and surface environ-
mental (e.g., patient’s room, floor, air outlet fan, toilet area,
and personal protective equipment) are other possible
routes of virus’ transmission; nevertheless, the effective-
ness of these alternative routes is still controversial
[15–18]. SARS-CoV-2 infection is possible for the entire
population; however, the severity of the illness depends on
some highlighted aspects seen around the world. In this
sense, higher percentages of infection have been diagnosed
in men than in women [19–21], and elderly males (≥
80 years) are the group more susceptible to complications
[22]. Besides, chronic underlying diseases, such as hyper-
tension, diabetes, coronary heart disease, and cancer, have a
meaningful impact in case fatality risk [22, 23]. On the
other hand, pediatric patients (2 months to 17 years) may
have mild symptoms or be asymptomatic; in fact, they have
their own clinical features [24–27].

The period of incubation of the SARS-CoV-2, which de-
termines the time in which symptoms are observed, has a wide
range from 1 to 14 days [14, 20, 28]. Early and common
symptoms by COVID-19 include fever, dry cough, shortness
of breath, and chest pain; other symptoms include myalgia,
fatigue, and headache. Less common symptoms are sputum
production, hemoptysis, and gastrointestinal symptoms, in-
cluding diarrhea, nausea, and vomiting [22, 28–31].
Depending on illness evolution, COVID-19 might be classi-
fied according to the severity of the clinical symptoms in mild
(i.e., non-pneumonia and development mild pneumonia); se-
vere (i.e., dyspnea, respiratory frequency ≥ 30 breaths per
minute, blood oxygen saturation ≤ 93%, the partial pressure
of arterial oxygen to fraction of inspired oxygen ratio < 300,
and lung infiltrates > 50% in the first 24 to 48 h); and critical
(i.e., respiratory failure, sepsis, septic shock, acute respiratory
distress syndrome, and/or multiple organ dysfunction or fail-
ure, for example, heat failure, coagulopathy, acute cardiac,
and acute kidney injury) [22, 23, 31].

Clinical diagnosis is made based on symptoms, exposure,
and chest imaging that show the presence of lung imaging
features consistent with CoVs pneumonia that includes
ground-glass lung [32, 33]. The respiratory tract is the classi-
cal target for SARS-CoV-2 infection; nonetheless, the virus is
also visualized by immunofluorescent staining in gastric, du-
odenal, and rectum glandular epithelial cells [18], showing
other target tissues and complexity of the illness.
Interestingly, there is evidence of signs and symptoms of

COVID-19 patients (Table 1) and other HCoVs infections
[38].

Neurotropism of SARS-CoV-2

Up to date, many reports have described the association be-
tween respiratory viral infections with neurological symp-
toms. There are several recognized respiratory pathogens that
gain access to the central nervous system (CNS), for instance,
respiratory syncytial virus, the influenza virus, the human
metapneumovirus, and HCoVs (HCoV229E, HCoV-OC43,
and SARS-CoV) [39], that induce manifestations such as fe-
brile or afebrile seizures, among other encephalopathies [40,
41].

Primary cultures of human astrocytes and microglia and
various human neuronal cell lines, such as the neuroblastoma
SK-N-SH, the neuroglioma H4, and the oligodendrocytic
MO3.13, have potential tropism for HCoV-OC43 [42].
Using an experimental animal model, HCoV-OC-43 infection
also showed neuro-invasiveness and neuro-virulence [43].
Therefore, it is not surprising to find brain SARS-positive
autopsies. Using in situ hybridization, the SARS genomic
sequence has been detected in the cytoplasm of neurons of
the hypothalamus and cerebral cortex [44]. Furthermore,
Moriguchi et al. [45] confirmed the presence of the new
SARS-CoV-2 in cerebral spinal fluid. In accord, epidemiolog-
ical and clinical research have described neurological, non-
common symptoms, and neurological manifestations associ-
ated with the SARS-CoV-2 infection (Table 2). These clinical
features include neuralgia, confusion, hyposmia, hypogeusia,
and altered consciousness, symptoms that evidence the neu-
rotropic invasion by SARS-CoV-2 [19, 41].

Despite the evidence demonstrating the neurotropism of
respiratory viruses, the exact mechanism of neuro-invasion
accomplished by viruses remains currently unknown.
However, the route of invasion of the CNS has recently been
described for HCoV-OC-43. This virus gains access to the
CNS through the olfactory bulb, moving along the olfactory
nerve. Then, neuro-propagation occurs along the multiple ax-
onal connections expanding through the CNS (e.g., neuron-to-
neuron propagation or diffusing particles) [56]. Similar to
HCoV-OC-43, a model in vivo of SARS-CoV infection sug-
gested that the virus enters the brain via the olfactory bulb, and
then, a transneuronal spread could occurs [57].

Also, some infectious blood-borne viruses primarily
targeting peripheral organs have evolved strategies to thwart
the blood-brain barrier (BBB). These strategies include direct
infection of the brain microvascular endothelial cells that form
the BBB, a paracellular entry that involves alteration of the
tight junctions, or the “Trojan horse” invasion, via the traffic
of infected monocytes/macrophages migrating across the
BBB, in a similar manner as the not-respiratory
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immunodeficiency virus 1 (HIV-1) [58, 59]. Likewise, when
human primary monocytes are activated following infection
by HCoV-229E and eventually become macrophages, it can
invade tissues, including the CNS [60, 61]. Additionally, it
has been reported that through activation of the brain
microendothelium, the damage caused by the inflammatory
response, allows the virus to reach the CNS. In this sense,
the neuro-invasion of SARS-CoV-2 could occur through
trans-synaptic transfer, via the olfactory nerve, infection of

vascular endothelium, or leukocyte migration across the
BBB [38].

The SARS-CoV-2 Receptor

The cellular tropism of CoV depends on the location of its
receptor which can be expressed in cells different from those
of the respiratory system. Therefore, if SARS-CoV-2 has

Table 1 Signs of neurological associated with SARS-CoV-2 infection

Type of study Signs and symptoms/cases (%) Reference

Retrospective, single-center case series
n = 138 patients

Dizziness
13 (9.4%)
Headache
9 (6.5%)

[21]

Retrospective
n = 38 patients

Headache
3 (8%)

[30]

Retrospective, single-center study
n = 99 patients

Confusion
9 (9%)
Headache
8 (8%)

[19]

Retrospective, observational case series
n = 214 patients

Neurological manifestations
78 (36.4%)
Central nervous system (CNS) manifestations
53 (24.8%)
Dizziness
36 (16.8%)
Headache
28 (13.1%)
Others symptoms: impaired consciousness, acute cerebrovascular disease, ataxia, seizure
Peripheral nervous system (PNS) manifestations
19 (8.9%)
Taste impairment
12 (5.6%)
Smell impairment
11 (5.1%)
Others symptoms: vision impairment, nerve pain

[34]

Case report
n = 1 patient

Anosmia [35]

Retrospective observational study
n = 114 patient

Anosmia associated with dysgeusia
54 (47%)

[36]

Retrospective report
n = 24 males
n = 19 females

CNS syndromes
Encephalopathies
10 (23%)
Symptoms: confusion and disorientation, psychosis, and seizures
Neuroinflammatory syndromes
12 (27%)
Symptoms: encephalitis, features of an autoimmune encephalitis stimulus sensitive myoclonus,

and convergence spasm. Confusion and seizure.
Acute demyelinating encephalomyelitis (ADEM): 9 (21%)
Hemorrhagic
5 (12%)
Necrotizing encephalitis
1(2%),
Myelitis
2(5%)
Hemorrhagic leucoencephalitis
1(2%)

[37]
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reached the CNS, the infection of brain cells depends on re-
ceptor recognition. It is the first step of viral infection and a
key determinant of the host cell and tissue tropism.Walls et al.
[62] reported that the angiotensin-converting enzyme 2
(ACE2), a metallopeptidase, mediates SARS-CoV-2 entry in-
to cells, establishing it as a functional receptor for this recently
appeared CoV. Previous studies achieved with SARS-CoV
also showed that the binding affinity between viruses and
human ACE2 correlates with increased virus transmissibility
and disease severity in humans [63].

The human ACE2 protein is included within the renin an-
giotensin system (RAS) which is widely known for its phys-
iological roles in electrolyte homeostasis, body fluid volume
regulation, and cardiovascular control in the peripheral circu-
lation. Renin, an enzyme produced from the kidney, acts on

angiotensinogen (AGT), a liver precursor, to release angioten-
sin I (Ang I), an inactive decapeptide. Human ACE2 cleaves
Ang I to convert it to the active octapeptide Ang II, the effector
peptide of RAS, which is essential for various physiological
functions [64].

The RAS has been described in various tissues such as the
heart, the kidney, the lungs, the liver, the retina, and the brain
[64, 65]. Chen et al. [66] screened the human ACE2 mRNA
expression in human organs based on hGTEx database. They
found that the digestive tract intestine displayed the highest
expression of human ACE2, followed by the testis and the
kidney. Consequently, the high vulnerability to SARS-CoV-
2 to these organs could explain the positive detection of the
virus in the patient’s feces and urine [67]. The expression of
human ACE2 in the heart is lower than that in the intestine and

Table 2 Neurological manifestations associated with SARS-CoV-2 infection

Type of study and data of patients Neurological diagnostic, symptoms, and clinical specimen for SARS-CoV-2 detection Reference

Case series
n = 4 patients
73Y/Amale, 83Y/A female, 80Y/A female, and 88

Y/A female

Acute stroke
Altered mental status, facial droop, slurred speech, left-side weakness, hemiplegia,

and aphasia
Not specific specimen

[46]

Case report
n = 2 patients
31 Y/A male, 62 Y/A female

Hunt and Hess grade 3 subarachnoid hemorrhage from a rupture aneurysm
Headache and loss of consciousness
Ischemic stroke
Nasal specimen

[47]

Case report
n = 5 patients,
< 50 Y/A

Large-vessel stroke
Headache, dysarthria, numbness, hemiplegia, and reduced level of consciousness
Not specific specimen

[48]

Case report
n = 1 patient
41 Y/A

Meningoencephalitis
Seizure, lethargic, photophobia, worsening encephalopathy, disorientation,

hallucinations, and neck stiffness
Not specified specimen

[49]

Case report
n = 1 patient
24 Y/A

Meningitis/encephalitis
fatigue and fever, vomit, seizures, unconsciousness, and neck stiffness
Cerebral spinal fluid specimen

[45]

Retrospectively report n = 24 males and 19 females
16–85 Y/A

Stroke and stroke with pulmonary thromboembolism
Guillain-Barré syndrome
Nasopharyngeal specimen

[37]

Case report
n = 2 patients
52 Y/A male, 39 Y/A male

Variants of Guillain-Barré syndrome
Miller Fisher syndrome
Diplopia, gait instability, headache, anosmia, and ageusia
Polyneuritis cranialis and ageusia
Oropharyngeal specimen

[50]

Case report
n = 1 patient
61 Y/A female

Acute Guillain-Barré syndrome
Legs weakness and severe fatigue
Oropharyngeal specimen

[51]

Case report
n = 1 patient
65 Y/A male

Guillain-Barré syndrome
Acute progressive symmetric ascending quadriparesis, facial paresis bilaterally
Oropharyngeal specimen

[52]

Case report
n = 5 patients

Guillain-Barré syndrome
Nasopharyngeal specimen

[53]

Case report
n = 1 patient

Guillain-Barré syndrome
Nasopharyngeal specimen

[54]

Case report
n = 1 patient
58 Y/A female

Acute hemorrhagic necrotizing encephalopathy
Altered mental status
Nasopharyngeal specimen

[55]
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kidney but higher than that in the lung, which serves as the
main target organ for SARS-CoV-2, indicating a potential
infection susceptibility of the human heart.

Unfortunately, there is relatively little information avail-
able on both the expression and regulation of RAS in the brain
[68, 69]. Dzau et al. [70] demonstrated the expression of the
ACE2 mRNA in mouse and rat brains using Northern blot
analyses, although low levels of the human ACE2 mRNA
were shown in the human brain using quantitative real-time
RT-PCR [71, 72]. Chappell et al. [73] made the first demon-
stration of the endogenous presence of the ACE2 protein in
brain tissues of rats using reverse-phase high-performance liq-
uid chromatography and radioimmunoassays. Later, immuno-
histochemistry studies showed that human ACE2 protein was
restricted to endothelial and arterial smooth muscle cells of
cerebral vessels [74]. However, Lavoie et al. [68] produced
double-transgenic mice which express the green fluorescent
protein driven by the renin promoter and the β-galactosidase
driven by the human angiotensin gene promoter and found
that both proteins are co-expressed in the medulla, the pons,
the amygdala, the hypothalamus, and the hippocampus; addi-
tionally, other regions only expressed the ACE2 protein.
Interestingly, ACE2 protein is predominant but not exclusive
of neurons; astrocytes and glial cells also express it [68, 75,
76]. Additionally, it is possible that the brain endothelium
expresses the ACE2 protein since recent studies demonstrated
the susceptibility to the infection of endothelial cells in other
tissues [66, 77].

The virus surface–anchored spike protein (S) mediates the
SARS-CoV-2 entry to the target cell. Protein S contains a
receptor-binging domain (RBD) that specifically recognizes
the ACE2. The RBD shows a hidden position in SARS-
CoV-2 that lead to poor recognition of the host receptor; how-
ever, this problem is overcome with an ACE2 high binding
affinity and a furin motif that allows its spike to be pre-acti-
vated. Therefore, pro-protein convertase furin (PCF) plays an
essential role in virus’ membrane fusion [78, 79]. PCF is a
ubiquitously expressed subtilisin-related serine protease and
member of the pro-protein convertase family that functions
within the secretory and endocytic pathways and at the cell
surface, cleaving pro-proteins. PCF has several substrates that
include growth factors, receptors, coagulation proteins, plas-
ma proteins, extracellular matrix components, and protease
precursors (e.g., matrix metalloproteases). PCF activity con-
tributes to numerous functions in CNS and also is involved in
chronic pathological conditions [80]. PCF cleavage of viral
envelope glycoproteins is necessary for the propagation of
many lipid-enveloped viral pathogens. Accordingly, sequence
alignment indicates that the PCF cleavage site in S protein is
essential in CoV evolution [81]. Notably, the PCF cleavage
site is involved in pathogenicity and modulates neuro-viru-
lence. Some mutations in PCF induce severe encephalitis
and break the BBB [82], while others lead to reduced

neurotropism and limited dissemination within the CNS
[83]. Therefore, evidence supports that SARS-CoV-2 can
reach SNC and infect brain cells through S protein binding
to ACE2 and modification by PCF.

SARS-CoV-2 and the Function of the BBB

The microvascular endothelial cells that form the BBB protect
the CNS from a wide variety of toxins and microorganisms
found in the blood. These cells express tight junction proteins
that limit the movement between adjacent cells and are
through specific transporters and receptor proteins that control
entry and exit of molecules coming from the blood toward the
brain parenchyma [84]. Therefore, the study of the damage
induced to microvascular endothelial cells represents the cen-
tral framework for understanding the molecular mechanisms
of virus infection in the CNS [85, 86].

Disruption of the BBB occurs upon infection with several
recognized neurotropic viruses. Arbovirus that belongs to the
Flaviviridae family, such as the West Nile Virus and the Zika
virus, can induce damage in the BBB caused by the host cell’s
response to viral factors. Experiments carried out using
in vitro and in vivo models of the BBB have demonstrated
that these viruses replicate in the brain microvascular endo-
thelial cells and induce down-regulation and degradation of
tight junction proteins leading to disruption of the BBB
[87–90]. Similarly, Bleau et al. [91] evaluated the ability of
CoV to enter the CNS, using the highly hepatotropic mouse
hepatitis virus type 3 and the weakly hepatotropic mouse hep-
atitis type A59. The type 3-infected mice showed brain inva-
sion that correlated with enhanced BBB permeability. The
effect was associated with decreased expression of the zona
occludens protein 1, the VE-cadherin, and the occludin. Since
CoV are molecularly related in its mode of replication, it is
speculated that other types of CoV use a similar mechanism of
action to infect the brain microvascular endothelial cells [92,
93]. Importantly, it has been identified the presence of SARS-
CoV-2 in the brain microvascular endothelial cells in frontal
lobe tissue obtained at postmortem examination from a patient
with COVID-19 [94]. Besides, viral particles and viral ge-
nome sequences of SARS-CoV have been detected in the
cytoplasm of neurons of the brain, mainly in the hypothalamus
and the cortex [44, 95]. This evidence suggests that SARS-
CoV-2 crosses the BBB as well as others HCoV.

Therefore, infection by several respiratory viruses, includ-
ing SARS-CoV-2, affects the integrity of the BBB through
different mechanisms. The virus causes direct cell stress, as-
sociated with most of the cytotoxic effects that lead to degen-
eration of infected cells, for example, SARS-CoV induces
apoptosis [96]. Endothelial cells activation as part of the in-
flammatory response causes an increase in the expression of
proteases, such as matrix metalloproteinase, that promotes the

525Mol Neurobiol  (2021) 58:520–535



degradation of the tight junction proteins [97]. However, it is
probable that the inflammatory response plays the most im-
portant role in the induction of the damage to BBB.

The Inflammatory Response

The regular activity of neuroinflammation is mainly to restore
the homeostasis in the brain [98]. However, prolonged CNS
inflammation and systemic inflammatory response as a result
of a wide variety of pathologies such as viral infections may
influence the BBB integrity and further outcome in neurolog-
ical disorders [99, 100]. Therefore, SARS-CoV-2 could cause
damage to the BBB through the activation of the inflammato-
ry immune response associated with a dysregulation around
this process [101].

Activation of the microvascular endothelial cells has been
associated with changes in BBB permeability. For example,
during physiological conditions, immune cell migration into
the CNS is rigorously controlled by mechanisms that operate
at the level of the BBB. Notably, migration of circulating
immune cells into the CNS is low and restricted to specific
innate and adaptative immune cell subsets, such as lympho-
cytes, macrophages, and antigen presenting cells as dendritic
cells that maintain immune surveillance in the CNS [102].
However, during viral infections, the migration of immune
cells is increased. This is supported by histopathologic exam-
ination of the brain tissue in patients with SARS-CoV, where
pathological infiltration of CD68+ monocytes/macrophages
and CD3+ T lymphocytes has been found in the brain mesen-
chyme [95]. Similarly, the infiltration process, related to inter-
actions between the β1 and β2 integrins expressed on leuko-
cytes and their ligands [i.e., intercellular adhesion molecules
(ICAM): ICAM-1, ICAM-2, and vascular cell adhesion
molecule-1 (VCAM-1)] present on the surface of the
microendothelial cells, that induce extravasation across the
BBB under inflammatory conditions has been reported
[103–107]. Evidence suggests that infection and activation
of the microvascular endothelial cells by typical neurotrophic
viruses increased endothelial adhesion molecules expression
[88]. This condition facilitates the trafficking of viruses-
infected immune cells into the CNS via the ‘Trojan horse’
mechanism [88].

Likewise, during viral replication in the host cells, the dam-
age is caused because SARS-CoV-2 is a cytopathic virus that
induces the release of damage-associated molecular patterns
(DAMPs) [108]. DAMPs are endogenous molecules released
from damaged cells that interact with molecules called
pattern-recognition receptor (PRR) that induce in the neigh-
boring epithelial cells, endothelial cells, and macrophages a
state of high inflammation [109].

Once the virus interacts with the host cells, the viral ge-
nome and viral proteins can also be recognized by PRRs and

activated the immune response. Different PRRs recognize
SARS-CoV-2, for example, the Toll-like receptors (TLR),
which are molecules expressed in many cell lines, including
endothelial cells, macrophages, and dendritic cells. TLR3,
TLR7, TLR8, and TLR9 induce several pathways of activa-
tion that produce proinflammatory cytokines and other antivi-
ral molecules to control the infection. However, this response
can be dysregulated and exacerbated cytokines production
[110]. Also, NOD-like receptor (NLR), other PRR, activates
the inflammasome complex and induces the activation state in
some cell types such as macrophages and epithelial and even
in the microvascular endothelial cells leading to high produc-
tion of interleukin (IL)-1β and IL-18. Nevertheless, this
mechanism needs to be studied in detail for the new CoV
[111].

On the other hand, the viral RNA activates typical mole-
cules such as the retinoic acid inducible gene 1 and the mela-
noma differentiation associated gene 5 and induces an antivi-
ral state, in which interferons (IFN) are secreted (mainly IFN
type I and III). Interferons are molecules important to clear-
ance the viral infection to prevent viruses from replicating
[112, 113]. In patients with COVID-19, high levels of IFN,
especially IFN I, are detected; this molecule blocks the viral
replication in adjacent cells and produces some effects against
the viral infection such as the induction of interferon-
stimulated gene expression, the stimulation of cytokines pro-
duction, and the activation of immune response cells (i.e.,
macrophages, monocytes, and neutrophils) [112, 114]. Other
CoV infections have a similar response [115, 116].

Furthermore, patients infected with SARS-CoV-2 have in-
creased levels of several cytokines and chemokines: TNF-α,
IFN-γ, interleukin-1 receptor antagonist (IL-1RA), IL-2, IL-6,
IL-7, IL-8, IL-9, IL-10, and the granulocyte macrophage
colony-stimulating factor; importantly, high levels of IL-6
have been linked to a worse prognosis in COVID-19 patients
[116, 117]. This high production and misbalance of all these
molecules is defined as cytokines storm (CS), which could be
an essential factor to cause disruption of the BBB [110].
Interestingly, CS induces the activation of platelets, neutro-
phils, monocytes, and macrophages; additionally, some of
these molecules can interact with the complement and the
coagulation systems and contribute to the pathogenic inflam-
mation [117].

Furthermore, some chemokines can attract some innate
immune response cells such as monocytes, natural killer
cells, dendritic cells, and T cells [118] and induce the pro-
duction others cytokines such as the monocyte chemotactic
protein-1, the granulocyte colony-stimulating factor, the
macrophages inflammatory protein 1-α, and IL-10 that re-
cruit lymphocytes and monocytes and initiate the humoral
response. Together, all these mechanisms can contribute to
the severity of neurological symptoms of SARS-CoV-2 in-
fection in the BBB [30].
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Other physiological disturbances in COVID-19 patients
such as thrombocytopenia, lymphopenia (CD8+ T, CD4+ T,
Treg cells, and platelets), and eosinopenia have also been
describing. Blood samples and spleen and lymph nodes
present these types of dysregulation due to the recruited
cells to the infected sites to control the viral replication
(Table 3) [119, 120]. Also, several patients present high
levels of D-dimer in the early stage of the infection
(Table 3). This molecule is an important marker in the dis-
order of coagulation. It represents a thrombotic state that
leads to embolic vascular events and can produce venous
clots and induce brain damage [121]. Therefore, COVID-
19 patients with high inflammation trigger excessive
thrombin production that inhibits fibrinolysis and activates
the complement pathways leading thromboinflammation,
microthrombin deposition, and microvascular dysfunction
associated with damage of the BBB [122, 123].

An unexplored mechanism that could produce damage in
the BBB is the adaptative immune response. The generation of
antibodies (Abs) against SARS-CoV-2 can cross-react with
some molecules of the brain microvascular endothelial cells
and produce damage through the activation of the complement
system (C3 and C4 proteins). Also, Ab-dependent enhance-
ment phenomenon can increase the infection and contribute to
the injury. This process has been extensively studied in
Dengue and Zika virus infection, where the Abs produced in
the first exposure can cross-react in a second exposure and
enhance the infection instead of neutralizing it [124, 125].
Additionally, the Abs can generate an autoimmune attack
and interact with the virus forming immune complexes and
induce the complement system activation [126].

Recently, some studies showed that the cellular immune
response could be central to determine the disease condition.

Several viruses, including SARS-CoV-2, can activate CD4+

and CD8+ and induce clonal expansion, specific cell effectors,
and cellular memory [127, 128]. Also, T cells can cross-react
inducing a state of protection observed in unexposed people
with SARS-CoV-2 [129, 130]. Finally, more studies around
the interaction with SARS-CoV-2 and the host immune sys-
tem need to be clarified. Research around the mechanisms
involved in inflammation response can allow the development
of strategies that might help to mitigate the health conse-
quence of this pandemic.

Neurological Implications of BBB Disruption
by SARS-CoV-2

As previously discussed, multiple respiratory viruses can af-
fect the CNS. For example, the mouse hepatitis virus induces
inflammation, BBB damage, and demyelination in rat models
[131]. Likewise, a case report of HCoV-OC43 detected in
nasopharyngeal and cerebral spinal fluid samples from a child
patient exhibited acute disseminated encephalomyelitis, a
low-prevalence CNS disease that induces demyelination
[132]. The H1N1 virus, the causative agent of high mortality
rates, also presented neurological complications. A retrospec-
tive study of the clinical files of 55 patients infected with
H1N1 detected 50% of visible neurological symptoms [133].
Interestingly, most patients with neurological manifestations
due to H1N1 infection manifested brain edema [134].
Importantly, in autopsy studies, patients with SARS-CoV
showed endothelial activation associated with the loss of ce-
rebral vascular integrity displaying multifocal hemorrhage
[135]. Histological examination of brain tissue specimens of
patients with SARS-CoV infection also showed neuronal

Table 3 Laboratory findings in neurological manifestation in COVID-19

Author Manifestation Laboratory finding Reference

Avula et al. Stroke - Lymphopenia [46, 48]
- Elevated C-reactive [26 mg/dl (0.04 mg/dl)]

- Elevated D-dimer [mean 8704 ng/ml (< 880 ng/ml)

- Elevated lactate dehydrogenase (712 U/L)

Oxley et al. - D-dimer [5972 ng/ml (0–500 ng/ml)]

Moringuchi et al. Meningoencephalitis - Elevated neutrophil [45]
- Increased C-reactive protein

Guitierrez-Ortiz et al. Guillain-Barré
syndrome

- Lymphopenia (1000 cells/μl) [50, 51, 54]
- Leucopenia (3100/cells/μl)

- Elevated C-reactive protein (2.8 mg/dl)

- Positive GD1b-IgG ganglioside antibody

Virani et al. - Lymphopenia and thrombocytopenia

Zhao et al. - Lymphocytopenia [0.52 × 109/L (1.1–3.2 × 109/L)]

- Thrombocytopenia [113 × 109/L (125–3000 × 109/L)]
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degeneration, necrosis, edema, extensive glial cell hyperpla-
sia, and cellular infiltration of the vascular walls bymonocytes
and lymphocytes [40].

With this background, several studies have attempted to
characterize the neurological manifestations of SARS-
CoV-2. An increasing number of individual case reports
have emerged describing acute neurological disorders rang-
ing from Guillain-Barré syndrome and acute myelitis to
acute hemorrhagic necrotizing encephalopathy [136].
Although the long-term neurological implications of
SARS-CoV-2 infection are still unknown, important clues
suggest that complications of the disease are related to CNS
invasion by damaging the BBB.

Neurological Implications of BBB Disruption
by SARS-CoV-2 in Long-Term Dementia

There is a very complex interaction between the brain cells
and the cerebral vasculature. Consequently, preservation of
the cerebrovascular function and its integrity has a central role
in this sophisticated communication. Additionally, any de-
rangements can have deleterious acute and chronic conse-
quences such as the development of neurodegenerative dis-
eases and dementia [137].

Infectious agents have been suspected as contributing fac-
tors to dementia, especially in Alzheimer’s disease (AD).
Interestingly, the BBB disruption appears to be an early fea-
ture of this disease [138]. For instance, Bell et al. [139] dem-
onstrated that BBB breakdown was derived in neurotoxic pro-
teins infiltration (e.g., amyloid-β peptides, the hallmark of
AD), affecting neurons and either initiating or exacerbating
neurodegeneration. Also, Ueno et al. [140] using experimental
animal models exhibiting some phenotypes of vascular de-
mentia showed that BBB damage might be related to
amyloid-β peptides accumulation. Accordingly, damage in-
duced to the BBB by infectious agents might trigger neurode-
generative diseases in predisposed patients [141]. Therefore,
viral infections such as SARS-CoV-2 could be associatedwith
an increased risk of AD development and a faster rate of
cognitive decline in older populations.

AD in systemic virus infection is an example of a condition
that is primarily neurodegenerative; however, in many cases, it
is not clear whether BBB changes are the cause or the effect of
a neuropathology. Furthermore, it is possible that the BBB
anomalies and the disease drive each other in a self-
perpetuating manner, contributing to damage progression
[142]. As mentioned, acute and chronic systemic inflamma-
tion accelerates the progress of AD [143]. Also, a 5-year fol-
low-up study showed that viral infections, like the induced by
cytomegalovirus, are linked with faster cognitive decline and
development of AD [144]. Furthermore, systemic inflamma-
tion in AD is associated with several BBB changes, which

further favor amyloid-β peptides accumulation into the brain
because the injury alters the influx and efflux of the pep-
tides [145]; correspondingly, systemic inflammation accel-
erates hippocampal amyloid-β peptides deposition [146].
Therefore, dysfunction of the BBB might play a significant
role in the pathogenesis of vascular dementia induced by
SARS-CoV-2 infection, but further observations are
needed.

Additionally, damage to the BBB is not the only mecha-
nism where SARS-CoV-2 infection can result in dementia.
Some data suggest that amyloid-β protein possesses antimi-
crobial and antiviral activity in vitro [147]. Therefore, the
presence of insoluble deposits of amyloid-β peptides could
be a factor (e.g., genetic predisposing) that alter the response
to viral SARS-CoV-2 infection. Thus, it is conceivable that
SARS-CoV-2 contributes to BBB damage and also creates a
feed-forward effect whereby pathogen-induced damage fa-
vors a further spread of the pathogen’s transit zones and even
the sequential development of the pathology associated to AD
[138].

On the other hand, individuals with AD are more vulnera-
ble to the effects of peripheral infection, especially SARS-
CoV-2, mainly due to the association of physical comorbidi-
ties. It is more probable that these individuals have cardiovas-
cular disease, diabetes, and pneumonia [148]. Besides, there is
an overall decrease in naive T cell diversity after the age of 65
[149–151]; this can limit the capacity of the individual to
induce a sufficient immune response to infection. Together,
these data indicate the vulnerability of these patients to
infection.

Neurological Implications of BBB Disruption
by SARS-CoV-2 in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disease
of the CNS, characterized by several pathological process-
es, including inflammation, trans-endothelial migration,
demyelination, axonopathy, and neuron loss mediated by
immune cells [152]. MS represents a neurological disease
where an infectious agent plays a triggering role, being
viruses the most likely culprit in genetically predisposed
individuals [141]. There is a presumption that several neu-
rotropic viruses using similar mechanisms could be in-
volved in MS pathogenesis [153]. Some viruses that have
been implicated in the development of MS include herpes
viruses, paramyxoviruses, picornaviruses, as well as virus-
es that classically affect the respiratory system such as in-
fluenza virus [154].

A critical step in the pathogenesis of MS is the infiltration
of autoreactive CD4+ T-lymphocytes into the CNS after acti-
vation in the periphery. Evaluation of proinflammatory cyto-
kines (IL-1β, IL-6, and IL-8), Th1 cytokines (IFN-γ, TNF-α,
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IL-2, and IL-12), and Th2 cytokines (IL-4, IL-5, and IL-10) in
sera collected from SARS patients within 2 days of hospital
admission showed a substantial elevation of IL-12, IL-6, IL-8,
IL-10, and IFN-γ [155]. Also, Sonar et al. [156] revealed that
IFN-γ favored the trans-endothelial migration of CD4+ T cells
from the apical (luminal side) to the basal side (abluminal
side) of the endothelial monolayer (Fig. 2). Besides, using
multicolor immunofluorescence and confocal microscopic
analysis, these authors indicated that IFN-γ induce
relocalization of ICAM-1, platelet endothelial cell adhesion
molecule-1, zona occludens protein 1, and VE-cadherin in
the endothelial cells. These findings reveal that the IFN-γ
produced during the response to infection and inflammation
could contribute to the disruption of the BBB and promote
CD4+ T cells brain migration. Interestingly, BBB disruption
appears in experimental autoimmune encephalomyelitis, a
typical MS model, and the clinical severity is linked to the
degree of BBB integrity [157]. Furthermore, imaging studies
showed BBB disruption in normal-appearing white matter in
MS [158]. This data is important since BBB breakdown pre-
cedes the development of newMS lesions [159]. In summary,
it is possible that the damage caused by SARS-CoV-2 infec-
tion to the endothelial cells also causes loss of the
BBB integrity, favoring MS progression.

Conclusion

Recent information has shown the SARS-CoV-2 ability to
infect CNS cells, especially the brain microvascular endo-
thelial cells of the BBB. This situation explains the neuro-
logical symptoms observed during infection and reveals the
possible consequences of viral infection. Although it is too
early to elucidate the long-term side effects of SARS-CoV-
2 infection, the background obtained with other respiratory
viruses suggests that SARS-CoV-2 might induce perma-
nent sequelae in the CNS through damage to the BBB,
including dementia in predisposed patients. Furthermore,
the proinflammatory state, due to viral infection seems to
be the general mechanism involved in the induction of BBB
damage. However, further studies are necessary to confirm
this evidence.
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