Supplemental Data

Dystroglycan and Perlecan Provide a Basal Cue

that Is Required for Epithelial Polarity

during Energetic Stress

Vincent Mirouse, Christina P. Christoforou, Cornelia Fritsch, Daniel St. Johnston, and Robert P. Ray

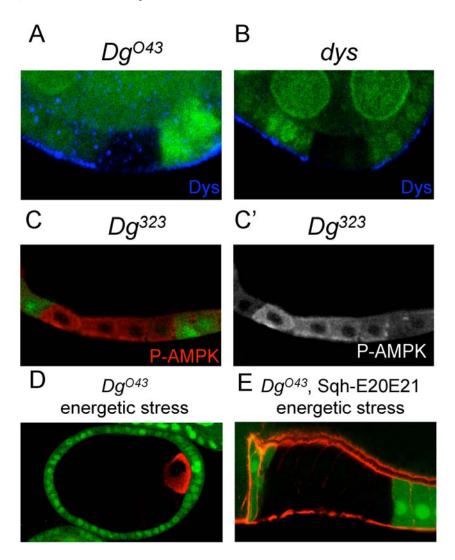


Figure S1. Mutant Cells Are Marked by the Absence of GFP (green)

- (A) Dg^{043} clone. Dys (blue) is absent from the basal domain
- (B) Df(3R)6184 clone (deleting the entire dys locus) Dys is not decrected in the mutant cells.
- (C) Dg^{323} mutant follicle cell clone under normal conditions. PhosphoT184-AMPK is shown in red (white on C').
- (D) Dg^{O43} germline clone under energetic stress conditions, marked with Orb (red). (E) Dg^{O43} mutant cells under energetic stress conditions and expressing Sqh-E20E21 stained for F-actin (red).

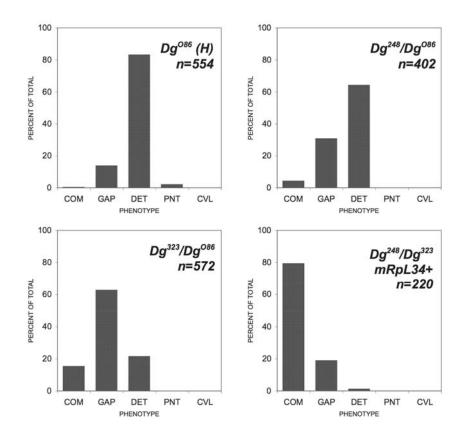


Figure S2. Expressivity of Crossvein Defects Associated with *Dg* Alleles <u>Graphs</u> showing the expressivity of Dg allelic combinations on a per wing basis. Genotypes are shown in the upper right hand of the graph, beneath which is indicated the number of wings scored. The phenotypic classes are 'complete' (COM), where the crossvein extends from L4 to L4 as in wild type; 'gapped' (GAP), where there is a gap between the crossvein and either L4 or L5; 'detached' (DET) where the crossvein is gapped from both L4 and L5; 'point' (PNT) where only a small spot of crossvein material remains; and 'crossveinless' (CVL), where the crossvein is entirely absent (see also Christoforou et al., 2008).

Table S1. Fertility of *Dg* Mutant Females (Maternal and Maternal+Zygotic Effect)

Female genotype ^a		Eggs					
	N	hatched (H)	dead	unfertilized (U)	collapsed (C)	% Н	% U+C
pr cn/Dg ⁰⁸⁶ pr cn	630	584	13	28	5	93	5
Dg^{O38} , pr cn/ Dg^{O86} pr cn	560	410	8	133	9	73	25
Dg^{O43} , pr cn/ Dg^{O86} pr cn Dg^{O55} , pr cn/ Dg^{O86} pr cn	632	422	14	184	12	67	31
Dg^{O55} , $pr cn/Dg^{O86} pr cn$	532	353	13	152	14	66	31
$Dg^{O38}/Dg^{O86} \times Dg^{O43}/CyO$	900	766	4	119	11	85	14
$Dg^{O43}/Dg^{O86} \times Dg^{O55}/CyO$	900	788	9	89	14	79	11
$Dg^{O55}/Dg^{O86} \times Dg^{O38}/CyO$	900	735	14	130	21	82	17
Dg^{248}/Dg^{O86} pr cn	1593	1421	37	135	0	89	8
Dg^{323}/Dg^{O86} pr cn	1660	1380	43	237	0	83	14

^aFor the first set of crosses, pr cn or Dg^{O*} , pr cn/SM6a males were crossed to Dg^{O86} , pr cn/SM6a virgin females, and virgin females of the genotypes in the table were collected and crossed to Oregon-R males. For the second set, pr cn or Dg^{O*} , pr cn/CyO, GFP males were crossed to Dg^{O86} , pr cn/CyO, GFP virgin females, and virgin females of the genotypes in the table were collected and crossed to the Dg^{O*} mutant not represented in the maternal genotype in trans to the balancer CyO, GFP. For the third set, w^* ; FRT-G13 Dg248/CyO males were crossed to Dg^{O86} , pr cn/SM6a virgin females, and virgin females of the genotypes in the table were collected and crossed to Oregon-R malesFor all crosses, Eggs were collected at 12 hour intervals and the number of hatched, dead, unfertilized and collapsed eggs were counted 36 hours later.

Table S2. Viability of Dg^{O*} Alleles as Transheterozygotes

		Progeny				
Cross ^a	N	$Dg^{O}*/Dg^{O86}$	Dg ⁰ */cn	$Dg^{O86}/CyO + cn/CyO$	% Expected ^b	
$Dg^{O86}/cn \times Dg^{O38}/CyO$	1716	263	666	787	39 (67)	
$Dg^{O86}/cn \times Dg^{O43}/CyO$	1820	333	639	848	52 (79)	
$Dg^{O86}/cn \times Dg^{O55}/CyO$	1610	273	627	710	44 (77)	

^aFor all crosses, isogenic cn males were crossed to Dg^{086} , $pr\,cn/CyO$ virgin females, and the male Dg^{086} , $pr\,cn/cn$ progeny were crossed to Dg^{0} *, $pr\,cn/CyO$ virgin females. From the latter cross, three classes of progeny are distinguishable, the Dg^{0} *, $pr\,cn/Dg^{086}$, $pr\,cn$ experimental class, the Dg^{0} */cn control class and the two Cy classes, Dg^{086} , $pr\,cn/CyO$ and cn/CyO, that cannot be distinguished from one another.

bFor percent expected, the first figure was calculated by dividing the number of Dg^{O*}/Dg^{O86} progeny by the number of Dg^{O*}/cn progeny, and the second figure (in parentheses) by dividing the number of Dg^{O*}/Dg^{O86} progeny by half the total number of Cy progeny.

Table S3. Viability of Dg Alleles when Grown without Competition from Heterozygous Larvae (Maternal+Zygotic Effect)

	La	Larvae		Adults	
N	GFP-	GFP+	GFP-	GFP+	% Expected
400	200	200	188	177	106
499	250	249	201	214	94
874	424	450	335	386	92
836	436	400	361	363	91
	400 499 874	N GFP- 400 200 499 250 874 424	N GFP- GFP+ 400 200 200 499 250 249 874 424 450	N GFP- GFP+ GFP- 400 200 200 188 499 250 249 201 874 424 450 335	N GFP- GFP+ GFP- GFP+ 400 200 200 188 177 499 250 249 201 214 874 424 450 335 386

 $^{^{}a}pr\,cn$ or $Dg^{O}*$, $pr\,cn$ /CyO, GFP males were crossed to Dg^{O86} , $pr\,cn$ /CyO, GFP virgin females, and virgin females of the genotypes in the table were collected and crossed to the $Dg^{O}*$ mutant not represented in the maternal genotype in trans to the balancer CyO, GFP. GFP+ and GFP– larvae were collected as L1s and reared separately, 50 larvae per vial. Adults were counted as they eclosed until no new progeny were recovered on three successive collections.

^bFor percent of expected, the fraction of GFP– adults (=GFP–Adults/GFP–Larvae) was divided by the fraction of GFP+ adults (=GFP+Adults/GFP+Larvae), and the quotient multiplied by 100.

Table S4. Viability of Dg Alleles, Dg^{248} and Dg^{323} in Trans to Dg^{0*} Alleles

Cross ^a	N	$Dg*/Dg^{O}*$	Dg*/SM6a	Dg ^O */CyO	% Expected ^b
Dg ²⁴⁸ /CyO x Dg ^{O38} /SM6a	594	234	174	186	130
$Dg^{248}/CyO \times Dg^{O43}/SM6a$	776	294	267	215	122
$Dg^{248}/CyO \times Dg^{O55}/SM6a$	772	250	289	233	96
Dg^{248} /CyO x Dg^{O86} /SM6a	608	210	211	187	106
Dg^{323} /CyO x Dg^{O38} /SM6a	710	229	266	215	95
$Dg^{323}/CyO \times Dg^{O43}/SM6a$	689	264	232	193	124
$Dg^{323}/CyO \times Dg^{O55}/SM6a$	762	262	255	245	105
Dg^{323} /CyO x Dg^{O86} /SM6a	851	346	270	235	137

^aFor all crosses, w^* ; FRT-G13 Dg^* /CyO males were crossed to Dg^O */SM6a virgin females. From these crosses, three classes of progeny are distinguishable, Dg^* / Dg^O * transheterozygotes, and the two Cy classes, Dg^* /SM6a, and Dg^O */CyO.

^bFor percent of expected, the number of Dg^* / Dg^O * progeny was divided by half the number of the two Cy classes combined and the

quotient multiplied by 100.

Table S5. Viability of *Dg* Deletion Alleles with the *mRpL34*⁺ Transgene

Genotype tested ^a		Prog		
	N	Dg*/Dg*	Dg*/CyO	% Expected ^c
Dg^{248}/Dg^{323} ; $P[mRpL34+]52/+$	1309	442	867	102
Dg^{323}/Dg^{248} ; $P[mRpL34+]52/+$	610	199	411	97
Dg^{248}/Dg^{248} ; $P[mRpL34+]52/+$	749	229	520	88
Dg^{323}/Df -2457; $P[mRpL34+]52/+$	424	99	325	61
Dg^{248}/Df -2457; $P[mRpL34+]52/+$	507	112	395	57

^aFor all crosses, the numerators in the genotype are the maternal chromosomes and the denominators the paternal chromosomes, and all parental stocks were in a white mutant background. *P[mRpL34+]41* and *P[mRpL34+]52* are two independent insertions of the *mRpL34+* transgene on the third chromosome.

bFor the first cross, $y w^{1118}$; Dg^{248}/CyO ; P[mRpL24+]52/TM6b, Tb males were crossed with w^{1118} ; Dg^{323}/CyO , Act-GFP females; for the second, $y w^{1118}$; Dg^{323}/CyO ; P[mRpL24+]52/TM6b, Tb males were crossed with w^{1118} ; Dg^{248}/CyO , Act-GFP females; for the third, $y w^{1118}$; Dg^{248}/CyO ; P[mRpL24+]52/TM6b, Tb males were crossed with w^{1118} ; Dg^{248}/CyO , Act-GFP females; and for the fourth and fifth, $y w^{1118}$; Dg^{248}/CyO ; P[mRpL24+]52/TM6b, Tb females were crossed with w^{1118} ; Dg^{248}/CyO , Act-GFP males. The numbers in the table reflect only the Tb+ progeny from the cross, the Tb progeny were not counted.

^cFor percent of expected, the number of Dg*/Dg* progeny was divided by half the number of the Dg*/Cy class and the quotient multiplied by 100.