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Abstract
Protein kinase Cβ (PKCβ) is considered as an attractive molecular target for the treatment of COVID-19-related acute res-
piratory distress syndrome (ARDS). Several classes of inhibitors have been already identified. In this article, we developed 
and validated ligand-based PKCβ pharmacophore models based on the chemical structures of the known inhibitors. The 
most accurate pharmacophore model, which correctly predicted more than 70% active compounds of test set, included three 
aromatic pharmacophore features without vectors, one hydrogen bond acceptor pharmacophore feature, one hydrophobic 
pharmacophore feature and 158 excluded volumes. This pharmacophore model was used for virtual screening of compound 
collection in order to identify novel potent PKCβ inhibitors. Also, molecular docking of compound collection was performed 
and 28 compounds which were selected simultaneously by two approaches as top-scored were proposed for further biologi-
cal research.
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Introduction

Protein kinase C (PKC) is a family of serine/threonine pro-
tein kinases which transduce essential signaling pathways 
associated with cell proliferation, differentiation, survival, 
migration, apoptosis, etc. [1–3]. A total of 15 isozymes of 
PKC have been reported which are classified based on their 
structure and mode of activation into 3 subfamilies: classical 
(PKCα, PKCβI, PKCβII, and PKCγ (activated by diacylg-
lycerol (DAG) and calcium)), novel (PKCδ, PKCε, PKCθ, 
and PKCη (activated only by DAG)) and atypical (PKCζ and 
PKCι/λ (activated by protein–protein interactions)) [4]. PKC 
isozymes are considered as promising molecular targets for 

cardiovascular [5, 6], neurodegenerative [7, 8], immune 
[9–11], metabolic [12–14] diseases and different types of 
cancer [15–17]. Recently, PKCβ has been also considered 
as a promising molecular target for the treatment of COVID-
19–related acute respiratory distress syndrome (ARDS). It 
was shown that PKCβ is activated by induction of neutrophil 
receptors (a number of toll-like receptors, CD-14, etc.), and 
is involved in signaling pathways of neutrophil extracellular 
traps (NETs) formation. It should be noted that PKCβ activa-
tion is specific in induction of NETosis [18–20]. In addition, 
PKCβ is chronically activated in diabetes due to increased 
concentrations of DAG [21] and involved in the pathogen-
esis of diabetic cardiomyopathy [22], diabetic wounds [23], 
diabetic nephropathy [24] and other diabetic complications 
[25]. It should be noted that in general, people with diabetes 
are more likely to have more severe symptoms of COVID-19 
[26]. Therefore, an effective inhibition of PKCβ is a prom-
ising approach to treat people infected with SARS-CoV-2, 
especially patients with diabetes.

Nowadays, the inhibitors of PKC have been already pub-
lished among several chemical classes such as indolocar-
bazoles [27–30], bisindolylmaleimide derivatives [31–34], 
balanol analogs [35–38], melittin [39–41], etc. To date, 
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only one selective PKCβ inhibitor, ruboxistaurin which 
belongs to bisindolylmaleimide derivatives is proposed as 
investigational drug for diabetic retinopathy. The aim of this 
study was to perform virtual screening using pharmacoph-
ore modeling, molecular docking and molecular dynamics 
approaches for the search of novel potential PKCβ inhibitors.

Methods

Building of ligand‑based PKCβ pharmacophore 
models

In order to build and validate ligand-based pharmacoph-
ore models for human protein kinase C beta inhibitors, the 
chemical structures of known (PKCβ) inhibitors from the 
ChEMBL database [42, 43] and literature data [27–41] were 
collected. The  IC50 or Ki values of collected PKCβ inhibitors 
are available as Supplementary information (Table S1). The 
structures of the compounds for the training and test sets 
were minimized (2500 steps) and protonated with Open-
Babel 2.4.0 [44] in MMFF94 (mmff94) force field using 
conjugate gradient algorithm.

At the first step, the primary pharmacophore model of 
PKCβ inhibitors was constructed based on the intermolecu-
lar bonds between bisindolylmaleimide and PKCβ (PDB ID: 
2I0E) [45] with Discovery Studio Visualizer 4.0 [46]. PKCβ 
in this crystal structure has three phosphorylated amino acid 
residues — Thr500 (in the activation loop of the kinase 
domain), Thr641 (in the turn motif), and Ser660 (in the 
hydrophobic region) indicating that the kinase is in an acti-
vated form. To calculate pharmacophore feature weights of 
obtained pharmacophore model, ligand-based pharmacoph-
ore modeling using web-server PharmaGist was performed 
[47]. Bisindolylmaleimide inhibitor, extracted from crystal 
structure of PKCβ with PDB accession code: 2I0E, which 
served as a pivot molecule, and 13 the most active inhibitors 
from different chemical classes with  IC50 values less than 
5 nM were used for generation of ligand-based pharmaco-
phore models. Other parameters were set by default. Using 
PharmaGist the superpositions of input ligands with pivot 
molecule were obtained. The pivot molecule was rigid and 
the compounds used for superposition were flexible. In this 
pairwise alignment, all ligands were represented with phar-
macophore features. Therefore, the pharmacophore features 
of the ligands were compared to pharmacophore features of 
pivot molecule. By default, the distance threshold for the 
centers of aromatic features was 1.8 Å and for the centers 
of other types of pharmacophore features was 1.4 Å. The 
best ligand pairs were selected according to the score value 
∑
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�

fi
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 — the score of matching for ligand phar-
macophore feature with the pivot pharmacophore feature 
(by default, score value for hydrophobic features is 0.3, for 

aromatic features — 0.3, for other types of pharmacophore 
features — 1.0).

Based on the matching of the ligands pharmacophore 
features to the primary model, the weights of these pharma-
cophore features were established. The weight of pharmaco-
phore feature means the number of ligands possessing this 
pharmacophore feature. This parameter indicates the contri-
bution of pharmacophore feature to score during screening.

The models were visualized in Discovery Studio Visu-
alizer 4.0 and saved in .CHM format. Using our in-house 
program PharmDeveloper [48, 49], the files were converted 
from .CHM format to .QUERY format. The excluded volumes  
were added with Discovery Studio Visualizer 4.0. PharmDe-
veloper program was used for optimization and validation 
of pharmacophore models, converting of screening data-
base, combining of pharmacophore features, performing of 
screening and rescoring.

Obtaining of derivative pharmacophore models 
based on combining of pharmacophore features 
using PharmDeveloper

If a primary pharmacophore model with n pharmacoph-
ore features is given, and a number of possible features in 
derivative models m is given, then we will get Cm

n
 of deriva-

tive models with different combinations of pharmacophore 
features according to formula (1):

The molecule of bisindolylmaleimide, which was used for 
pharmacophore model construction, was imaginary divided 
into four substructures — maleimide fragment, aliphatic 
chain with the terminal amino group and two indoles. The 
pharmacophore features located within these fragments were 
united into groups for combining. Each group included a 
number of pharmacophore features, which were taken for 
combination. The following parameters for pharmacophore 
features combination were specified in PharmDeveloper: 
(a) pharmacophore feature required by default, which will 
be present in all derived models; (b) feature belonging to a 
certain group and how many features from this group can be 
obtained (for example, if there are 3 features in a group and 
the algorithm can select 2 features from them, we will get 3 
different combinations of 2 features from this group ( C2

3
= 3

)); (c) features without indicated parameters. The number of 
required features or required without parameters can be dif-
ferent, including 0. Also, there can be an unlimited number 
of pharmacophore feature groups (including 0) with a dif-
ferent number of features (at least 1).

First, the algorithm analyzes the primary model. The 
required pharmacophore features are selected separately and 
added to all derived models. Each group of pharmacophore 
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features is also analyzed separately and a subset of combi-
nations of pharmacophore features for each group is gener-
ated. The number of pharmacophore features obtained from 
the group of pharmacophore features without parameters is 
automatically calculated according to formula (2):

where mnp is the number of pharmacophore features obtained 
from the group of pharmacophore features without parame-
ters, M — the total number of pharmacophore features in the 
derived pharmacophore model, mn — the number of required 
pharmacophore features by default, mgi

 — the number of 
pharmacophore features, obtained from group i.

The next step is the assembly of derived pharmacophore 
models. These derived models are elements of a multidimen-
sional matrix, each dimension of which is formed by subsets 
of combinations of pharmacophore features. A special algo-
rithm collects elements of the matrix and adds required by 
default pharmacophore features to each of them. The num-
ber of obtained derived models is calculated according to 
formula (3):

where Nfm is the number of derived pharmacophore mod-
els, nnp — number of combinations, obtained from features 
without parameters, ngi — number of combinations, obtained 
from group i.

Optimization of ligand‑based PKCβ pharmacophore 
models

Optimization is an iterative procedure in which each step of 
the iteration is a validation screening of the test set toward 
optimized model. We have performed three iterations of 
pharmacophore model score and radius optimization with 
the steps of 0.1 and 0.2 for each parameter, respectively. 
For pharmacophore model optimization, we used chemical 
structures of reported protein kinase Cβ (PKCβ) inhibitors 
obtained from ChEMBL database and literature data. Totally 
there were 731 compounds. The training 13 inhibitors, 
which were used during pharmacophore model construc-
tion, were removed from this set. The remaining compounds 
were divided into active and inactive. The cutoff of activity 
was ≤ 50 nM. There were 303 active compounds and 415 
non-active compounds.

During the validation of pharmacophore models, the 
ligands were evaluated by the PDscore value, which dem-
onstrates the correspondence of the ligand to the pharmaco-
phore features of the model. The more precisely the ligand 
corresponds to all pharmacophore features — the score is 

(2)mnp = M − mn −
∑N

i=1
mgi

(3)Nfm = nnp

∏N

i=1
ngi

higher. Besides geometric matching, also the weights of 
pharmacophore features are taken into account. Matching 
with a feature of greater weight gives a greater increase in 
score than matching with a feature of smaller weight. Also, 
an important component of this score is the QSAR assess-
ment based on active/inactive ligands from the test set (for 
this purpose, the program creates the table of special ref-
erence coefficients to which the parameters of the inves-
tigated ligands are compared). This process is fully auto-
mated. PDscore was calculated by the formula presented 
in the Supplementary information. For QSAR assessment 
molecular descriptors such as number of atoms, number 
of bonds of different types, molecular weight, number of 
donors and acceptors of hydrogen bonds, logP, number of 
halogen atoms, topological polar surface area (TPSA) and 
molecular refraction were calculated for each molecule.

Molecular docking

The semi-flexible molecular docking was performed with 
Autodock 4.2.6 [50]. The crystal structure of human protein  
kinase Cβ (PKCβ) was obtained from the Brookhaven 
Protein Data Bank (PDB ID: 2I0E) [45]. The ligand  
– bisindolylmaleimide inhibitor, water molecules and ions were 
removed from the PDB file using Discovery Studio Visualizer 
4.0 [47]. The receptor was prepared with MGL Tools 1.5.6 and 
AutoGrid within Autodock 4.2.6 software suite. Ligands were 
prepared by OpenBabel [44], Vega ZZ (command line) [51] and 
MGL Tools 1.5.6. The incoming formats of receptor and ligand 
molecules were converted into PDBQT formats with Vega 
ZZ using AUTODOCK force field. For molecular docking, 
parameter files were created for each ligand in the DPF (Dock 
Parameter File) format, where all necessary parameters for  
calculations were specified. These files were prepared by scripts 
included in the MGL Tools software package. The parameters 
for virtual screening were the following: translation step — 2 Å, 
quaternion step — 50°, torsion step — 50°, torsional degrees  
of freedom and coefficient — 2/0.274, cluster tolerance —  
2 Å, external grid energy — 1000, max initial energy — 0, 
max number of retries — 10,000, number of individuals in 
population — 300, maximum number of energy evaluations — 
850,000, maximum number of generations — 27,000, number 
of top individuals, which survived to the next generation — 1, 
rate of gene mutation — 0.02, rate of crossover — 0.8, mode of 
crossover — arithmetic. Alpha parameter of Cauchy distribution 
was 0, Beta parameter Cauchy distribution — 1. The number of 
iterations of the Lamarckian genetic algorithm was 10 for each 
ligand. The ranking of docking results was performed by score 
values calculated by the AutoDock scoring function. The best- 
scored complexes were used for visual inspection.

Visual analysis of the docking results was done using 
Discovery Studio Visualizer 4.0 [47]. The complexes were 
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evaluated by the ability of ligands to form hydrogen bonds 
with the key amino acid residues in the ATP-binding site 
of PKCβ.

Molecular dynamics simulation

Molecular dynamic (MD) simulations were performed using 
GROMACS 4.5 software package [52–54]. The starting 
coordinates were taken from the crystal structure of human 
protein kinase PKCβ with bisindolylmaleimide inhibitor 
(PDB ID: 2I0E). Topology file for ligand was obtained 
with Dundee PRODRG server [55]. We used GRO file of 
the ligand containing polar/aromatic H’s. Topology file for 
PKCβ was generated from PDB-file using pdb2gmx com-
mand. MD simulations of receptor-ligand complex with 
explicit inclusion of water were carried out using the GRO-
MOS96 force field [56]. Energy minimization of receptor-
ligand complex was done with steepest descent algorithm 
for 1000 relaxation steps. Then, position restrain dynamics 
of minimized structure was performed for 20 ps. After that, 
MD simulation of the system was carried out for 20 ns at 
constant volume and temperature (NVT). The integration 
of the equations of motion was done with the standard leap-
frog algorithm [57]. The Particle Mesh Ewald (PME) algo-
rithm [58, 59] was used for electrostatic processing.

Results and discussion

The primary pharmacophore model of PKCβ inhibitors 
was constructed based on the intermolecular interactions of 
bisindolylmaleimide inhibitor with amino acid residues in 
the ATP-binding site of human PKCβ (crystal structure with 
PDB accession code: 2I0E) using Discovery Studio Visual-
izer 4.0. The interactions of the ligand with amino acid resi-
dues of PKCβ active site are shown in Fig. 1. All aromatic 
rings of the two indole and one maleimide fragments of the 
bisindolylmaleimide inhibitor form a number of hydropho-
bic interactions with amino acid residues Ala369, Val356, 
Leu348, Val423, and Ala483 in the ATP-binding site of 
protein kinase PKCβ. These interactions were represented 
by five aromatic pharmacophore features without vectors 
with the centers, located in geometric centers of inhibitor 
aromatic rings with standard radius of 1.1 Å. Methyl at the 
C2-position of indole ring forms hydrophobic interactions 
with Met473 and Ala483, therefore we built hydrophobic 
pharmacophore feature on this substituent with radius of 
1 Å. Two hydrogen bond acceptor pharamacophore features 
were generated on two keto groups of maleimide which form 
hydrogen bonds with Val423 and Thr404. Two hydrogen 
bond donor pharamacophore features were built on nitro-
gen atom of maleimide which forms hydrogen bond with 
Glu421 and on the terminal amine group of inhibitor which 

is involved in hydrogen bond formation with Asp470. The 
radii of hydrogen bond acceptor and donor pharamacophore 
features were 0.91 Å (Fig. 1). Also, excluded volumes were 
added on all atoms of amino acid residues of PKCβ ATP-
binding site in the radius of 5 Å around the ligand. The 
excluded volumes make the model more accurate since they 
restrict selection of compounds which will potentially over-
lap with the amino acid residues in the active site. Hence, 
the selected compounds will correspond to the volume and 
shape of ATP-binding pocket. Actually, the shell of the 
excluded volumes mimics the active site of the receptor. The 
radius of the excluded volumes was set to 1.2 Å, which cor-
responds to the van der Waals radius of the hydrogen atom.

As a result, the primary PKCβ pharmacophore model 
consisted of ten pharmacophore features including five aro-
matic features without vectors, one hydrophobic feature, 
two acceptors and two donors of hydrogen bonds and 158 
excluded volumes (Fig. 2). In order to make presentation 
of pharmacophore model clear, excluded volumes are not 
visualized since they cover the pharmacophore features.

The primary model had default radiuses of pharmacophore 
features and did not have weights for pharmacophore features. 
In order to calculate this parameter, we performed ligand-
based pharmacophore modeling using web-server Pharma-
Gist. For this, bisindolylmaleimide inhibitor extracted from 

Fig. 1  The complex of bisindolylmaleimide inhibitor with amino acid 
residues in the ATP-binding site of PKCβ. The hydrogen bonds are 
represented by green dashed lines and hydrophobic interactions are 
shown by magenta dashed lines



Structural Chemistry 

1 3

crystal structure with PDB ID: 2I0E (served as a pivot mol-
ecule) and 13 of the most active compounds of this protein 
kinase with  IC50 value less than 5 nM, which were obtained 
from ChEMBL database, were uploaded in .MOL2 format 
and submitted in PharmaGist. The pairwise superpositions 
of the ligands with bisindolylmaleimide were performed and 
the weights of pharmacophore features were determined. The 
weight of pharmacophore feature corresponds to the num-
ber of ligands possessing this pharmacophore feature. This 
parameter means the contribution of pharmacophore feature 
to score value during screening. The pharmacophore features 
weights are presented in Table 1.

Since the primary model was very complex — it con-
sisted of ten pharmacophore features and 158 excluded vol-
umes, we obtained simpler derived pharmacophore models 
using algorithm of pharmacophore features combining in 
PharmDeveloper program. The total number of pharmaco-
phore features in derived models was set as five or six. Dur-
ing the combining procedure, some pharmacophore features 
were set as required by default, several pharmacophore fea-
tures formed combination group, from which some features 
were selected and others were removed. There were 9 differ-
ent directions of combining (Table 2). Totally, 208 derived 
different pharmacophore models were generated.

Fig. 2  The primary pharmacophore model of PKCβ inhibitors. Aro-
matic pharmacophore features (Ar1-5) without vectors are indicated 
with blue color, hydrophobic pharmacophore feature (Hyd) is pre-
sented by cyan color, hydrogen bond acceptor pharmacophore fea-
tures (Acc1-2) are shown by green color, hydrogen bond donor phar-
macophore features (Don1-2) are labeled with magenta color

Table 1  Pharmacophore feature weights of the primary PKCβ inhibitors pharmacophore model

Pharmacophore feature Acc1 Acc2 Don1 Don2 Ar1 Ar2 Ar3 Ar4 Ar5 Hyd

Weight 7 7 9 5 9 7 4 9 6 3

Table 2  The combining 
directions of pharmacophore 
features for obtaining of derived 
pharmacophore models

gX-Y, combination group with name X, from which algorithm will select number Y of pharmacophore fea-
tures in each iteration of combination; n, is feature required by default, which will be present in all derived 
models; (Hyd), aromatic feature is changed to hydrophobic feature

Combining direction 1 2 3 4 5 6 7 8 9

Number of pharmacophore 
features in derived models

5 5 6 6 5 5 5 5 5

Number of derived models 24 24 24 24 24 24 16 24 24
Pharmacophore features and its parameters for combination
Acc1 g1-1 g1-1 g1-2 g1-2 g1-2 g1-2 g1-1 g1-2 g1-2
Don1 g1-1 g1-1 g1-2 g1-2 g1-2 g1-2 n g1-2 g1-2
Acc2 g4-1 g1-1 g1-2 g1-2 g1-2 g1-2 g1-1 g1-2 g1-2
Ar1 n n n n - - n n n (Hyd)
Ar2 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 (Hyd) g2-1 (Hyd)
Ar3 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 g2-1 (Hyd) g2-1 (Hyd)
Ar4 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 (Hyd) g3-1 (Hyd)
Ar5 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 g3-1 (Hyd) g3-1 (Hyd)
Hyd g4-1 g4-1 g4-1 g1-2 g4-1 g1-2 g1-1 g1-2 g1-2
Don2 g4-1 g4-1 g4-1 n g4-1 n g1-1 - -
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These obtained derived models were validated on a test 
set, which included all known PKCβ inhibitors collected by 
us from ChEMBL database and the articles [27–41], except 
the most active 13 compounds which were used as a train-
ing set during primary pharmacophore model construction. 
These ligands were divided into active and inactive using 
the activity cutoff of ≤ 50 nM. Therefore, there were 303 
active compounds and 415 non-active. All 208 derived 
models were used for pharmacophore screenings of the test 
set. It was found that only 19 models correctly identified at 
least one or more active compounds. Then, these 19 models 
were optimized and validated using the same test set. The 
optimization is an iterative procedure, in which each itera-
tion step is a validation screening of the test set against the 
optimized model. Three iterations of radius and score opti-
mization were performed with step = 0.1 and 0.2, for each 
parameter, respectively. Therefore, as a result we obtained 
1026 derivative models with different parameters. Among 
them, we selected 62 models which correctly identified more 
than 60% active compounds in the test set. The parameters 
of the models are available as Supplementary information 
(Table S2). The most accurate PKCβ pharmacophore model, 
which correctly predicted more than 70% active compounds 
of test set (in other words, the model had the percentage 
of active compounds among all selected ligands (including 
non-active) more than 70%) is presented in Fig. 3. Mapping 
of the 13 most active PKCβ inhibitors that were used as the 
training set, 10 active and 10 non-active PKCβ inhibitors 
from the test set to final pharmacophore model are available 
as Supplementary information (Figs. S1, S2, S3).

In order to establish whether pharmacophore models are 
stable during protein kinase C beta conformation changes, 
we have performed molecular dynamics simulation of the 
complex of human PKCβ with bisindolylmaleimide inhibitor 
during 20 ns. The RMSD plot of the ligand, sum of Coulomb 
and Lennard–Jones interaction energies for inhibitor-PKC 
complex and hydrogen hydrogen-bond existence map are 
shown in the Fig. 4. The presented hydrogen bond network 
(Fig. 4c) correlates well with the energy of the complex 
(Fig. 4b). The decrease of the energy of the complex, which 
means further stabilization, can be associated with the dis-
ruption of hydrogen bond of the ligand with amino acid 
residue Val423 (Fig. 4c, E) and by formation of hydrogen 
bonds with Tyr422 (Fig. 4c, D) and Arg624 (Fig. 4c, F-L). 
Then, the breaking of these hydrogen bonds at 4.5 ns leads 
to increase of the energy but further formation with Tyr422 

Fig. 3  The validated ligand-
based pharmacophore 
models of PKCβ inhibitors 
(PKCb_2-5combf-22_624_m 
(a), PKCb_2-5combf-23_372 
(b)). Aromatic pharmacoph-
ore features without vectors 
are indicated with blue color, 
hydrophobic pharmacophore 
feature is presented by cyan 
color, hydrogen bond acceptor 
pharmacophore features are 
shown by green color, hydrogen 
bond donor pharmacophore fea-
tures are labeled with magenta 
color and excluded volumes are 
not shown since they cover all 
the model

a b

Fig. 4  Molecular dynamic (MD) results of bisindolylmaleimide inhibi-
tor in complex with PKC during 20-ns MD simulation: RMSD of 
inhibitor (a), sum of Coulomb and Lennard–Jones interaction ener-
gies for inhibitor-PKC complex (b), hydrogen-bond existence map of 
inhibitor-PKC complex: A – Lys350_N – O14, B – Lys371_NZ – O20, 
C – Tyr422_OH – N13, D – Tyr422_OH – O14, E – Val423_N – O14, 
F – Arg624_NE – O20, G – Arg624_NE – N13, H – Arg624_NH1 – 
O20, I – Arg624_NH1 – N13, J – Arg624_NH2 – O20, K – Arg624_
NH2 – N13, L – Arg624_NH2 – O14, M – Asp470_OD1 – N25, N 
– Asp470_OD2 – N25, O – Asp484_OD1 – N25, P – Asp484_OD2 
– N25, Q – Leu348_O – N13, R – Lys350_O – N13, S – Asp470_
OD1 – N30, T – Asp470_OD2 – N30, U – Asp470_O – N30, W – 
Asn471_OD1 – N30, V – Asn471_ND2 – N30, X – Ala483_O – N30, 
Y – Asp484_OD1 – N30, Z – Asp484_OD2 – N30 (c)

◂
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at 6 ns again causes decrease of the energy. As it can be seen 
from the RMSD plot, some disposition of compound in the 
ATP-binding site is observed at 14 ns of MD simulation 
(Fig. 4a). At this time, the stabilization of PKC-inhibitor 

complex obviously is supported by the formation of hydro-
gen bonds with Lys350 (Fig. 4c, A, R), Lys371 (Fig. 4c, B), 
Asp484 (Fig. 4c, O, P) and Leu348 (Fig. 4c, Q). It should be 
noted, that the inhibitor forms hydrogen bonds with Asp484 
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(Fig. 4c, Y, Z) during almost all the time of MD simula-
tion, except the range from 16 to 19 ns, where these hydro-
gen bonds are substituted by hydrogen bonds with Asp470 
(Fig. 4c, T, U). Therefore, hydrogen bonds of the ligand with 
hydroxyl group of Tyr422 and carboxyl group of Asp484 
are very important for PKC-inhibitor complex stabilization.

The MD frame of PKC-inhibitor complex with the lowest 
energy value at 4000 ps of MD simulation was used to check 
how it corresponds to the best pharmacophore models. The 
superposition of the starting ligand conformation, extracted 
from crystal structure (PDB ID: 2I0E), which was used for 
pharmacophore models construction, and ligand conforma-
tion obtained from minimized complex, demonstrates that 
the ligand geometry changed minimally (RMSD = 0.33 Å) 
after MD simulation (Fig. 5a), while the interactions with 
amino acid residues in the active site of PKCβ changed sig-
nificantly. As it can be seen from Fig. 5b, these changes 
did not impact the model PKCb_2-5combf-23_372, since 
the part of the ligand, where pharmacophore features were 
added, is very stable. Instead, the model PKCb_2-5combf-
22_624_m was changed due to displacement of the flexible 
terminal amino group of the inhibitor. The hydrogen bond 
donors which were changed are shown by the gray phar-
macophore features (Fig. 5c). Therefore, we have selected 
the model PKCb_2-5combf-23_372 for pharmacophore 
screening since it is very conservative during conformation 
changes of protein kinase and has a good hit rate in experi-
ments on the test set.

The obtained pharmacophore model which included three 
aromatic pharmacophore features without vectors, one hydro-
gen bond acceptor pharmacophore feature, one hydrophobic 
pharmacophore feature and 158 excluded volumes, was used 
for virtual screening of the commercially available OTAVA 
compound collection [60] containing about 150,000 com-
pounds in order to select the compounds for study of inhibi-
tory activity toward PKCβ. According to the values of RMSD, 
PDscore and visual analysis of compounds for matching with 
pharmacophore model, we have selected 4120 compounds.

Also, we have performed molecular docking of OTAVA 
compound library into ATP-binding pocket of PKCβ. According 

Fig. 5  The superposition of the starting ligand conformation, extracted 
from crystal structure (PDB ID: 2I0E), which was used for pharmaco-
phore models construction (carbon atoms are labeled with red color), 
and ligand conformation obtained from minimized complex (carbon 
atoms are labeled with green color) (a), mapping of the ligands to the 
model PKCb_2-5combf-23_372 (b), mapping of the ligands to the 
model PKCb_2-5combf-22_624_m (c). Aromatic pharmacophore fea-
tures without vectors are indicated with blue color, hydrophobic phar-
macophore feature is presented by cyan color, hydrogen bond accep-
tor pharmacophore features are shown by green color, hydrogen bond 
donor pharmacophore features are labeled with magenta color and 
the hydrogen bond pharmacophore features which were changed are 
shown by the gray color
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Table 3  The structures 
of top-scored compounds 
selected simultaneously by 
pharmacophore screeningand 
molecular docking

№ Structure

1

2

3

4

5

6



 Structural Chemistry

1 3

Table 3  (continued)
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Table 3  (continued)
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Table 3  (continued)
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to score values and ligand-receptor intermolecular interactions 
such as formation of hydrogen bonds with amino acid residues 
in the hinge region and hydrophobic interactions with Leu348, 
Ala369, Ala483, we have selected 651 compounds. These com-
pounds were compared with the top-ranked compounds selected 
according to pharmacophore screening. It was found that both 
sets of compounds include 28 identical molecules which can be 
proposed for biochemical screening. The chemical structures of 
compounds are presented in Table 3.

Conclusion

The ligand-based pharmacophore model of human PKCβ 
was built and used for virtual screening of OTAVA com-
pound collection. Also, the molecular docking was per-
formed. The compounds which were selected simultaneously 
by two approaches as top-scored were proposed for further 
biological research.
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