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Tumor-adjacent normal (TAN) tissues, which constitute tumor microenvironment and are
different from healthy tissues, provide critical information at molecular levels that can be
used to differentiate aggressive tumors from indolent tumors. In this study, we analyzed 52
TAN samples from the Cancer Genome Atlas (TCGA) prostate cancer patients and
developed a 10-gene prognostic model that can accurately predict biochemical
recurrence-free survival based on the profiles of these genes in TAN tissues. The
predictive ability was validated using TAN samples from an independent cohort. These
10 prognostic genes in tumor microenvironment are different from the prognostic genes
detected in tumor tissues, indicating distinct progression-related mechanisms in two
tissue types. Bioinformatics analysis showed that the prognostic genes in tumor
microenvironment were significantly enriched by p53 signaling pathway, which may
represent the crosstalk tunnels between tumor and its microenvironment and pathways
involving cell-to-cell contact and paracrine/endocrine signaling. The insight acquired by
this study has advanced our knowledge of the potential role of tumor microenvironment in
prostate cancer progression.

Keywords: prostate cancer, microenvironment, tumor-adjacent normal tissue, recurrence-free survival, prognosis
INTRODUCTION

Prostate cancer, which is one of the most common and deadly tumors in men, represents over 20%
of newly diagnosed male cancers every year (1). In 2019, there were about 191,930 diagnosed cases
and 33,330 deaths of prostate cancer in the USA (1). Although prostate cancer has the best 5-year
survival rate among all types of cancers, about one-fourth of diagnosed patients are subject to high
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risk of postsurgery recurrence that threatens lives, making
prostate cancer the second leading cause of cancer death in
men in the USA (2, 3).

Disease screening, including prostate-specific antigen (PSA)
test and digital rectal exam (DRE), and pathological
characterization of biopsy tissues substantially contribute to
the diagnosis and early risk stratification for patients with
prostate cancer. For the patients treated with prostatectomy, a
prognosis is needed to assess the risk of biochemical recurrence
(BCR) for the development of further therapy plans. Various
nomograms have been devised to predict postsurgery BCR-free
survival primarily based on pathological variables, including
Gleason score, tumor grade, and tumor stage. However, these
traditional nomogram models had limited prediction accuracy
due to large variation in scoring of these pathological variables as
well as the heterogeneous nature of prostate cancer. With the
rapid advancement of the technologies for quantification of
genomic data, numerous biomarkers have been developed for
predicting the outcomes of prostate cancer, for example, urine
PCA3 (4), transmembrane protease, serine 2-TMPRSS2-ERG
fusion (5), and a few commercial tests based on the profiles of
multiple genes, including prolaris and decipher (6, 7). These new
prognostic schemes using biomarkers, which have gain ground
in the clinical application (8), are based on the assay of tumor
tissue samples; thus, their prediction accuracies are potentially
still hampered by tumor heterogeneity of various levels.

Tumor microenvironment is not an inert component; rather,
known as a battlefield between the cancer cells and stromal cells,
it plays an important role in cancer progression and metastasis
(9). Tumor-adjacent tissues actively interact with tumor through
the extracellular matrix or secreted factors, to either fight against
tumor or to facilitate tumor growth when these tissues have been
domesticated by tumor. Although tumor-adjacent tissues appear
histologically normal, alterations in genomic transcription have
been identified between tumor-adjacent tissues and authentic
normal prostate tissues from disease-free subjects, which have
been applied as a diagnostic tool to detect the presence of tumor
even if biopsy samples do not contain tumor (10). A set of 15
genes have been characterized to be specifically activated in
histologically normal tissue adjacent to various types of tumor
based on the analysis of the Cancer Genome Atlas (TCGA)
database (11). It has been also shown that expression profiles of
certain genes in tumor-adjacent tissue may reflect the
characteristics of the tumor, either aggressive or indolent; such
genes may be useful to the prediction of tumor outcomes
including BCR (12). A recent study on breast cancer also
suggested that tumor microenvironment provided useful
information in understanding disease recurrence, which can be
used to guide the development of surgical strategies (13).
Therefore, tumor-adjacent tissues are as important as tumor
tissues in cancer research to advance our knowledge of cancer
biology. Due to their more homogeneous genetic background,
tumor-adjacent tissues may serve as better clinical material for
disease prognosis than tumor tissues. A literature search
indicated that majority of the prognosis studies in prostate
cancer were focused on tumor tissues, while TAN tissues have
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been understudied. Moreover, lacking authentic normal prostate
tissues in most of these prostate cancer studies, TAN tissues were
often improperly employed as control to address the differences
between diseased tissues and healthy tissues (14, 15).

In this study, the dataset from the Cancer Genome Atlas
Prostate Adenocarcinoma (TCGA-PRAD) project and the
dataset E-MTAB-6128, which represent the only data sources
with TAN samples, were used to develop and validate a
prognostic model based on expression profiles of multigene in
tumor microenvironment. Only TAN prostate tissues from these
two datasets have been analyzed in this study to establish a
multigene model that can accurately predict the BCR-free
survival for patients. First, the differentially expressed genes
(DEGs) were identified between patients who experienced BCR
and the BCR-free patients in the training set, i.e., TCGA-PRAD
project. Gene Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, and Protein-Protein
Interaction (PPI) Network analysis were utilized to explore the
potential connections among these BCR-related DEGs in TAN
tissues. The univariate Cox regression analysis and the least
absolute shrinkage and selection operator (LASSO) analysis were
performed to further screen these DEGs, yielding a 10-gene
prognostic signature based on TAN tissues. The potential
functions or relatedness among these 10 signature genes were
further demonstrated by the gene-set enrichment analysis
(GSEA). Finally, the prediction accuracy of this new 10-gene
prognostic model, specifically devised for the tests based on TAN
tissues, has been validated using TAN samples from an
independent patient cohort, i.e., E-MTAB-6128.
METHOD

Prostate Cancer Data and Preprocessing
High-throughput RNA-sequencing count data and clinical data
of prostate cancer patients were downloaded from TCGA-PRAD
project using GDCRNAtools (16). From a total of 547 TCGA
patient samples, only 52 TAN samples were selected for this
study. An independent dataset (E-MTAB-6128), which consisted
of mRNA counts data and clinical data of prostate cancer
patients were obtained from the ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/) (17). From a total of 141 E-MTAB-
6128 patient samples, only 26 TAN samples were used for
validation. The potential batch effect (unwanted systematic
bias) between two datasets was eliminated using the function
of “removeBatchEffect” in “limma” package in R. Trimmed mean
of M value (TMM) normalization of the count data was
performed using edgeR. The clinical characteristics for the
prostate cancer patients in both datasets are summarized
in Table 1.

Differential Expressed Gene Analysis
The DEGs in TAN tissues between patients who experienced
BCR and the BCR-free patients were identified using edgeR
package. A twofold change or more and p < 0.05 were used as the
selection criterions for the identification of DEGs.
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Biological Enrichment and PPI
Network Analysis
The GO assay and KEGG pathway analysis were employed to
analyze the BCR-related DEGs through clusterProfiler package
(18). The p-value and adjusted p-value by the Benjamin-
Hochberg method were calculated for each identified pathway.
The PPI interaction network among these BCR-related DEGs
was established by STRING and visualized by Cytoscape (19).
Selection of Prognostic Genes and
Construction of Prognostic Model
The univariate Cox regression analysis was first employed to test
the association between BCR-free survival and the profile of each
identified DEG. The LASSO method was implemented by the
glmnet package in R to screen the survival-relevant genes, with
BCR status (1 for BCR and 0 for BCR-free) being treated as
binary response variable. The optimal lambda value in the
LASSO model was determined by cross-validation to achieve a
minimum estimation error. Finally, the genes with nonzero
coefficients were selected by LASSO analysis for the
construction of a prognostic model based on their expression
in TAN tissues. The linear combination formula for calculating a
risk score (RS) of a patient using this prognostic model is

RS =o
n

i=1
Xibi,

where RS is the risk score of BCR for a patient, n is the number of
genes included in this prognostic model, Xi is the expression level
of the ith gene measured in the patient’s TAN sample, and bi
represents the regression coefficient of the ith gene estimated by
LASSO method. The Kaplan-Meier analysis and log-rank test
were used to test the association between the BCR-free survival
and the RSs calculated by the TAN-tissue-based prognostic
model, with patients being dichotomized into high-risk and
low-risk groups with the median value of the RSs. The p < 0.05
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was adopted as the significance level for these tests. The receiver
operating characteristic (ROC) curve and area under the curve
(AUC) were used to evaluate the prediction accuracy of the
model using “survivalROC” package.

Validation of the Prognostic Model With an
Independent Cohort
Using the exact prognostic model trained by the TCGA-PRAD,
we calculated the RS for the patients in the validation set
(E-MTAB-6128) based on the TAN samples. These validation
patients were also dichotomized into high- and low-risk groups
based on the median RS value. The Kaplan-Meier analysis was
used to test the association between BCR-free survival and the
RS. The ROC curve and AUC were used to assess the prediction
accuracy of the prognostic model.

Biological Function Analysis of the Genes
in the Prognostic Model
To further explore the potential functions of the prognostic genes
in the model, we divided the TAN samples of TCGA-PRAD
dataset into high- and low-risk groups based on the median RS
values calculated by the model, and then performed the
differentially expressed analysis between these two groups
using edgeR package. All the genes (transcriptome) were sorted
by the log2 (fold change) in decreasing order, and then analyzed
by the GSEA analysis in R package clusterProfilter using
“hallmark gene sets”, “KEGG gene sets”, and “Ontology gene
sets” as the annotation sets. These annotation gene sets were
downloaded from the Molecular Signatures Database (MSigDB).
RESULT

Identification of the Differentially
Expressed Genes Between Patients Who
Experienced BCR and BCR-Free Patients
Using TAN Samples
The data for 52 prostate TAN tissue samples, including RNAseq
data and patients’ clinical data, were selected from TCGA-PRAD
project and used as the training set. Five out of these 52 patients
experienced BCR after the surgery (Table 1), forming the BCR
group. From the remaining 47 patients, we selected another five
patients who had the greatest BCR-free survival times to constitute
theBCR-free group. The differential expression analysiswas used to
identify 223DEGs between these two groups based on the selection
criteria of fold change >2 and p < 0.05 (Figure 1A). The heatmap in
Figure 1B shows the expression profiles of these DEGs between
BCR patients and BCR-free patients.

Enrichment Analysis of the Differentially
Expressed Genes
To further explore the potential connection between the genes in
our model and prostate cancer progression, all the 223 DEGs
identified between the BCR group and the BCR-free group in the
training set were analyzed using the GO and KEGGmethodologies
to mine the potential pathways or associated biological
TABLE 1 | Clinical characteristics of selected sample in TCGA-PRAD project,
E-MTAB-6128, and pooled cohort.

Factor TCGA-PRAD
cohort

E-MTAB-6128
cohort

Pooled
cohort

Number 52 26 78
Age (mean ± SD) 60.28 ± 7.32 62.73 ± 5.69 61.1 ± 6.88
Gleason score
≤6 6 19 25
7 40 4 44
≥8 17 3 20
AJCC pathologic T stage
T2 29 23 52
T3 21 3 24
T4 2 –

Preoperative PSA
(ng/ml)

0

≤4 6 4 10
>4 46 21 67
Recurrence-free survival
Yes 5 4 9
No 47 22 69
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characteristics represented by these genes. The results from the GO
analysis showed that the DEGs were enriched in “COP9
signalosome” and “collagen-containing extracellular matrix” in
cellular component (Figure 2A); “cell-substrate adhesion,”
“hormone secretion”, and “hormone transport” in biological
process (Figure 2B); “ErbB-2 class receptor binding” and
“extracellular matrix constituent, lubricant activity” in molecular
Frontiers in Oncology | www.frontiersin.org 4
function (Figure 2C), and “pantothenate and CoA biosynthesis”
and “tryptophan metabolism” in KEGG (Figure 2D).

PPI Network Analysis of the Differentially
Expressed Genes
A total of 52 nodes and 448 interaction pairs were identified in
the PPI network (Figure 3A). The nodes with high topological
A B

FIGURE 1 | Identification of the differentially expressed genes between patients who experienced BCR and BCR-free patients using tumor-adjacent normal
samples. (A) Volcano plot for the differentially expressed genes. The red/green dot represents upregulated/downregulated genes in the BCR group. The horizontal
dashed line represents the cutoff of p < 0.05. The two vertical dashed lines denote the cutoffs of log2 FC <−1 (left) or log2 FC >1 (right), respectively. (B) Heatmap
showing the profiles of the differentially expressed genes in TAN tissues between BCR patients and BCR-free patients.
A B

C D

FIGURE 2 | Gene Ontology and KEGG enrichment analysis of DEGs. (A) Cellular component, (B) biological process, (C) molecular function, and (D) KEGG pathway analysis.
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scores may play important roles in the disease. In this study, the
top 10 nodes (degree ≥8), including prostaglandin-endoperoxide
synthase 2 (PTGS2), synaptosome-associated protein 25
(SNAP25), chromogranin A (CHGA), angiotensinogen (AGT),
neuropeptide Y (NPY), lipoprotein lipase (LPL), serpin family E
member 1 (SERPINE1), synaptophysin (SYP), ATP-binding
cassette subfamily C member 8 (ABCC8), and interleukin 18
(IL-18) were regarded to be the hub nodes of the network
(Figure 3C). The subnetwork of these 10 hub nodes and their
interaction pairs is shown in Figure 3B.
Development of Prognostic Models
Based on Gene Expression Profiles
in Tumor Microenvironment
The univariate Cox regression analysis was first used to analyze
the association between each of the 223 DEGs and BCR-free
survival based on the 52 TAN samples. A total of 25 out of these
223 genes in tumor microenvironment were detected to be
Frontiers in Oncology | www.frontiersin.org 5
significantly relevant to BCR-free survival using the threshold
of p < 0.05 (Table 2). From these 25 potential prognostic genes,
the analysis of the 52 TAN samples using LASSO identified 10
final genes to establish a prediction model, with the optimal
lambda value being set to 0.036 (Figures 4A, B). These 10 genes
included Jade family PHD finger 1 (JADE1), uroplakin 3A
(UPK3A), family with sequence similarity 46 member A
(FAM46A), ATPase H+ transporting V1 subunit B1 (ATP6V1B1),
dual oxidase 2 (DUOX2), G protein-coupled estrogen receptor 1
(GPER1), sphingosine-1-phosphate receptor 5 (S1PR5), leucine-rich
repeat containing 75A (LRRC75A), homeobox C6 (HOXC6), and
docking protein 6 (DOK6). Wilcoxon signed-rank test was
conducted on these 10 genes between TAN tissues and
corresponding prostate cancer tissues in TCGA-PRAD cohort. As
shown in Supplementary Figure S1, FAM46A, ATP6V1B1,
DUOX2, GPER1, S1PR5, and HOXC6 were significantly
differentially expressed between TAN tissues and corresponding
prostate cancer tissues (Wilcoxon signed-rank test, p < 0.05), while
JADE1, LRRC75A, UPK3A, and DOK6 did not show statistically
A

B C

FIGURE 3 | PPI network analysis of the DEGs. (A) The connection among DEGs. (B) Sub-PPI network of the top 10 hub genes in DEGs. The larger circles and blue
to pink color correspond to the higher degrees between genes, and the wider line and blue to pink color refer to the increasing of the combined score. (C) The levels
of degree for the top 10 hub genes in DEGs.
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differential expression between these two types of tissues (Wilcoxon
signed-rank test, p > 0.05). The linear combination formula of the
prognostic model for the calculation of the risk scores (RS) using the
expression values of these 10 genes is

RS = XJADE1 � 0:0048 + XUPK3A

�( − 0:0144) + XFAM46A � 0:0326 + XATP6V1B1

�( − 0:0206) + XDUOX2� ( − 0:0091)

+ XGPER1 � 0:0668 + XS1PR5 � ( − 0:0054)

+XLRRC75A � 0:0020 + XHOXC6 � 0:0246 + XDOK6 � 0:0337

(1)

where RS is the BCR risk score for a patient and Xg represents
the expression level of gene g measured in the patient’s TAN
sample. With this formula, the risk scores for 52 patients in
TCGA-PRAD cohort were calculated. The distribution of the
risk scores, survival status, and expression abundances of 10
genes are shown in Figure 4C. It appeared that GPER1, JADE1,
FAM46A, HOXC6, LRRC75A, and DOK6 were positively
correlated with the risk score and recurrence status, while
UPK3A, S1PR5, ATP6V1B1, and DUOX2 were negatively
associated with risk score and recurrence status. The patients
were then dichotomized into a high-risk group and a low-risk
group, with equal size, by the median-risk score (0.672). In
Figure 4D, Kaplan-Meier analysis showed that patients in the
high-risk group had significantly worse clinical outcomes than
those in the low-risk group (p = 0.023), in regard to BCR. The
ROC analysis indicated that, based on these 52 patients in
TCGA-PRAD project, the prognostic accuracies for 3-, 5-, and
7-year BCR-free survival were 0.913, 0.93, and 0.883, respectively,
using this prognostic model (Figure 4E).
Frontiers in Oncology | www.frontiersin.org 6
Validation of the 10-Gene Prognostic
Model for TAN samples
We further verified the 10-gene TAN-tissue-based prognostic
model using 26 TAN tissue samples from an independent test
cohort (E-MTAB-6128). The exact formula (Equation 1) has
been used to calculate the risk scores for each of these
independent 26 patients. The relations between the expression
of these 10 genes, the risk scores, and recurrence-free survival
status are shown in Figure 5A. Similarly, these 26 patients were
dichotomized into high- and low-risk groups based on the
calculated median RS value, and the Kaplan-Meier analysis
shown in Figure 5B indicated that these two groups had
significantly different BCR outcomes (p = 0.033). The ROC
analysis in Figure 5C showed that the prognostic accuracies
for 3- and 5-year BCR-free survival were 0.68 and 0.713,
respectively, for the 26 patients in E-TAB-6128 dataset. We
then combined 52 patients in TCGA and 26 patients in E-
TAB-6128 to form a large cohort and carried out the same test
on this pooled data using the 10-gene prognostic model. The
results are shown in Figures 5D–F, which also demonstrated the
prediction value of the prognostic model in kthe TAN
samples successfully.

Bioinformatics Analysis of the 10
Prognostic Genes in Tumor
Microenvironment
In order to explore the potential biological mechanisms
involving these 10 prognostic genes, we conducted a GSEA
analysis between high- and low-risk patients, determined by
the 10-gene prognostic model, in the 52 TCGA-PRAD patients.
Significant gene sets are shown in Table 3 and the immune-
TABLE 2 | Univariate Cox regression analysis of DEGs.

Gene Symbol Coef HR Lower 95 Upper 95 p-Value

ENSG00000109101 FOXN1 −1.003 0.367 0.169 0.797 0.011
ENSG00000181350 LRRC75A 1.239 3.452 1.317 9.050 0.012
ENSG00000204618 RNF39 −1.402 0.246 0.082 0.742 0.013
ENSG00000180739 S1PR5 −0.677 0.508 0.298 0.867 0.013
ENSG00000196754 S100A2 −0.511 0.600 0.400 0.901 0.014
ENSG00000206052 DOK6 0.681 1.976 1.141 3.420 0.015
ENSG00000121552 CSTA −0.570 0.566 0.357 0.897 0.015
ENSG00000127129 EDN2 −1.064 0.345 0.142 0.840 0.019
ENSG00000100373 UPK3A −0.386 0.680 0.492 0.940 0.019
ENSG00000171401 KRT13 −0.568 0.567 0.347 0.924 0.023
ENSG00000197757 HOXC6 0.462 1.588 1.062 2.374 0.024
ENSG00000136943 CTSV −1.543 0.214 0.055 0.823 0.025
ENSG00000135414 GDF11 0.804 2.234 1.103 4.526 0.026
ENSG00000140279 DUOX2 −0.542 0.582 0.360 0.941 0.027
ENSG00000119866 BCL11A −0.779 0.459 0.228 0.924 0.029
ENSG00000221818 EBF2 0.383 1.467 1.038 2.073 0.030
ENSG00000164850 GPER1 0.916 2.498 1.088 5.736 0.031
ENSG00000112773 FAM46A 0.669 1.953 1.045 3.648 0.036
ENSG00000160326 SLC2A6 1.265 3.541 1.063 11.796 0.039
ENSG00000124935 SCGB1D2 −0.684 0.505 0.260 0.980 0.043
ENSG00000077684 JADE1 1.014 2.756 1.027 7.399 0.044
ENSG00000108352 RAPGEFL1 −1.477 0.228 0.054 0.963 0.044
ENSG00000043039 BARX2 −0.704 0.495 0.249 0.984 0.045
ENSG00000116039 ATP6V1B1 −0.543 0.581 0.341 0.990 0.046
ENSG00000091879 ANGPT2 0.840 2.316 1.016 5.276 0.046
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related gene sets were visualized as an Enrichment Map
(Figure 6). The results showed that these prognostic genes
were strongly associated with the biological categories related
to the carcinogenic pathway in the high-risk group, e.g.,
myogenesis, epithelial mesenchymal transition, angiogenesis,
KRAS signaling, and oxidative phosphorylation, whereas, P53
pathways and some immune-related pathways, e.g., allograft
rejection and interferon gamma response, were enriched in
low-risk group (adjusted p-values <0.01 and normalized
enrichment score (NES) >1 or NES <−1, Figures 6A, B).
Similar result was obtained in the GSEA analysis between the
high- and low-risk groups using the KEGG gene set.
Carcinogenic pathways, e.g., ECM receptor interaction, focal
adhesion, gap junction, and regulation of actin cytoskeleton,
were enriched in high-risk group, and immune-related pathways,
e.g., allograft rejection, intestinal immune network for IGA
Frontiers in Oncology | www.frontiersin.org 7
production, and primary immunodeficiency, were enriched in
the low-risk group (adjusted p-values <0.01 and NES >1 or
NES < −1, Figures 6C, D).
DISCUSSION

There are not only morphological distinctions between tumors and
their surrounding nontumor tissues but also many other forms of
differences, including pH, allied gene imbalance and telomere
length, stromal behavior, and transcriptional and epigenetic
alteration. The formation of a tumor is typically associated with
the alteration starting from the non-tumor components. The “field
cancerization” theory on tumor microenvironment described a
cumulative process of carcinogenesis in which genetic alterations
are acquired stepwise, leading TAN tissues to an intermediate and
A B

C D

E

FIGURE 4 | The development of the prognostic model based on gene expression profiles in tumor microenvironment (TAN) samples and the evaluation of this
model. (A) LASSO coefficient profiles of the 10 prognostic TAN-related genes. (B) Selection of the optimal lambda in the LASSO model. (C) The risk score, survival
status, and expression abundances of the 10 genes based on the TAN samples in TCGA-PRAD project. (D) Kaplan-Meier survival analysis in terms of BCR-free
survival for the high- and low-risk patient groups. (E) The ROC analysis for the prediction of the 3-, 5-, and 7-year BCR-free survival based on the risk scores
calculated by the 10-gene prognostic model.
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preneoplastic state with morphologically normal but molecularly
altered cells (20). Indeed, many studies have identified the
differences in genomic transcription between healthy tissues and
TAN tissues (10, 11). Since these transcriptional alterations in TAN
Frontiers in Oncology | www.frontiersin.org 8
tissues are caused by the nearby tumor tissue, our hypothesis is the
profiles of such changes may reflect the aggressiveness of the tumor
and, thus, may be leveraged as a signature for predicting cancer
outcomes. Roman-Perez et al. described a multigene (>3,700)
A B

C

D E

F

FIGURE 5 | External validation of the 10-gene prognostic model using independent test set (E-MTAB-6128) and the pooled dataset (TCGA and E-MTAB-6128).
(A) The risk score, survival status, and expression levels of the 10 genes based on the TAN samples in E-MTAB-6128. (B) Kaplan-Meier survival analysis in terms of
BCR-free survival for the high- and low-risk groups in the TAN samples of E-MTAB-6128 database. (C) The ROC analysis for the prediction of the 3- and 5-year
BCR-free survival based on the risk scores calculated by the 10-gene model. (D) The risk score, survival status, and expression levels of the 10 genes based on the
TAN samples in the pooled dataset. (E) Kaplan-Meier survival analysis in terms of BCR-free survival for the high- and low-risk groups in the TAN samples in the
pooled dataset. (F) The ROC analysis for the prediction of the 3-, 5-, and 7-year BCR-free survival based on the risk scores calculated by the 10-gene model.
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signature, derived from 72 extratumoral tissue with breast cancer,
was capable of distinguishing active or inactive transcriptome
phenotype, suggested that the phenotype of the extratumoral
microenvironment may have value as an independent predictor
of ER-positive/hormone-treated patient outcome (21). Wu et al.
built a 73-gene signature of the tumor-adjacent parenchymal image
feature which can stratify breast cancer patients into low- versus
high-risk groups in terms of recurrence-free survival and overall
survival (22). Besides, an advantage of using TAN samples as test
material for disease prognosis is that TAN tissues have a simpler
and more homogenous genetic background when compared with
the tumor tissues. Therefore, if prognostic tests based on TAN
samples cannot completely replace the tumor-based tests, they can
Frontiers in Oncology | www.frontiersin.org 9
at least serve as an efficient companion test to improve
disease prognosis.

Many tumor-tissue based prognostic signatures have been
constructed for prostate cancer. For example, Wang et al. used
three Gleason score-associated genes to construct an outcome
prediction model for prostate cancer (23). Hu et al. developed a
prognostic and predictive model for overall survival and disease-
free survival based on the five autophagy-related genes in
prostate cancer (24). A clinical prediction model was built
using three genes that are associated with prostate cancer BCR
(25). One of our previous works based on the analysis of tumor
tissues developed a 160-gene signature for predicting prostate
cancer BCR (26). Moreover, Li et al. comprehensively evaluated
TABLE 3 | GSEA for high- and low-risk groups based on 10-gene signature.

ID Enrichment score NES p-Value p-Adjust

Hallmark
HALLMARK_MYOGENESIS 0.720 2.485 0.000 0.000
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 0.580 2.034 0.000 0.000
HALLMARK_ALLOGRAFT_REJECTION −0.435 −1.754 0.000 0.000
HALLMARK_TNFA_SIGNALING_VIA_NFKB −0.406 −1.654 0.000 0.001
HALLMARK_UV_RESPONSE_DN 0.492 1.669 0.000 0.001
HALLMARK_INTERFERON_ALPHA_RESPONSE −0.479 −1.797 0.000 0.002
HALLMARK_APICAL_JUNCTION 0.439 1.534 0.001 0.006
HALLMARK_P53_PATHWAY −0.366 −1.487 0.001 0.006
HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.435 1.522 0.001 0.006
HALLMARK_E2F_TARGETS −0.365 −1.483 0.001 0.007
HALLMARK_INTERFERON_GAMMA_RESPONSE −0.359 −1.469 0.002 0.009
HALLMARK_MYC_TARGETS_V2 −0.491 −1.689 0.002 0.010
HALLMARK_ESTROGEN_RESPONSE_EARLY −0.347 −1.418 0.003 0.010
HALLMARK_INFLAMMATORY_RESPONSE −0.366 −1.478 0.003 0.010
HALLMARK_ANDROGEN_RESPONSE −0.416 −1.565 0.004 0.012
HALLMARK_ANGIOGENESIS 0.625 1.684 0.004 0.013
HALLMARK_PANCREAS_BETA_CELLS 0.663 1.649 0.007 0.019
HALLMARK_KRAS_SIGNALING_UP 0.412 1.435 0.007 0.019
KEGG
KEGG_FOCAL_ADHESION 0.593 2.095 0.000 0.000
KEGG_RIBOSOME −0.632 −2.340 0.000 0.000
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 0.708 2.221 0.000 0.000
KEGG_DILATED_CARDIOMYOPATHY 0.686 2.172 0.000 0.000
KEGG_CALCIUM_SIGNALING_PATHWAY 0.571 1.953 0.000 0.000
KEGG_CARDIAC_MUSCLE_CONTRACTION 0.688 2.094 0.000 0.000
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0.488 1.722 0.000 0.001
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 0.621 1.928 0.000 0.001
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 0.585 1.913 0.000 0.001
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −0.411 −1.621 0.000 0.005
KEGG_GRAFT_VERSUS_HOST_DISEASE −0.692 −1.960 0.000 0.005
KEGG_ECM_RECEPTOR_INTERACTION 0.573 1.803 0.000 0.005
KEGG_TYPE_I_DIABETES_MELLITUS −0.683 −1.960 0.000 0.006
KEGG_GAP_JUNCTION 0.558 1.759 0.001 0.007
KEGG_PRIMARY_IMMUNODEFICIENCY −0.674 −1.934 0.001 0.007
KEGG_ALLOGRAFT_REJECTION −0.691 −1.912 0.001 0.009
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.561 1.711 0.001 0.015
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY −0.582 −1.841 0.002 0.015
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION −0.625 −1.851 0.002 0.017
KEGG_NITROGEN_METABOLISM 0.744 1.798 0.002 0.020
KEGG_LONG_TERM_DEPRESSION 0.570 1.694 0.003 0.026
KEGG_PARKINSONS_DISEASE 0.474 1.586 0.003 0.026
KEGG_TYROSINE_METABOLISM 0.650 1.765 0.003 0.026
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.464 1.554 0.005 0.037
KEGG_GLYCEROLIPID_METABOLISM 0.586 1.692 0.006 0.044
KEGG_ASTHMA −0.673 −1.700 0.006 0.044
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the performances of machine learning models and 30 published
prognostic signatures using PCa population cohorts of large sizes
(27). In this study, we identified the DEGs between BCR patients
and BCR-free patients using TCGA-PRAD cohort, and further
screen these DEGs to establish a 10-gene prognostic model
specifically for testing the TAN samples. The model can
calculate an RS for each patient using the expression profiles of
these 10 genes in TAN tissue, and the results showed that high-
risk and low-risk group defined by the RSs had significantly
different BCR-free survival. This model was further validated
successfully using an independent dataset. The comparison
between the prognostic genes in TAN tissues (in this study)
and those in tumor tissues (26) showed that there was no overlap,
suggesting potentially different mechanisms relevant to disease
progression in these two tissue types. Several of the 10 genes in
our TAN-tissue-based model have been reported to play critical
roles in various types of cancer. For example, JADE1 plays a key
role in HBO1 complex to regulate DNA replication initiation and,
on the other hand, serves as a tumor suppressor by inhibiting
proliferation and promoting apoptosis (28). In addition, JADE1
was stabilized by direct interaction with pVHL and directly linked
to Wnt tumorigenesis pathway in renal cancer (29). UPK3A,
which is specific to the urothelium, is involved in the process of
epithelial cell differentiation and cell morphogenesis (30) and has
been reported as a reliable marker for bladder cancer detection
Frontiers in Oncology | www.frontiersin.org 10
(31). It was reported that FAM46A protein was involved in
cellular proliferation and associated with nonsmall cell lung
cancer (32). Nishie et al. revealed the relationship between the
expression of ATP6V1B1 and the intracellular environment of
cancer cells, suggesting the downregulation of ATP6V1B1
affected the resistance to antibody-dependent cellular
cytotoxicity (33). DUOX2, which promoted 5-fluorouracil-
induced epithelial-mesenchymal transition by producing
reactive oxygen species, appeared to play a significant role in
colon cancer chemoresistance and the aggressiveness of this
cancer (34). GPER1 was reported to be involved in the
regulation of cellular growth, proliferation, and tumor
development (35). Moreover, immunohistochemical studies
have shown a positive association between the expression of
GPER1 and the progression of female reproductive cancer (36).

Communication between tumor and surrounding histologically
normal tissue, i.e., tumor microenvironment, is a two-way process,
in which composite and complex mechanisms are involved.
Identification of the commons and differences in biological
pathways between these tissue types will advance our knowledge
of cancer biology. The enrichment analysis showed that both the
160 prognostic genes in tumor tissues (26) and the 10 genes in the
TAN-tissue-based model were significantly enriched by the p53
signaling pathway, indicating a potential crosstalk tunnel between
these two types of tissues. Interestingly, “focal adhesion,” “gap
A B

C D

FIGURE 6 | GSEA analysis between high- and low-risk patients determined by the 10-gene prognostic model, in the 52 TCGA-PRAD patients. (A) Hallmark gene
sets strongly associated with the 10 prognostic gene in high-risk group. (B) Hallmark gene sets strongly associated with the 10 prognostic gene in low-risk group.
(C) KEGG pathways that the 10 genes enriched in high-risk group. (D) KEGG pathways that the 10 genes enriched in low-risk group.
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junction,” and “adipocytokine signaling pathway” were found to be
only activated in TAN tissues from BCR high-risk patients. The
completion of tumor progression or tumor migration relies on
intercellular communications via direct cell-to-cell contact or
through paracrine/endocrine signaling, in which cytokines,
chemokines, and growth factors represent the most common
exchange molecules for signal transition, cell adhesion, and gap
junctions (9). The results of the study indicated that the prognostic
genes included in the 10-gene TAN-tissue-based model likely
participate in prostate cancer progression in tumor
microenvironment and, thus, they are useful biomarkers for the
prediction of clinical outcomes of prostate cancer patients.

One limitation of the study is lacking a validation with a
sufficiently large number of fresh samples which usually requires
enormous effort in clinical practice, relevant management, such as
specimen storage and follow-up with patient, and rigorous gene
expression assay and data analysis. We are in the process of
developing such a tissue bank and a database; however, they will
not be available for a validation study in a few years. TAN tissues
have not been brought to the research focus for decades, thus, only
two datasets, i.e., TCGA-PRAD (RNAseq) and E-MTAB-6128
(Affymetrix Human Gene 2.0 ST Array), have been identified from
public database to test our hypothesis aforementioned. Owing to
the small number of TAN samples available for the study, we had
limited statistical power to identify the prognostic genes with
moderate or minor effects in tumor microenvironment. However,
the results and findings of the study are very promising in spite of
limited TAN samples, which warrants further exploration and
clinical validation. Oncemore TAN tissues become available in the
future, the advanced statistical methods, including BLUP-HAT,
can be used to boost outcome predictability by including a large
number of genes (from genes with major effects to genes with
minor effect) in the regression model.
CONCLUSION

This study developed a new 10-gene prognostic model for
predicting biochemical recurrence-free survival leveraging gene
expression profiles in tumor microenvironment. This innovative
model has been rigorously validated using data from an
independent cohort. Additional novelties of the study include:
(1) Novel prognostic genes for prostate cancer have been
identified in tumor microenvironment. (2) The potential roles
of these prognostic genes in tumor microenvironment have been
uncovered. (3) A common p53 signaling pathway that involves in
prostate tumor progression has been detected between tumors
Frontiers in Oncology | www.frontiersin.org 11
and their microenvironment, indicating a potential crosstalk
tunnel between these two tissue types.
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