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Abstract

Background: Efficient generation of structured dose instructions that enable researchers

to calculate drug exposure is central to pharmacoepidemiology studies. Our aim was to

design and test an algorithm to codify dose instructions, applied to the NHS Scotland

Prescribing Information System (PIS) that records about 100 million prescriptions per

annum.

Methods: A natural language processing (NLP) algorithm was developed that enabled

free-text dose instructions to be represented by three attributes – quantity, frequency and

qualifier – specified by three, three and two variables, respectively. A sample of 15 593

distinct dose instructions was used to test, validate and refine the algorithm. The final

algorithm used a zero-assumption approach and was then applied to the full dataset.

Results: The initial algorithm generated structured output for 13 152 (84.34%) of

the 15 593 sample dose instructions, and reviewers identified 767 (5.83%) incorrect

translations, giving an accuracy of 94.17%. Following subsequent refinement of the

algorithm rules, application to the full dataset of 458 227 687 prescriptions (99.67% had

dose instructions represented by 4 964 083 distinct instructions) generated a structured

output for 92.3% of dose instruction texts. This varied by therapeutic area (from 86.7%

for the central nervous system to 96.8% for the cardiovascular system).

Conclusions: We created an NLP algorithm, operational at scale, to produce structured

output that gives data users maximum flexibility to formulate, test and apply their own

assumptions according to the medicines under investigation. Text mining approaches

can provide a solution to the safe and efficient management and provisioning of large

volumes of data generated through our health systems.

VC The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association. 617

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Epidemiology, 2018, 617–624

doi: 10.1093/ije/dyx264

Advance Access Publication Date: 6 February 2018

Original article

https://academic.oup.com/


Key words: Text mining, natural language processing, dose information, prescriptions

Introduction

As health systems become more digitized, the volume and

complexity of information grow rapidly and place demands

on data providers to adopt new approaches to manage and

provision these data in a form that promotes safe, effective

and efficient use by stakeholders. Medicines are the most

frequently used health technology, accounting for a rising

proportion of health care budgets, and their impact is of

interest to patients, clinicians, manufacturers and payers.1

The consequence is an ever-increasing demand to examine

how medicines are being used in routine clinical practice,

against a reducing evidence base as the medicines regulation

landscape responds to growing public pressure for acceler-

ated access through the concept of ‘adaptive licensing’.2

Drug utilization and pharmacoepidemiology studies

seek to address this by better understanding how we use

medicines in routine care and their effects, intended and

unintended.3–5 Critical to this endeavour is a requirement

for access to quality data on individual drug exposure

across populations.6 The challenge is that most electronic

prescribing systems permit prescribers to record dose in-

structions as free text, not structured data. The conse-

quence is an extensive use of researchers’ time deployed to

transform these data into a usable format by variable

methods, often poorly documented, to calculate drug ex-

posure.7 One solution is the application of rule-based nat-

ural language processing (NLP) methods to rapidly

generate valid structured variables from free text, enabling

drug exposure periods to be constructed consistently and

reproducibly. NLP methods offer the ability to extract

structured or standardized information from free texts in

large volumes by defining sets of rules and lexicons in an

iterative process.8

This approach is not new, with early applications often

seeking to identify the presence of medicine prescribing

attributes within clinical notes9–11 but not permitting calcula-

tion of drug exposure time periods. Shah et al.12 reported the

application of a simple algorithm to a research database to

codify free-text dose instructions to generate a derived daily

dose. Karystianis et al.7 highlighted that the adoption of the

Shah approach limited the ability of researchers to under-

stand potential important variability in dosage information

(e.g. two tablets up to three times daily would generate a sin-

gle average-value daily dose of three tablets). They designed

and tested a model to represent the variability and flexibility

in drug directions, including the concept of minimum and

maximum values for drug dosage, frequency and interval.7

Our study builds on this evidence and reports the design,

testing and routine adoption at scale of a zero-assumption

approach to the codification of free-text dosage information

applied to the National Health Service (NHS) Scotland

Prescribing Information System (PIS).13

Methods

Data source

The PIS is an administrative database recording all NHS

prescriptions prescribed, dispensed and reimbursed in the

community in Scotland.13 The PIS records information for

about 100 million prescriptions per annum, around 98%

of which include a unique person identifier. General practi-

tioner (GP) prescribing accounts for about 95% of records,

and these include an electronic prescription message

containing free-text dose instructions. Other health care

professionals’ prescriptions are largely paper-based, from

which dose instructions are not captured. As the NHS is

the universally used health care system in Scotland, the PIS

provides a comprehensive record of primary care prescrib-

ing for a population of 5.3 million.

Key Messages

• A natural language processing (NLP) algorithm was developed to enable free-text dose instructions from 458 227 687

prescriptions of the NHS Scotland Prescribing Information System (2009–15) to be represented as quantity, frequency

and qualifier.

• The final algorithm after clinical validation generated an overall structured output of 92.3%, which varied by thera-

peutic area (from 86.7% for the central nervous system to 96.8% for the cardiovascular system).

• Researchers can request a free-text dose instruction translated output as part of their PIS data extract for studies of

systemic therapies through the eDRIS service run by NHS National Services Scotland [www.isdscotland.org/Products-

and-Services/eDRIS/].
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The study dataset included all electronic prescription

messages for systemic therapies from April 2009 to May

2015 (inclusive). Each preparation prescribed is identifiable

by a unique code based on the therapeutic groupings of the

British National Formulary (BNF).14 These were used to

identify systemic therapies and exclude topical treatments,

which generally do not include information about the quan-

tity to be administered within the dose instructions. The

free-text dose instructions were initially cleansed to remove

potentially confidential or disclosive information. The dose

instruction free texts were then stratified according to the

frequency with which they occurred (i.e. � 1000, 100–999,

10–99, 2–9 times or once only within the dataset).

Phase 1: Definition of attributes and algorithm development

In common with others,7,12 we recognized that free-text

dose instructions could be represented by three attributes–

quantity, frequency and qualifier–each of which is then speci-

fied by a set of variables. An initial review of the 1000 most

frequently occurring dose instructions identified that quan-

tity and frequency attributes could each be represented by

three variables to define minimum and maximum values and

unit or period of measure, whereas qualifier was represented

by two Boolean variables indicating ‘as directed’ or ‘as

required’ (Table 1). We applied NLP methods to extract

structured output defined by those variables using the Ciao

implementation of the Prolog general purpose programming

language [http://ciao-lang.org]. This was chosen because of

the ease with which it is possible to include grammar syntax

within the executable program.8 Words not associated with

quantity or frequency information were ignored using rules.

These rules checked for defined phrases and tested whether

there existed a variable-length phrase that failed to satisfy

any rule used to identify quantity or frequency information

(e.g. ‘dispense by instalment’, ‘dissolve sachet’).

The 1000 dose instructions were then processed using the

algorithm, and the structured outputs were inspected manu-

ally for completeness and correctness. The rules and lexicons

were modified and extended with the aim of achieving struc-

tured output for at least 85% of the distinct dose instruction

and an error rate <1%. The process was repeated for

sequential aliquots of the next 1000 most frequent instruc-

tions, until all with a frequency �1000 had been processed.

Finally, a random sample of 500 dose instructions from each

of the lower-frequency strata was introduced and the process

repeated. Retrospective checking was performed to ensure

that algorithm changes did not have a negative impact on the

output compared with previous versions.

Phase 2: Clinical validation and refinement

All free-text dose instructions with a frequency �1000,

and a new random sample of 500 from each of the other

strata, were processed by the algorithm. The dose instruc-

tions, their structured outputs and any untranslated

instructions were split into files. Each file was manually

assessed by at least two reviewers from the Farr

Institute@Scotland Pharmacoepidemiology Group, which

included pharmacists, medical clinicians and researchers.

Reviewers were asked to identify any errors and propose

expected structured output for untranslated instructions.

This feedback was used to refine the algorithm further,

with retrospective checking to ensure no impact on the

previously correct structured outputs.

Phase 3: Application of the final algorithm

The finalized algorithm was used to process the free-text

dose instructions for all prescriptions in the dataset by

therapeutic grouping. Output measures were the number

of prescriptions with a structured output produced plus the

number in which an element of discretion was exhibited

(i.e. a range in quantity or frequency, or the presence of a

qualifier, e.g. ‘one or two to be taken 4-6 hourly as

required’).

Results

For the period April 2009 to May 2015, there were

544 783 687 prescriptions with an electronic prescription

message record, of which 458 227 687 related to systemic

therapies. Of these, 456 684 974 (99.67%) had free-text

dose instructions within the message. These dose instruc-

tions were represented by 4 964 083 distinct free-text dose

instructions. A total of 13 593 (0.27%) distinct free-text

dose instructions occurred �1000 times, accounting for

405 743 493 (88.85%) of all prescriptions with a free-text

dose instruction. A further 75 081 (1.5%) distinct dose

instructions occurred between 100 and 999 times within

the dataset and accounted for an additional 20 293 362

(4.44%) prescription items (Table 2).

Phase 1

Initial inspection of the 1000 most frequently occurring

free-text dose instructions affirmed that these could be

represented by three attributes and associated variables.

We adopted a zero-assumption approach (i.e. we did not

assume a minimum quantity or frequency of zero in the

presence of an ‘as required’ qualification). The representa-

tion of dose frequency was, however, modified to differen-

tiate between doses within a period (e.g. twice daily)

and intervals between doses (e.g. every 6 hours) (Table 1).

A quantity unit is often omitted within free-text dose

instructions and, even when present, is often implicit in the

posological dose form (e.g. ‘one [tablet] to be taken at

night’). We therefore modified the rules and lexicon so that
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a quantity unit was only specified within the structured

output when it would impart additional meaning (e.g. ‘mg’

or ‘ml’). Table 3 presents a selection of dose instruction

texts and how these are represented within the structured

model.

Phase 2

A total of 15 593 free-text dose instructions that comprised

all 13 593 distinct instructions occurring � 1000 times

plus 500 from each of the other strata (Table 2) were

reviewed. The algorithm produced structured output for

13 152 (84.34%) instructions, and reviewers identified 767

(5.83%) incorrect translations, giving an algorithm accu-

racy of 94.2%. Additionally, reviewers were able to pro-

vide interpretations for 48% of untranslated dose

instructions that were used to refine the algorithm further.

The most significant change was to differentiate between

dose frequency within a period and specification of an

interval between doses. Reviewers felt that a literal

interpretation of, for example, ‘every 4 hours’ to mean six

times per day, was likely to lead to overestimation of

consumption. Additionally, ‘unit tests’ that automate the

detection of errors introduced by algorithm changes were

implemented.

The final algorithm comprised 23 high-level grammar

rules to identify the three main dose attributes, with a

further 217 rules that identified the values to populate the

specific variable and information within dose instructions

that could be ignored. These were supported by lexicons

containing 1242 words and phrases, including spelling

variants (Table 4).

Phase 3

Table 5 presents, by therapeutic area, the output of the

final algorithm applied to all 458 227 687 prescriptions in

the dataset. Overall, the algorithm generated structured

output for 92.3% of prescriptions, but this ranged from

86.7% for central nervous system (CNS) drugs to 96.8%

for cardiovascular system (CVS) drugs. The proportion of

dose instructions that allowed a degree of discretion (i.e. a

range in quantity or frequency, or the presence of a quali-

fier) was <1% for most therapy areas, but was much

higher for those where drugs are often used to provide

symptomatic relief: musculoskeletal (4.9%); gastrointesti-

nal (5.2%); respiratory (6.7%); and CNS drugs (21.3%),

which encompass pain management.

Discussion

Interpreting and understanding medication dose instruc-

tions relies upon knowing how much and how often a

medicine is to be taken. These are elementary concepts, so

we adopted a pragmatic approach in which we aimed to

transform free-text dose instructions into regular struc-

tured information that could be readily used by research

teams. This study, one of only a small number of published

studies, reports our experience with the application of NLP

approaches at scale to the NHS Scotland national prescrib-

ing dataset. Our study dataset comprised 458 227 687

prescriptions, of which 99.67% had dose instructions

represented by 4 964 083 distinct texts; 13 593 (0.27%) of

these occurred �1000 times, accounting for 405 743 493

(88.85%) of all the prescriptions with a free-text dose

instruction. We developed an NLP algorithm which, on

application to the study dataset, generated an overall struc-

tured output of 92.3% (ranging from 86.7% for CNS

drugs to 96.8% for CVS drugs).

The application of NLP methods to support the inter-

pretation of unstructured dose instructions, still common-

place in electronic prescribing systems, has the potential to

significantly improve the efficiency of conducting drug

Table 1. Structured Dose Instruction Model

Dose attribute Description Variables

Quantity The amount to be taken in

each dose and the unit of

measure, e.g. 5–10 ml

Amount_min

Amount_max

Amount_unit

Frequency The number of times within a

period that a dose should be

taken and the period of

measurement, e.g. 2–3 times

a day

Freq_min

Freq_max

Freq_unit

The interval between doses,

e.g. 4–6 hourly

Interval_min

Interval_max

Interval_unit

Qualifier Boolean variables to indicate

further qualification of dose

or frequency

As_required

As_directed

Table 2. Number of prescriptions by dose instruction frequency

(2009–15) in the NHS Scotland Prescribing Information system

(PIS) dataset

Frequency of

dose instruction

free-text

No. of distinct

dose instructions

Total no. of

prescriptions

� 1000 13 593 405 743 493

100 to 999 75 081 20 293 362

10 to 99 839 322 21 959 830

2 to 9 1 175 767 5 827 969

1 2 860 320 2 860 320

Total 4 964 083 456 684 974
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utilization and pharmacoepidemiology studies; free-text

dose instructions are cumbersome and can be difficult to

interpret and analyse in large volumes. Transformation

into structured dose attributes can enable calculations to

be more easily performed to derive the intended daily dose,

and to estimate the expected duration for which a prescrip-

tion will provide treatment. This is the foundation on

which further work can be performed to roll up prescribing

events for different medicinal products containing the

same active ingredient and combine records that overlap

in time, subject to a persistence window, to generate

measures to estimate adherence and drug eras to explore

clinical outcome and safety.15,16

Our data model shares similarities with the approach

used by Shah et al.12 and built upon by Karystianis et al.7

However, Shah et al. outputted a single numerical value

for the amount to be consumed daily, with a flag to indi-

cate whether this was a calculated average and if consump-

tion was ‘as needed’, whereas Karystianis et al. outputted

more granular information but converted the dose intervals

to the number of times per day and set the minimum

frequency to zero for ‘as required’ prescriptions. Both

methods allow identification of variability within a dose

instruction but lose elements of detail. In contrast, we have

separated dose frequency information according to

whether the instructions are based on a number of doses to

be taken within a period (e.g. twice per day) or with an

interval between each dose (e.g. every 4 hours), and

separately present the variables ‘as required’ and ‘as

directed’ as a qualifier attribute. This is consistent with our

intention of developing a zero-assumption approach to our

data provisioning.

The performance of our algorithm was validated

through manual inspection by a multidisciplinary group,

producing an accuracy of 94.2% (n ¼ 13 152). This com-

pares favourably to an accuracy of 98.8% (n ¼ 1000) from

Shah et al.12 and 90.9% (n ¼ 220) from Karystianis et al.7

Unsurprisingly, our free-text dose instruction data include

many of the issues previously identified by others, includ-

ing misspellings, the use of acronyms and abbreviations

and structural ambiguity.7 Some of these we have

addressed by extending the lexicons used by the NLP algo-

rithm, and others are resolved by the rule-set that looks for

sequences or proximity of words to deduce meaning.

However, our model remains challenged by complex dose

instructions such as those that call for one dose to be taken

for a period of time followed by a different dose (e.g. ‘one

daily for 5 days and then one twice daily thereafter’). Our

final algorithm is a balance between the drive towards

dedicated rules to characterize individual distinct free-text

dose instructions, and maintaining a manageable number

of generic rules.

Our study reports, for the first time, analysis of the level

of translation by individual therapeutic area, identified by

Shah et al. as a limitation.12 The results reflect the com-

plexity and flexibility in treatment regimens adopted in the

Table 3. Examples of dose instructions and their structured output

Quantity Frequency Qualifier

Period Interval

Dose instructions Min Max Unit Min Max Unit Min Max Unit As As

required directed

Take two tablets four

times daily

2 2 4 4 Day

A half to one tablet two

to three times a day

when required

0.5 1 2 3 Day TRUE

10 mg to be taken

weekly

10 10 mg 1 1 Week

Two with each meal 2 2 3 3 Day

Take 2.5 ml twice a day 2.5 2.5 ml 2 2 Day TRUE

Half a tablet twice a day

when required

0.5 0.5 2 2 Day TRUE

Two puffs 6-hrly prn 2 2 Puff 6 6 hour TRUE

One to three every day 1 3 1 1 Day

One or two to be taken

every 4 to 6 hours

1 2 4 6 hour

One twice daily as

directed

1 1 2 2 Day TRUE
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management of acute and chronic disease. For example,

cardiovascular disease had the highest translation rate

(96.8%) and one of the lower rates for dosage flexibility

(0.3%), affirming a level of dosage standardization in

treatment. In contrast, CNS drugs, which include pain

management therapy, illustrated the lowest translation rate

(86.7%) and the highest dosage flexibility (21.3%), a con-

sequence of individual dosage titration often over time in

this therapeutic area. Furthermore, although the extent of

use of qualifiers was relatively low, this also varied by ther-

apeutic area. These data provide useful and important

intelligence for researchers choosing to use real-world

administrative datasets in their studies.

Limitations

This study has a number of limitations. First, the model is

dependent on the prescriber recording a dose instruction

(99.67% in our sample) and including dose and frequency

attributes (92.3%), to enable the algorithm to generate a

structured output. Nevertheless, the present level of trans-

lation supports researchers to readily derive daily dose

exposure for the majority of prescriptions, relying on man-

ual interpretation and/or development of specific rules for

any untranslated instructions. Second, we have built the

NLP algorithm based on only systemic therapies covering

BNF chapters 1–10. This largely omits topical and other

non-oral therapies that account for 15% of prescriptions

within the PIS dataset. However, it is likely that the algo-

rithm would produce some structured output for these; but

elements may be incomplete as prescribers often omit the

quantity and frequency of each dose, using ‘as required’

and ‘as directed’ qualifiers. In these situations, researchers

need to revert to quantity and frequency of supply to

examine drug use. Finally, the design and validity of the

algorithm are based predominantly on a sample of 15 539

distinct dose instructions which focused on the most fre-

quently occurring instructions, and this is likely to explain

the variation by therapeutic area (Table 5). However, clini-

cal validation did include a second random sample from

each frequency stratum in Table 2. Nevertheless, research-

ers should remain vigilant in undertaking quality checks

throughout data transformation and analysis.

Future direction

The algorithm is now (April 2017) in operation and

researchers can request a free-text dose instruction trans-

lated output as part of their PIS data extract through

eDRIS, NHS National Services Scotland [www.isdscot

land.org/Products-and-Services/eDRIS/], the body that pro-

visions national datasets on behalf of NHS Scotland. A 12-

month review of the performance of the algorithm will be

undertaken, including feedback from users of the output,

and this will inform future algorithm versions. Preliminary

feedback from two early studies examining methadone17

and direct oral anticoagulant therapy16 has been positive.

Furthermore, our algorithm was applied to dose instruc-

tions as recorded by GPs, so it should be applicable to and

equally effective with data from other English language

Table 4. Types of rules in final algorithm

Type of rule Description Number

General High level definite clause grammar rules e.g. one or two as reqd every 4 to 6

hours for pain breakthrough dispense weekly quantity qualifier frequency

statement

23

Quantity Rules to identify and interpret the quantity to be taken in each dose e.g. one or

two minimum indicator of range maximum

34

Frequency Rules to identify and interpret instructions to take according to a number of

doses within a period e.g. 2–3 times daily minimum indicator of range maxi-

mum indicator of within period period unit

51

Rules to identify and interpret instructions to take according to intervals

between doses e.g. every 4 to 6 hours indicator of interval between minimum

indicator of range maximum interval unit

19

Qualifier Rules specific to identifying explicit or implicit instructions to take as required 10

Rules specific to identifying explicit or implicit instructions to take as directed 14

Other Rules to identify statements and other information that is not related to quantity,

frequency or qualifier e.g. for pain breakthrough, dispense weekly

89

Lexicons Rules used frequently throughout the program e.g. rules to identify numeric

values whether expressed as numbers or text

388

Keywords and their spelling variants e.g. daily, dialy, dailly 454

Specific keyword combinations that could not be processed by the general rule

sets e.g. 3 times daily 2.5 mls is equivalent to 2.5ml 3 times daily

400
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GP-based prescription datasets, such as the Clinical

Practice Research database (CPRD)18 or The Health

Improvement Network (THIN) database.19

Conclusion

We have presented the successful adoption of a text-

mining approach, through design and application of an

NLP algorithm, as a route to the provisioning of large

volumes of free-text dose instructions, generated through

capturing all electronic prescriptions (about 100 million

per annum) in primary care in Scotland. We have taken a

zero-assumption approach to the codification and produc-

tion of general rules to create the algorithm, ensuring that

users of the data have maximum flexibility to formulate,

test and apply their own assumptions according to the

medicines, population and research questions under inves-

tigation. Data science expertise will become ever more

important to assist the effective and safe management

of ‘big data’, to enable rapid creation of new clinical

knowledge for innovation in health services.
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