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Abstract

Pharmacological inhibition of cardiac hERG K+ channels is associated with increased risk of lethal arrhythmias. Many drugs
reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic
residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless,
some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and
docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations
reveal conformational changes in the binding site induced by mutation Y652A. Loss of p-p-stacking between the two
aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation.
Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of
mutation Y652A and provide a new structural interpretation for the sensitivity differences.
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Introduction

HERG (human ether-a-go-go related gene) encodes the pore-

forming subunit of the voltage-gated potassium channel IKr expressed

in the heart and in nervous tissue [1]. The channel contributes to

modulation of the repolarization phase III of the myocyte action

potential [1–3]. Disruption of hERG channel function, due to

inherited mutations [4], [5], or side effects of drugs, has been linked to

long QT syndrome (LQTS) [6], which may lead to serious

arrhythmia and sudden cardiac death [7], [8]. This phenomenon is

caused by structurally diverse therapeutic compounds including

antiarrhythmics, antihistamines, antipsychotics and antibiotics [9].

Several compounds like terfenadine (SeldaneH) and cisapride

(PropulsidH) had to be withdrawn from the market for this reason.

Consequently, there is an intense interest in understanding the

molecular and structural mechanisms of hERG channel gating and

block. Individual mutations of pore forming residues to alanine

revealed amino acids essential for drug binding. Residues T623, S624

and V625, located at the bottom of the pore helix, and residues G648,

Y652 and F656, located in S6 segments are important binding

determinants for many drugs from diverse chemical classes [1], [10–

21]. Mutations of Y652 and F656 to alanine resulted in 94-fold and

650-fold block decrease for compound MK-499, respectively [10].

Similar strong effects have been found for many structurally unrelated

compounds such as cisapride and terfenadine, suggesting a common

binding region within the aqueous inner cavity [22].

Homology models [23–27] suggest that high affinity binding

determinants Y652 and F656 are arranged in two aromatic rings,

facing the inner cavity (Fig. 1). p-p-stacking interactions as well as

cation-p-interactions with these residues have been proposed to

play a crucial role for block [28]. The importance of the aromatic

side chain at position Y652 is further supported by mutational

studies, indicating that conservative mutations Y652F and Y652W

retain normal sensitivity to high affinity blockers MK-499 and

cisapride [10] while non-aromatic substitutions strongly diminish

block. In contrast, at position F656 hydrophobicity seems sufficient

for high affinity block [16].

The binding mode for blockers such as bepridil, thioridazine or

fluvoxamine differs with respect to Y652. These compounds are

only partially attenuated by mutation Y652A [22], [28–30].

Nevertheless, with the exception of fluvoxamine [28], drugs are

strongly attenuated by mutation F656A, suggesting that they bind

in the inner cavity [12], [31]. In 2009, Xing et al. [32] found that

capsaicin, a pungent irritant occurring in peppers, enhances

hERG block upon mutation of Y652A 4-fold, while F656 was

suggested to be relatively unimportant for block.

The mechanism by which these drugs interact with hERG

channels is largely unknown. Thus, we investigated whether bepridil,

thioridazine, propafenone and capsaicin have different binding modes

compared to cisapride, dofetilide, E-4031, MK-499, terfenadine or

ibutilide. In this study we utilized MD simulations and docking studies

to investigate the different role of Y652 on drug binding.

Results

Flexibility of putative aromatic binding residues in the
hERG cavity

A recently validated homology model of the open hERG pore

(model 6 of Stary et al. [26]) was used as starting point for our
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analyses. Y652 and F656 belong to a cluster of four aromatic

residues, which includes F557 located on helix S5 and F619 from

the P segment (Figure 1A). The conformational flexibility of these

aromatic side chains was analyzed using molecular dynamics

simulations. Figure 1B–C shows the distribution of dihedral angles

x1 (rotation around Ca–Cb atoms) and x2 (rotation around Cb–

Cc atoms) for side chains Y652 and F656 on a 50 ns time scale.

Since our sampling protocol involved sampling at 10 ps intervals

and each channel contains four homologous domains, each plot

contains 20,000 black dots representing the conformations

observed in the simulation. Figure 1B illustrates the rigidity of

the Y652 side chain on the nanosecond time scale. Variations are

observed for the dihedral angle x2 only. The F656 side chain is

more mobile, it can adopt various x1 and x2 conformations. The

multiple observed conformational states suggest inherited flexibil-

ity at position F656 in the open conformation. The side chain of

F557, which is not part of the drug binding site, is relatively rigid.

The phenyl ring of F619 from the P-helix adopts various x1 and x2

conformations (see Figure S1A–B).

Conformational changes induced by alanine mutations
The structural effects of mutations Y652A and F656A were

examined using MD simulations. First, in silico mutants were

generated using the mutagenesis tool in PyMOL, followed by

energy-minimizations. Repeated simulations on a 50 ns time scale

were performed. The stability of the mutant channels, measured as

the root mean square deviation (RMSD) as a function of time is

shown in Figure 2A. The values for WT and Y652 are in the range

of 0.25 nm, the RMSD for the F656A mutant is slightly higher; it

reaches 0.3 nm after 50 ns. The increased RMSD is not due to

stability differences in S6 helices (Figure 2C) but due to less stable

loops connecting S5 and P helix (Figure 2B).

Replacement of the planar aromatic moiety in position Y652

altered the conformation of residue F656, which was stabilized by

parallel displaced p-p-stacking interactions in WT. Calculations by

Tsuzuki et al. [33], indicate that the energy contribution for this

type of aromatic-aromatic interactions is in the range of

21.48 kcal/mol. Due to the loss of these interactions in the

Y652A mutant the side chain of F656 rotated away from the pore

axis allowing edge to edge shaped p-p-stacking interactions with

F557 from the neighboring S5 segment (see Figure 3A–C). The

interaction energies of edge to edge p-p-stacking are approxi-

mately 1 kcal/mol stronger than parallel displaced p-p-stacking

(22.48 kcal/mol vs. 21.48 kcal/mol [33]). Figure 3D compares

the x1 angle of side chain F656 in WT and Y652A mutant

channels as a function of time. The x1 angle is predominantly in

Figure 1. Location and flexibility of putative aromatic binding residues in hERG. (A) p-p-stacking interactions between binding
determinants Y652 and F656, located on helix S6 and residues F619 (P-helix) and F557 (S5 helix). Side chains are shown as green sticks (B). x1/x2 plot
of Y652 and F656 (C) obtained from 50 ns MD simulations.
doi:10.1371/journal.pone.0028778.g001

Figure 2. Stability of WT and mutant hERG channels. (A) Backbone RMSD of the Y652A (blue) and the F656A mutant (brown) compared to WT
channel (black). (B) Comparison of the root mean square fluctuations (RMSF) for WT and mutant channels. Only the P-helix and connecting loops are
shown. (C) RMSF of S6 helix.
doi:10.1371/journal.pone.0028778.g002

Conformational Changes in the hERG Binding Site
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the range of 2180u to 260u in WT (trans orientation). In the

mutant channel this value is changed to 260u to 60u. The more

favorable edge to edge stacking energy might explain why the

F656 side chain adopted a gauche(2) conformation in 80% of the

simulations. Gauche(+) and trans conformations were rarely

observed (results for the rerun are shown in Figure S3).

MD simulations on the F656A mutant did not reveal significant

conformational changes of aromatic residues compared to WT

(see Figure S1A–C). Therefore, this mutant was not analyzed

further.

Docking studies on WT and Y652A mutant channels
We next analyzed the effects of the Y652A mutant induced side

chain orientation of residue F656 on drug block. Eleven drugs

(Figure 4 and Figure 5) were docked into 20 WT and 20 Y652A

snapshots (every 5 ns from two independent runs) derived from

50 ns MD simulations. For each blocker, the ten most frequent

occurring docking poses of each drug (n = 100) were analyzed with

respect to aromatic ring stacking and/or hydrophobic interactions

with binding residues Y652 and F656. Table 1 summarizes these

interactions and lists the number of t-shaped (t), edge-to-edge (e)

and parallel p-p-stacking (p) interactions. Gold Chemscores

(Gold.Chemscore.DG) are listed in Table 2.

Drugs can be divided into three groups according to their

binding behavior. For drugs that have been shown to be only

partially attenuated by a tyrosine to alanine mutation in position

652 [22], [28–30], no or slight changes in binding behavior

compared to WT were observed (Table 1 and Figure 5). The

binding mode for thioridazine was identical in WT and Y652A.

Three aromatic interactions were predicted in both cases

(Figure 5). Docking studies with bepridil suggested that the total

number of aromatic interactions remained constant in the mutant

channel. However, in the WT channel this drug formed one

parallel p-p-stacking interaction with Y652 and one edge-to-edge

interaction, while in the Y652A mutant channel, two edge-to-edge

interactions with F656 were predicted (Figure 5). The number of

aromatic interactions for propafenone and GPV009 did not

change in Y652A. The only modification observed was a change

of one t-shaped to an edge-to-edge stacking interaction with

propafenone.

Figure 3. Side chain rearrangements of F656 induced by mutation Y652A. (A) x1/x2 side-chain angles of F656 for WT (black) and Y652A
(blue). The green and blue arrows indicate the approximate conformations of the F656 side chains shown in B and C. (B) Representative side-chain
conformations of WT and Y652A mutant (C) channel snapshots taken from MD simulations. (D) F656 x1 dihedral angles for WT (black) and Y652A
(blue) in all four domains as a function of time.
doi:10.1371/journal.pone.0028778.g003

Conformational Changes in the hERG Binding Site
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In agreement with experimental data, cisapride, dofetilide, E-

4031, ibutilide, MK-499 and terfenadine were predicted to

strongly interact with aromatic side chains Y652 and F656. While

several favorable aromatic interactions to both aromatic side

chains were predicted for cisapride and MK-499 in the WT

channel, docking studies performed with the Y652A mutant

channel indicated complete loss of aromatic interactions. All other

drugs in this group had drastically reduced aromatic and

hydrophobic interactions with F656 in the Y652A mutant

channel. For example, in the WT channel terfenadine was

predicted to interact with Y652 side chains from three domains

and two F656 residues. In the mutant channel only one edge-to-

edge interaction with the F656 side chain remained (see Figure 5

and Figure S2).

Important changes between the Y652A sensitive and Y652A

insensitive drug groups were also observed considering the

conformation of the drugs. Docking results suggest that thiorid-

azine, bepridil, propafenone and GPV009 fold mostly into U-

shaped conformations, while extended conformations parallel to

the pore axis were not observed in either WT or Y652A mutant

channel. In contrast, most drugs that are highly sensitive to

mutation Y652A change their conformation from U-shaped in the

WT channel to a stretched conformation longitudinal to the

channel axis (Figure 5).

Figure 4. Structures of hERG blockers examined in this study. Drugs are clustered into three groups: group 1 (orange frame) includes
blockers which are relatively insensitive to mutation Y652A22,28–30, group 2 (green frame) shows Y652 sensitive drugs10,18,22,31 and group 3 (blue
frame) shows capsaicin whose affinity is increased by mutation Y652A32.
doi:10.1371/journal.pone.0028778.g004

Conformational Changes in the hERG Binding Site
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Capsaicin possibly belongs to a third class of drugs, which is

affected by the Y652A mutation in a different way. To the best of

our knowledge, it is currently the only known drug that shows

increased affinity for the Y652A mutant. Gold predicted one

aromatic interaction (parallel or edge-to-edge) for WT and Y652A,

respectively. Docking suggests that the number of hydrogen bonds

with selectivity filter residues T623 and S624 increased in the

mutant channel (two H-bonds to T623 and one H-bond to S624).

In the WT channel only two hydrogen bonds between capsaicin

and S624 were predicted (Figure 6).

MD simulations support different drug binding modes in
WT and Y652A channels

To further support our hypothesis, 10 ns MD simulations on all

docked poses shown in Figure 5 and Figure S2 were performed.

Generally, the docked binding poses are stable on the nanosecond

time scale. The Y652A insensitive compounds bepridil, thiorida-

zine, propafenone, and GPV009 retain their compact binding

mode in the channel pore in WT and Y652A mutant channels

(Figure 5A–F, Figure S2A–B). For the drugs which are sensitive to

mutation Y652A, simulations strongly support the suggested drug

rearrangement from the horizontal binding mode in WT to a

stretched conformation along the channel axis in the mutants

(Figure 5G–L, Figure S2C–H). This provides a possible explana-

tion for the experimentally observed affinity loss. Only E-4031

does not remain stable in the Y652A mutant (Figure 5J).

Additionally, MD simulations reveal which functional groups of

the compounds are flexible. For example, while the basic scaffold

of the propafenone molecule (acylphenyloxypropanolamine)

remains rather rigid, the side chain adopts various conformations.

The movies S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10 show the

behavior of all ten drugs in WT and mutant channels during the

10 ns MD simulation runs.

Surprisingly, the conformational flexibility of the Y652 and

F656 side chains is not influenced when drugs reside in the cavity

(for examples see Figure S6). In contrast, conformational changes

of the aromatic side chains sometimes induce changes in drug

orientation (for example see behavior of E-4031 in the movie S5).

Discussion

Direct block of hERG channels by structurally diverse drugs is

mediated by aromatic side chains Y652 and F656 (see Figure 1 for

Figure 5. Docking (cyan transparent sticks) and MD poses. at the end of the simulation (blue sticks) of bepridil (AB), thioridazine (CD),
propafenone (EF), cisapride (GH), terfenadine (IJ) and ibutilide (KL) in WT and Y652A (from left to right). Y652 and F656 are shown as green lines; A652
is shown as orange lines. The arrow displays the movement of the heptyl chain of ibutilide.
doi:10.1371/journal.pone.0028778.g005

Conformational Changes in the hERG Binding Site
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location of residues) [17]. Mutation of either residue to alanine

dramatically reduces drug potency, implying a direct interaction

with these residues. In agreement with this hypothesis, various

drug docking studies predict binding modes, favoring p-p-stacking

interactions with Y652 and F656.

More recently, compounds have been identified, which are

insensitive to mutation Y652A, while displaying greatly reduced

affinity for the F656A mutant [22], [28], [29]. The lack of

sensitivity of these molecules could simply result from binding ‘‘less

deeply’’ in the cavity, possibly below the position of Y652.

Alternatively, replacement of Y652 might induce allosteric effects

on drug binding rather than directly disrupting binding. For the

reasons discussed in detail below, we favor the second hypothesis.

Our MD simulations suggest that deletion of the aromatic side

chain in position Y652 induces allosteric changes in the drug

binding site, with important consequences for drug binding.

Specifically, loss of p-p-stacking interactions induce a conforma-

tional change of the F656 side chain from a cavity facing orientation

(x1 values in the range of 2180u) to a cavity lining conformation (x1

values in the range of 260u) (compare Figure 1A–C and 3A–C).

This conformation is stabilized by energetically favorable edge-to-

edge stacking interactions with the F557 aryl ring, located on helix

S5. Docking studies comparing the binding modes of 11 hERG

blockers revealed different behavior for rigid compact molecules

versus compounds with more extended geometries. Only the first

class of drugs could still favorably interact with the reoriented F656

residues from several subunits in the Y652A mutant (Figure 5,

Table 1 and Figure S2). These results correlate well with

experimental Y652A sensitivities and are in agreement with a

ligand based hypothesis by Stansfeld et al. [34], [35] derived from a

study of 20 LQT compounds with varying Y652A sensitivities.

Besides, the importance of the orientation of the Y652 and F656

side chains for high affinity block has been elegantly demonstrated

by Chen et al. [36] Their study showed that the decreased drug

affinity of non-inactivating hERG mutant channels is not caused by

inactivation per se but by inactivation gating-associated reorienta-

tion of residues located in the S6 domain.

It has been reported by Zachariae et al. [37] that longer

molecules bind in a perpendicular orientation to the channel axis

and therefore may interact with all four domains of the channel. In

our WT drug docking studies we observe the same perpendicular

positioning. In the Y652A mutant, the orientation of extended

compounds, sensitive to mutation of Y652 is changed to a

stretched conformation parallel to the channel axis. These drug

reorientations in the Y652A mutant are further supported by a

total of 200 ns (10 and for WT and mutants, respectively) MD

simulations.

In contrast to an interesting study by Huang et al. [38], who

observed an induced fit of a toxin binding to the extracellular side

of the selectivity filter in a shaker K+ channel, we did not see

conformational adaptions of Y652 or F656 upon drug binding to

the hERG inner cavity (Figure S5). This suggests different drug

receptor interactions for different binding sites, which might be in

part explained by the different nature of interactions (mainly

electrostatic versus mainly aromatic/hydrophobic). Interestingly,

conformational changes of the aromatic side chains sometimes

even induce changes in drug orientation (see movies S1, S2, S3,

S4, S5, S6, S7, S8, S9, and S10).

In a recent review by Zhou et al. [39], it was pointed out that

aromatic side chains are predestinated to serve as channel gates,

preventing ion flow in the closed conformation. Detailed

inspection of our recently published closed hERG homology

model [40] indeed reveals an optimal arrangement of the F656

Table 1. Aromatic ring stacking and hydrophobic
interactions (HIA) between Y652 and F656 side chains and
hERG antagonists in WT and Y652A mutant channels.

Compound WT Y652A

Y652 F656 g HIA A652 F656 g HIA

Thioridazine - 3 (t,p,e) 3 - 3 (t,p,e) 3

Bepridil 1 (p) 1 (e) 2 - 2 (e) 2

Propafenone 2 (t,e) 2 (t,e) 4 - 2 (e) 2

GPV0009 3 (t,2e) 1 (e) 4 - 1 (e) 1

Capsaicin - 1 (p) 1 - 1 (e) 1

Cisapride 2 (p,e) 2 (t,p) 4 - - 0

Dofetilide 2 (t,e) 2 (p,e) 4 - 1 (e) 1

E-4031 3 (t,2e) 2 (e) 5 - 2 (p,e) 2

Ibutilide 3 (e) - 3 - 1 (p) 1

MK-499 1 (e) 1 (e) 2 - - 0

Terfenadine 3 (t,2e) 2 (t,e) 5 - 1 (e) 1

(t = T-shaped stacking, p = parallel p-p-stacking, e = edge-to-edge interactions).
doi:10.1371/journal.pone.0028778.t001

Table 2. Free energies of binding calculated by Chemscore
(DGbind kJ/mol) for WT and Y652A.

Drug
Chemscore
WT

Chemscore
Y652A

Difference
WT vs Y652A

Thioridazine 230.67 227.83 22.84

Bepridil 232.92 231.23 21.69

Propafenone 232.88 229.75 23.13

GPV0009 235.51 231.43 24.08

Capsaicin 231.34 232.85 1.51

Cisapride 230.86 222.96 27.90

Dofetilide 230.00 220.67 29.33

E-4031 235.59 222.82 212.77

Ibutilide 233.69 221.52 212.17

MK-499 230.18 223.19 26.99

Terfenadine 235.21 230.51 24.70

doi:10.1371/journal.pone.0028778.t002

Figure 6. Interactions of capsaicin with the selectivity filter in
WT (A) and Y652A mutant (B). Selectivity filter residues involved in
capsaicin binding are shown as green sticks; residues of the TSV motif
not interacting with capsaicin are shown as grey lines. Hydrogen bonds
are depicted as black dots.
doi:10.1371/journal.pone.0028778.g006
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side chains to prevent ion flow. In this study, the side chain

reorientations in the Y652A mutant most likely do not influence

ion conductance in the open state, however we cannot exclude

gating-associated reorientations. It was beyond the scope of the

current study to analyze mutation induced effects in the closed

channel state. Nevertheless, future studies might provide an

answer to this important question.

To further support the allosteric side chain rearrangement

hypothesis, we introduced a phenylalanine at position Y652,

which was shown to restore WT-like binding behavior for the high

affinity compound MK-499 [20]. MD simulations show that in the

Y652F mutant the aromatic side chains of F557, F619 and F656

behave similar as in the WT channel (see Figure S4A–D). In

agreement with experimental data, we find similar docking poses

for WT and Y652F channels with compound MK-499.

Allosteric effects on drug block are also used to explain the

effects of several inactivation deficient mutants on hERG block.

For example, inactivation deficient mutants N588K and S620T

exhibit reduced affinity for dofetilide and other high affinity

blockers [41]. However, none of these residues is assumed to

directly interact with these compounds, since both are located

distantly from the binding site.

In conclusion, MD simulations of WT and Y652A mutant

channels in combination with drug docking provide a new

structural interpretation for the diverse modulatory effects of

residue Y652 on different hERG blockers ranging from strong

affinity decrease (e.g. cisapride) upon mutation to affinity increase

in the case of capsaicin. The results provide a starting point for

future investigations focusing on further residues of the aromatic

cluster in the hERG binding site. For example, studies on mutants

of F557 and F619 will provide a better understanding of the still

poorly described mechanisms underlying hERG block.

Materials and Methods

Molecular dynamics simulations
MD simulations were performed with Gromacs v.4.5.4. [42]

Two independent simulation setups using either the OPLS-all-

atom force field [43] or the amber99sb force field [44] were used

to analyze the dynamics of hERG WT and mutant channels.

Mutants Y652A, Y652F and F656A were generated using the

mutagenesis tool in PyMOL 0.99 [45] In the OPLS setup, hERG

WT and mutant channels were embedded in an equilibrated

simulation box of 241 palmitoyloleoylphosphatidylcholine (POPC)

lipids. The channels were inserted into the membrane as described

previously [26]. K+ ions were placed in the channel at K+ sites S0,

S2, and S4, with waters placed at S1 and S3 of the selectivity filter

[46]. Cl2 ions were added randomly within the solvent to

neutralize the system. Lipid parameters were taken from Berger

et al. [47]. The solvent was described by the TIP4P water model

[48]. Electrostatic interactions were calculated explicitly at a

distance ,1 nm and long-range electrostatic interactions were

calculated at every step by particle-mesh Ewald summation [49].

Lennard–Jones interactions were calculated with a cutoff of 1 nm.

All bonds were constrained by using the LINCS algorithm [50],

allowing for an integration time step of 2 fs. The Nose-Hoover

thermostat was used to keep simulation temperature constant by

weakly (t = 0.1 ps) coupling the lipids, protein and solvent

(water+counter-ions) separately to a temperature bath of 300 K.

The pressure was kept constant by weakly coupling the system to a

pressure bath of 1 bar using a semi-isotropic Parrinello-Rahman

barostat algorithm with a coupling constant of 1 ps. Prior to

simulations, 1000 conjugate gradient energy-minimization steps

were performed, followed by 2 ns of restrained MD in which the

protein atoms were restrained with a force constant of 1000 kJ/

mol21 nm22 to their initial position. Ions, lipids and solvent were

allowed to move freely during equilibration. The systems were

then subjected to 50 ns (15 ns Y652F) of unrestrained MD, during

which coordinates were saved every 10 ps for analysis. Residues at

the N- and C-termini were considered as uncharged, as neither lie

at the actual termini of the complete channel. In the amber99sb

setup hERG WT and mutant channels were embedded in an

equilibrated membrane consisting of 280 dioleolylphosphatidyl-

choline (DOPC) lipids. Lipid parameters were taken from Siu,

et al. [51] and the TIP3P water model [48] was utilized. All further

parameters and steps were carried out as described above. Drug

topologies were generated using antechamber, which is part of the

Amber 11 program package [52]. Charges were taken from

Gaussian runs described in the docking section below. After

energy-minimization (1000 conjugate gradient energy-minimiza-

tion steps), unrestrained 10 ns MD simulations for each compound

were carried out for WT and Y652A (200 ns in total) at 310 K.

Drug docking
Coordinates of the drugs were generated with Gaussview 5 [53]

and the geometry optimized with HF/3-21G implemented in

Gaussian09 [53]. For thioridazine, propafenone, GPV009,

terfenadine, MK-499 and ibutilide (R)- and (S)-conformations

were docked. As no differences could be observed between both

enantiomers, only the (R)-conformation was used for further

analysis. Docking was performed with the program Gold 4.0.1

[54] using the Gold and Chemscore scoring functions. The

coordinates of the geometric center calculated among the Y652

and F656 residues were taken as binding site origin. The binding

site radius was set equal to 10 Å. 100,000 operations of the GOLD

genetic algorithm were used to dock the selected compounds into

the WT and mutant channels. Snapshots after 8, 10, 15, 20, 25,

30, 35, 40, 45 and 50 ns were taken from our 50 ns or 15 ns

(Y652F) MD trajectories. The best ranked 100 poses of each

docking run were used for visual analysis of binding. From the ten

most occurring positions the numbers of aromatic interactions

were averaged.

Supporting Information

Figure S1 x1/x2 plots for F557 (A), F619 (B) and Y652 (C)
in hERG WT channel (black) and F656A (brown).

(TIF)

Figure S2 GPV009 (AB), MK-499 (CD), E-4031 (EF) and
dofetilide (GH) in WT and Y652A (from left to right).
Cyan transparent sticks show the docking pose and blue sticks the

MD pose and the end of the simulation. The black arrow indicates

the moving direction of E-4031 (the dynamical movement of the

drug can be observed in the attached movie).

(TIF)

Figure S3 MD simulation rerun (50 ns) for Y652A
mutant. RMSD plot (A), x1/x2 plot for F656 (B) and the
F656 x1 dihedral angles in all four domains as a function
of time (C) show no significant deviation from the
original run.
(TIF)

Figure S4 x1/x2 plots for F557 (A), F619 (B), Y/F652 (C)
and F656 (D) in hERG WT channel (black) and Y652F
(green). The 50 ns MD simulation shows that the flexibility of

the aromatic side chains in the mutant is comparable to the WT

channel.

(TIF)
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Figure S5 Y652 (A) and F656 (B) x1 dihedral angles as a
function of time for WT channel without ligand (black)
and with bound bepridil (blue) and dofetilide (red). C

shows the x1 dihedral angles of F656 in the Y652A mutant as a

function of time.

(TIFF)

Movie S1 Behavior of docked drug cisapride in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)

Movie S2 Behavior of docked drug terfenadine in a
10 ns MD simulation. In the first part of the movie, the drug

behavior in the WT is shown, followed by the Y652A mutant

simulation. Y652 and F656 are shown as green lines; A652 is

shown as orange lines.

(WMV)

Movie S3 Behavior of docked drug ibutilide in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)

Movie S4 Behavior of docked drug MK-499 in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)

Movie S5 Behavior of docked drug E-4031 in a 10 ns MD
simulation. In the first part of the movie, the drug behavior in

the WT is shown, followed by the Y652A mutant simulation. Y652

and F656 are shown as green lines; A652 is shown as orange lines.

(WMV)

Movie S6 Behavior of docked drug dofetilide in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)

Movie S7 Behavior of docked drug bepridil in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)

Movie S8 Behavior of docked drug thioridazine in a
10 ns MD simulation. In the first part of the movie, the drug

behavior in the WT is shown, followed by the Y652A mutant

simulation. Y652 and F656 are shown as green lines; A652 is

shown as orange lines.

(WMV)

Movie S9 Behavior of docked drug propafenone in a
10 ns MD simulation. In the first part of the movie, the drug

behavior in the WT is shown, followed by the Y652A mutant

simulation. Y652 and F656 are shown as green lines; A652 is

shown as orange lines.

(WMV)

Movie S10 Behavior of docked drug GPV0009 in a 10 ns
MD simulation. In the first part of the movie, the drug behavior

in the WT is shown, followed by the Y652A mutant simulation.

Y652 and F656 are shown as green lines; A652 is shown as orange

lines.

(WMV)
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