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Central tendency effects in time 
interval reproduction in autism
Themelis Karaminis1,2, Guido Marco Cicchini3, Louise Neil1, Giulia Cappagli1,4,  
David Aagten-Murphy5, David Burr3,6 & Elizabeth Pellicano1,6

Central tendency, the tendency of judgements of quantities (lengths, durations etc.) to gravitate 
towards their mean, is one of the most robust perceptual effects. A Bayesian account has recently 
suggested that central tendency reflects the integration of noisy sensory estimates with prior 
knowledge representations of a mean stimulus, serving to improve performance. The process is 
flexible, so prior knowledge is weighted more heavily when sensory estimates are imprecise, requiring 
more integration to reduce noise. In this study we measure central tendency in autism to evaluate 
a recent theoretical hypothesis suggesting that autistic perception relies less on prior knowledge 
representations than typical perception. If true, autistic children should show reduced central tendency 
than theoretically predicted from their temporal resolution. We tested autistic and age- and ability-
matched typical children in two child-friendly tasks: (1) a time interval reproduction task, measuring 
central tendency in the temporal domain; and (2) a time discrimination task, assessing temporal 
resolution. Central tendency reduced with age in typical development, while temporal resolution 
improved. Autistic children performed far worse in temporal discrimination than the matched controls. 
Computational simulations suggested that central tendency was much less in autistic children than 
predicted by theoretical modelling, given their poor temporal resolution.

The ability to estimate time is important in many everyday situations, from crossing a busy street to turn-taking 
in conversations and social interactions. Timing abilities are also involved in the development of other cognitive 
skills. For example, it has been proposed that time-processing difficulties underlie the atypical organisation of 
the phonological system in children with language impairments, which in turn affects other aspects of language 
and reading development in these children1. Anecdotal reports suggest that autistic individuals also have a par-
ticularly poor sense of time, presenting difficulties in gauging how much time has passed2,3. However, the nature 
and the extent and the implications of timing difficulties on the development of the autistic child are less well 
understood4.

Like other judgements of quantities (e.g., length, number, colour, etc.), time duration estimates present the 
characteristic tendency to gravitate towards their mean value, often referred to as central tendency5,6. In the tem-
poral domain, relatively short or relatively long time intervals will be over- or under-estimated, while duration 
estimates of the same time intervals will be shorter or longer depending on whether they are presented in the 
context of short or long intervals (context-dependency7).

A Bayesian account has recently been put forward to explain central tendency effects in time interval repro-
duction8,9. According to this account, the magnitude of central tendency reflects the extent to which noisy sensory 
signals (‘likelihoods’ of sensory observations) are integrated with internal representations of a mean value (‘prior 
knowledge’ about temporal statistics) to generate final (‘posterior’) perceptual judgements. The more noisy and 
ambiguous the sensory estimates the more final perceptual judgements rely on prior knowledge representations, 
representing a trade-off between accuracy and reliability (some accuracy sacrificed in favour of improvements in 
reliability). Priors therefore improve the efficiency of computations by reducing overall noise or error.

This Bayesian account of central tendency explained the patterns of performance of participants with different 
levels of musical training in a time interval reproduction task (measuring central tendency) and a time bisection 
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task (measuring temporal resolution) presented across two modalities, auditory or visual8,10. For example, in 
the visual modality (time intervals presented using flashes), non-musician adults and string musicians showed 
lower temporal resolution and increased central tendency compared to percussionists, who reproduced temporal 
intervals veridically. By contrast, in the auditory modality (time intervals presented using ‘beep’ sounds), all three 
groups presented very high temporal resolution and negligible central tendency effects, i.e., they reproduced 
intervals either veridically or with a systematic bias. Computational modelling of the combined results (two tasks, 
three groups of participants, two modalities) suggested that prior knowledge and sensory signals were integrated 
flexibly, i.e. with differential weighting, across groups and across modalities in a way that achieved the minimisa-
tion of relative error in all cases (i.e. it was optimal, according to the ideal observer model).

Two outstanding questions are how central tendency effects such as those studied in the study of Cicchini et al.8  
manifest across development and how these effects differ if individual variability in cognitive and perceptual 
development is taken into account. With regards to the first question, no existing studies (to our knowledge) 
have assessed the development of central tendency per se in time interval reproduction. However, developmental 
studies have shown that children perform better with age in time interval reproduction tasks, presenting mainly 
improvements in precision rather than accuracy11,12. Studies have also shown that temporal resolution abilities are 
gradually refined in childhood, presenting marked changes between the ages of 5 and 8 years13–15.

A recent study by Sciutti et al.7 focused on central tendency and context dependency effects in typical devel-
opment in the spatial domain. These authors administered a child-appropriate spatial interval reproduction/
spatial interval discrimination paradigm to 7 to 14 year-old children and adults. Both child and adult partici-
pants presented central tendency and context dependency effects in the spatial interval reproduction task and the 
magnitude of these did not change with age. Computational modelling of the cross-sectional data suggested that 
children weighted prior knowledge about the mean with sensory signals in a constant manner across develop-
ment and similarly to adults. Given that children presented marked developmental improvements in their spatial 
resolution (spatial interval discrimination task), Sciutti et al.7 argued that the Bayesian “use of prior knowledge” 
strategy is useful for restraining sensory noise across development.

For the second question, how central tendency effects might differ because of individual variability in cogni-
tive and perceptual development, it is particularly relevant to examine these effects in children diagnosed with 
autism. Autism is a highly heterogeneous neurodevelopmental condition, which is perhaps better known for 
its striking effects on social interaction and communication. Yet, autism is also characterised by atypicalities 
in sensation and perception16–18. Anecdotal reports suggest that, autistic individuals have difficulties with time, 
particularly in gauging how much time has passed2,3. However, studies that have experimentally tested time pro-
cessing in autistic individuals have produced mixed and inconclusive results4. For example, a study by Maister 
and Plaisted-Grant19 showed that while children aged 8 to 13 years were less accurate and more variable than age- 
and ability-matched typical children in the reproduction of short (<​2 sec) and long (>​45 sec) stimuli presented 
in the visual modality, no difficulties were found in reproducing durations 4–30 sec. Difficulties with temporal 
interval reproduction in autism have also been reported in children/adolescents20 and adults21, however other 
studies22 have found no such difficulties. Furthermore, with regards to temporal resolution, some studies23,24 
found reduced resolution in children and adolescents with autism, while others22,25 found no such difficulties.

The explicit examination of the role of prior information in perception is important to the theoretical under-
standing of autism. A recent account of autistic perception by Pellicano and Burr26 (see also related accounts27–31) 
has proposed that less precise or attenuated priors, within a model of Bayesian perceptual inference, might be 
responsible for the unique perceptual experiences of autistic people. Attenuated priors should lead to a tendency 
to perceive the world in a more ‘accurate’ way, in the sense that sensory signals are modulated to a lesser extent by 
prior experience, resulting in less systematic biases in perception (note that increased accuracy does not neces-
sarily imply overall ‘better’ perception, see Teufel et al.29 for a discussion). A direct implication is that autistic chil-
dren should present reduced central tendency effects in a time interval reproduction task, than those predicted by 
the Bayesian model of central tendency given their temporal resolution.

In the current study, we evaluated this prediction with a developmentally appropriate and engaging version 
of the time interval reproduction task used by Cicchini et al.8, which measured central tendency and error of 
accuracy and reliability in time reproduction; together with a time discrimination task, which assessed temporal 
resolution (Fig. 1). We first established the typical developmental trajectory for central tendency effects in time 
interval reproduction by administering our paradigm to typically developing children in the age range 6 to 14 
years old and adults (similar to the study of Sciutti et al.7 on spatial interval reproduction). Next, we examined 
central tendency effects in a group of autistic children between 6 to 14 years old and compared their performance 
to a subset of the typically developing children who took part in the study, of similar age and language and 
reasoning abilities. Finally, we employed computational modelling techniques used in the previous studies7,8 to 
assess the relative weighting of prior knowledge and sensory input in developmental groups and children with 
and without autism and the extent to which the integration of the two sources of information in different groups 
served optimal computations.

Results
First, we present results for the performance of the different groups in the temporal interval reproduction task. 
Next, we examine the performance of the different groups in the time discrimination task. Finally, we focus on the 
computational modelling of the combined data from the two tasks.

Time interval reproduction.  Raw data.  Figure 2 presents the uncorrected reproduced times (raw data) 
in the two sessions of the interval reproduction task for different participant groups, along with the lines fitted to 
the pooled data from each session. Panels a to e focus on typically developing children and adults, while panels F 
and G show raw data for the age-and ability matched groups of autistic and typical children.
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Visual inspection suggests that all participants showed central tendency effects, as the slope of the fitted lines was 
less steep than the equality line (all ps <​ 0.05). All groups also tended to underestimate stimuli intervals, that is the 
data lying below the equality line, but this did not affect the regressions (systematic errors are separable from central 
tendency, see Supplementary Method for a discussion). Context-dependency effects (see Supplementary Method), 
evidenced by longer reproduction times in the long than in the short interval condition for the stimuli that were 
common in the two sessions, were found in the combined data from the groups of typically developing children and 
adults, t(77) =​ 3.43, p =​ 0.001, d =​ 0.39. Unexpectedly, however, these effects were not consistent across different 
groups. The difference between estimates for the common stimuli in the long and the short interval condition was 
significantly greater than zero only for the younger groups of typical children [6–7 year-olds: t(11) =​ 2.16, p =​ 0.05, 
d =​ 0.63; 8–9 year olds: t(18) =​ 4.00, p =​ 0.001, d =​ 0.92] and autistic children [t(22) =​ 2.52, p =​ 0.02, d =​ 0.53], but 
not for the older groups of typical children [10–11 year-olds: t(17) =​ −​0.19, p =​ 0.85, d =​ −​0.04; 12–14 year olds: 
t(14) =​ −​0.51, p =​ 0.63, d =​ −​0.13], adults [t(13) =​ 2.00, p =​ 0.07, d =​ 0.53] and the typical comparison children 
[t(22) =​ 0.92, t =​ 0.37, d =​ 0.19]. Context dependency effects in our data were therefore not as strong as in the devel-
opmental study of Sciutti et al.7 in spatial interval reproduction.

Regression Indices.  Figure 3 shows regression indices (the difference between the slope of a fitted line and the 
equity line; see Analysis of empirical data and Supplementary Method), a measure of the magnitude of central 
tendency (see Analysis of empirical data), for the short and long conditions of the temporal interval reproduc-
tion task (3a: typical children and adults; 3b: age- and ability matched autistic and typical children). Regression 
indices were high in all age groups and tended to decrease with age in typical development. This observation was 
confirmed by a mixed-design ANOVA on regression indices with age group (6–7 year-olds, 8–9 year-olds, 10–11 
year olds, 12–14 year-olds, and adults) as a between-participants factor, and interval condition (short, long) as the 
within-participants factor. There was a significant main effect of age group, F(4, 73) =​ 10.46, p <​ 0.001, η2 =​ 0.36, 
but no significant effect of interval condition, F(1, 73) =​ 0.01, p =​ 0.94, η2 =​ 0.00, and no significant age group X 
interval condition interaction, F(4, 73) =​ 1.86, p =​ 0.12, η2 =​ 0.09.

Autistic children showed significantly higher levels of central tendency than the comparison children (aver-
age across sessions for autistic children: M =​ 0.61; SD =​ 0.21; average for typical comparison children: M =​ 0.45; 
SD =​ 0.18). A mixed-design ANOVA on the regression indices shown in Fig. 3b yielded a significant main effect 
of group, F(1, 44) =​ 7.86, p =​ 0.01, η2 =​ 0.15, a significant effect of interval condition, F(1, 44) =​ 4.85, p =​ 0.03, 
η2 =​ 0.10, and no significant interaction between the two factors, F(1, 44) =​ 0.37, p =​ 0.55, η2 =​ 0.01. The regres-
sion indices of autistic children were roughly comparable to those presented by the younger typical group of 8–9 
year-olds.

We also examined the build-up of regression across the session by performing a split-half analysis in which 
we compared regression indices estimated from data from the first and the second halves of the sessions 
(Supplementary Figure 1). The data of typically developing children and adults suggested that regression indices 
increased from the first to the second half, F(1, 73) =​ 6.46, p =​ 0.01, η2 =​ 0.08, suggesting the learning or the pro-
gressive use of a prior during the progression of the session. The data of autistic and comparison children also 
presented evidence of learning of a prior, F(1, 44) =​ 7.42, p =​ 0.01, η2 =​ 0.17. The differences in regression indices 
between the two groups were comparable, F(1, 44) =​ 1.48, p =​ 0.23, η2 =​ 0.15, while the group x session half inter-
action was not statistically significant, F(1, 44) =​ 1.49, p =​ 0.23, η2 =​ 0.04, suggesting that the learning of a prior 
across a session was similar in the autistic and the comparison children.

Figure 1.  Graphical illustration of the study design. 
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Reproduction Error.  Figure 4 plots the total average reproduction error (combined error of accuracy and reliabil-
ity, see Supplementary Method) in the short and the long interval conditions of the reproduction task. In typical 

Figure 2.  Responses in the two sessions of the time interval reproduction task for different participant groups 
(Panels (a–d) typical children; (e) adults; (f) autistic children; (g) typical comparison children). Small dots 
correspond to individual participants’ responses for short (blue) and long (red) intervals; squares correspond 
to group averages. Green and black continuous lines represent linear fits of the data from the short and long 
interval condition, respectively. The dashed black lines are the equality line, i.e., veridical performance.

Figure 3.  Regression indices for the short and long interval conditions of the time interval reproduction 
task. (a) Typically developing children and adults. (b) Autistic children and typically developing comparison 
children. Coloured dots show individual data and yellow bands represent ±​1 SD. Stars indicate significant 
differences (p <​ 0.05).
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development (subplot a), the two measurements improved with age, as expected. Error was slightly higher in the 
short interval condition, possibly because a smaller interval value is used for normalisation (see Measurements 
and analysis in Supplementary method available). A mixed-design ANOVA with total error as the dependent 
variable, age group as a between-participants factor and interval condition as a within-participants factor, showed 
a significant main effect of age group, F(4, 73) =​ 7.86, p <​ 0.001, η2 =​ 0.30, and interval condition, F(1, 73) =​ 4.95, 
p =​ 0.03, η2 =​ 0.05, and no significant age x interval condition interaction, F(4, 73) =​ 1.57, p =​ 0.19, η2 =​ 0.07.

Interestingly, the age- and ability-matched groups of autistic and typical children did not differ with 
respect to error. A mixed-design ANOVA, with group as a between-participants factor and interval condi-
tion as a within-participants factor, suggested that a trend for higher total error in autistic children was not 
significant, F(1, 44) =​ 3.63, p =​ 0.06, η2 =​ 0.08. The same analysis found no effects of interval condition, F(1, 
44) =​ 7.35, p =​ 0.10, η2 =​ 0.14, and no significant interactions between group and interval condition, F(1, 43) =​ 
 0.52, p =​ 0.46, η2 =​ 0.01.

We also examined between group differences in the two orthogonal components of error (see Analysis of 
empirical data and Supplementary Method), the coefficient of variation (CV, error related to the reliability of 
responses) and BIAS (error related to accuracy). The empirical data for the two components of error are shown 
in Fig. 5 (circles: typical children and adults; squares: autistic and comparison children; lines: see Computational 
Modelling). Mixed-design ANOVAs, with age group as a between-participants factor and interval condition 
as a within-participants factor, yielded significant main effects of age group on both components [BIAS: F(4, 
73) =​ 11.58, p <​ 0.001, η2 =​ 0.39; CV: F(4, 73) =​ 5.68, p <​ 0.001, η2 =​ 0.24] as well as on the ratio CV/BIAS, F(4, 
73) =​ 3.44, p =​ 0.01, η2 =​ 0.16. Bonferroni post-hoc comparisons suggested that the rate CV/BIAS was lower in 
the 6–8 year-olds than adults (p =​ 0.01), however, all other pairwise comparisons were not significant. Overall, 
our findings suggested that typical children become more precise and more accurate with age in time interval 
reproduction. The modelling of these data (continuous lines) will be discussed in the Computational Modelling 
section.

The orange and light blue squares of Fig. 5 show respectively the data for the autistic participants and the 
matched typical children. Mixed-design ANOVAs with group as a between-participants factor and interval 
condition as a within-participants factor showed no significant effect of group on CV, F(1, 44) =​ 2.43, p =​ 0.13, 
η2 =​ 0.05, but a significant effect of group on BIAS, F(1, 44) =​ 7.08, p =​ 0.01, η2 =​ 0.14. There was, however, no 
significant main effect of group on the ratio CV/BIAS, F(1, 44) =​ 1.13, p =​ 0.22, η2 =​ 0.03. In summary, autistic 
children were less accurate than but equally precise as the typical comparison children in time interval reproduc-
tion, although this difference in accuracy did not translate to a significant between group difference in total error 
or the ratio CV/BIAS, our measure for evaluating potential differences between groups in terms of their strategy 
in the time interval reproduction task (e.g., more accurate but more variable vs. less accurate but less variable).

Figure 4.  Total error for the short and long interval conditions of the time interval reproduction task.  
(a) The four age groups of typically developing children and adults; (b) autistic children and typically  
developing comparison children. Coloured dots show individual data and yellow bands represent ±​1 SD.  
Stars indicate significant differences (p <​ 0.05).
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Time discrimination task.  Figure 6 plots the temporal resolution of the groups of typical children and 
adults and the two age- and ability matched groups, given by the Weber fractions obtained from the time dis-
crimination task. Temporal resolution presented marked improvements with age in typical development and 
a one-way ANOVA showed a significant effect of age group on Weber Fraction, F(4, 73) =​ 4.31, p =​ 0.003. 
Autistic children obtained far higher Weber fractions (M =​ 0.36, SD =​ 0.21) than the typical comparison children 
(M =​ 0.22, SD =​ 0.13), t(44) =​ 2.68, p =​ 0.01, d =​ 0.80. The temporal resolution of autistic children was compara-
ble to the youngest group of typical children.

Summary of empirical results.  The combined findings from the two tasks suggested that, in typical devel-
opment, central tendency effects decrease with age, while temporal resolution improves. Central tendency effects 
are higher in autistic children compared to the typical comparison children, and autistic children performed 

Figure 5.  Partitioning of the total error in the time interval reproduction task: Coefficient of variation of 
the reproduction times (CV, Equation 9 in Supplementary Method) plotted against bias (BIAS, Equation 
8 in Supplementary Method) for different participant groups. Circles correspond to typically developing 
children and adults (red: 6–7 year-olds, green: 8–9 year-olds, blue: 10–11 year-olds, grey: 12–14 year-olds, 
black: adults); squares to autistic children (orange) and the comparison typically developing children (light 
blue). Error bars represent ±​1 SEM. The continuous grey lines correspond to predictions of the computational 
model for different value for different prior widths (400, 300, 200, and 100 ms) and Weber fractions in the range 
0.01–1.00.

Figure 6.  Precision in the time discrimination task. (a) Typically developing children and adults; (b) autistic 
children and typically developing comparison children. Coloured dots show individual data and yellow bands 
represent ±​1 SD. Stars indicate significant differences (p <​ 0.05).
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worse in temporal discrimination. As the performance of autistic children was similar to that of younger children 
in both tasks, it is possible that their performance results from a general developmental delay.

Yet autistic children performed far worse than the typical comparison children in the time discrimination 
task, with comparable precision to the youngest group of children. Comparing the autistic group with the young-
est group of typical children suggests that they have similar temporal discrimination, but less central tendency. 
This pattern could suggest atypicalities related to the use of central tendency strategies per se in autism (consistent 
with Pellicano and Burr26), rather than general delayed maturation of the time reproduction and discrimination 
abilities.

We examined this possibility using the computational modelling procedures of Cicchini et al.8 and Sciutti et al.7.  
Such procedures aimed to assess: i) the strength of prior knowledge representations for temporal statistics (the 
wider the normally distributed priors, the less strong the representations) that the different groups used in our 
paradigm, and ii) the extent to which these representations helped participants to achieve optimal performance 
in the temporal interval reproduction task.

Computational modelling.  Modelling performance in time interval reproduction under the assumption of 
different prior widths.  The continuous lines of Fig. 7 plot model predictions of how regression indexes should 
vary with Weber fraction (time discrimination task), for four different Gaussian priors, with widths (i.e., 1 SD), 
ranging from 100 to 400 ms. The model predicted regression indices similar to the empirical data of different 
groups when using prior width values ranging from 400 ms to 200 ms for all groups of participants. This simula-
tion also predicted a pattern of prior representations becoming broader with age in typical development. The data 
of autistic children (orange square) fell on the curve generated by the broadest prior (400 ms) used in the simula-
tion. Furthermore, the prior width that captured the data of autistic children was considerably broader than the 
prior width predicted for the 6–7 year-olds, who presented similar levels of temporal resolution as autistic chil-
dren. This finding also held when the two conditions, short and long, were analysed separately (Supplementary 
Figure 2). In other words, the model predicts much broader (weaker) priors for the autistic participants, consist-
ent with the predictions of Pellicano and Burr26.

Figure 5 plots model predictions, together with data, for the two separate components of reproduction error 
in the interval reproduction task (see Supplementary Figure 3 for modelling results from the short and the long 
condition separately). Like the simulation of regression indices, the model predicted rates of CV and BIAS that 
were similar to the empirical data, for prior widths between 400 ms and 200 ms. However, the pattern of prior 
widths predicted for the autism group were broader than those predicted for the youngest group of children.

Assessing relative error.  Figure 8 shows the predicted error landscape as a function of Weber fraction and prior 
width (see Supplementary Figure 4 for results from the short and the long condition). The developmental data 
showed a continuous improvement of optimality with age, manifested by the progression to colder areas of the 
error surface. Similar to Cicchini et al.8, the adult data lay closer to the minimal error areas of the surface, suggesting 
optimal computations. The estimates of prior widths for the different groups ranged from around 400 ms to 200 ms.

The autistic children (orange squares) were clear outliers on this plot, with far reduced efficiency compared 
with both their comparison group (light blue squares), and also the ability-matched 6-year-old group (red circles). 
The autistic children had far weaker (broader) priors than ideal for maximum efficiency, as predicted by Pellicano 
and Burr26.

Figure 7.  Regression index in time interval reproduction task plotted against Weber fraction in time 
discrimination. Circles correspond to typically developing children and adults (red: 6–7 year-olds, green: 8–9 
year-olds, blue: 10–11 year-olds, grey: 12–14 year-olds, black: adults); squares to autistic children (orange) and 
the control group of typically developing children (light blue). Error bars represent ±​1 SEM. The continuous 
lines correspond to predictions of the computational model considering a given value for the width of the prior 
(400, 300, 200, or 100 ms) and Weber fractions in the range 0.01–1.00.
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Discussion
Anecdotal reports suggest that autistic individuals have a particularly poor sense of time and present character-
istic difficulties in keeping track of how much time has passed2,3. Some researchers have proposed that timing 
difficulties are a preeminent feature of autistic perception32, which manifests in the need of autistic people to 
schedule future events and their distress when plans change3, as well as in atypicalities in other cognitive domains 
and difficulties in social interaction33. Yet, empirical research on the timing abilities of autistic individuals has 
produced mixed results (studies showing limitations in time processing23,24 vs. studies showing no difficulties22,25). 
Given this inconclusive evidence, it is difficult to evaluate the nature and extent of timing difficulties in, as is to 
provide a rigorous account of how an atypical sense of time (if any) might relate to the broader autistic phenotype.

In the current study, we focused on a particular aspect of time estimation of autistic children, namely central 
tendency in time interval reproduction. This tendency of quantity judgements to gravitate towards their mean 
value5 has been recently modelled within the Bayesian framework of perceptual inference. Within this frame-
work, the magnitude of central tendency reflects the flexible integration of noisy sensory estimates with internal 
representations for the mean value of stimuli to produce final judgements. In this study, we applied this Bayesian 
model of central tendency in time interval reproduction to characterise performance in typical development and 
in autism.

Our time interval reproduction data showed that in typically developing children central tendency effects 
occur at very young ages, and decrease with age. These results parallel those of Sciutti et al.7, who showed a similar 
reduction in regression between the ages of 7 and 10 years for a spatial interval reproduction task. Our findings 
therefore suggest that not only are young children able to extract statistical information for the recent history of 
sensory input; they do so to a greater extent than older children and adults.

At a first instance, this finding seems counterintuitive. However, there is considerable evidence that abilities 
for statistical learning are available very early in development, even in infants34,35 and newborns36. Such statistical 
learning abilities are thought to tap on mechanisms for experience-dependent plasticity, which are important 
for cognitive development, for example language acquisition37,38. Arguably, the pattern of higher regression in 
younger children in our data could reflect the greater reliance upon statistical learning at younger ages.

As regression decreased with age, temporal discrimination improved, agreeing with previous results13–15,39–41 
and the study of Sciutti et al.7 on the spatial domain. The computational simulations combined developmental 
measures of central tendency and temporal resolution to quantify the strength of prior knowledge representations 
and how these compared to optimal computations. The simulations suggested that typically developing children 
tend to perform near optimally, with the younger children using stronger (narrower) priors, consistent with their 
poorer temporal resolution. The integration of noisy sensory estimates with internal representations for the mean 
value of stimuli is therefore flexible in childhood. As Sciutti et al.7 discuss central tendency serves to restrain the 
continuously decreasing sensory noise.

The data of the autistic group revealed two main facts: (1) autistic children do show regression, and indeed, at 
higher levels than the age- and ability matched typical children; (2) but at the same time, their temporal thresh-
olds are about twice as high as those of the matched-typical group and very similar to the 6-year-olds. This pattern 
implies that the use of priors in autistic children does not increase enough to compensate for the lower precision 
and instead remains very similar to the typical comparison group.

The elevated levels of error of reliability and error of accuracy of autistic children in the time interval repro-
duction task are consistent with results of other studies using time reproduction tasks22,23. By contrast, the 

Figure 8.  Error landscape, showing the relative RMS error for different Weber fractions (WF) and different 
prior widths (SP). Circles correspond to average data from typically developing children and adults (red: 6–7 
year-olds, green: 8–9 year-olds, blue: 10–11 year-olds, grey: 12–14 year-olds, yellow: adults) and squares to 
average data from autistic children (orange) and typically developing comparison children (light blue). Human 
data are superimposed on the error surface with the estimates for prior widths of different groups derived from 
Equation 4.
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decreased temporal resolution of autistic children (time discrimination task) is congruent with some studies24 but 
not with others22,25,42. More research is warranted in order to unify this range of inconclusive findings on temporal 
resolution of autistic children. The role of methodological differences - for example the range of time intervals 
tested, modality (auditory in studies by Mostofsky et al.42 and Wallace and Happé22, but visual in a study by Gil et 
al.25 and our study) or whether the intervals were unfilled (defined by two events, as in a study by Allman32 and 
our study) or filled (as in a study by Gil et al.25) are worth exploring in the future. The general heterogeneity of 
autistic population, evidenced by inconsistent findings across a range of domains18,43 should also be considered 
to account for variable findings.

Notwithstanding, for the goals of this study, the most important result is that the autistic children do not use 
prior knowledge to reduce errors in an optimal manner, as revealed by a series of computational simulations 
(Figs 5, 7 and 8). This result was based on the comparison of autistic children to the youngest group of typical 
children. Six-year-old typically developing children also have low temporal resolution, comparable to that of the 
older autistic participants. However, they also have much stronger Bayesian priors, appropriate for their reduced 
temporal sensitivity.

These results provide further support for the idea that autistic perception is associated with reduced use of pre-
dictive information, as encoded in internal models for the recent history of the sensory input26. Although there is 
evidence of regression to the mean in the data of autistic children, the amount of regression is less than is required 
for optimal perception, given the reduced sensitivity for temporal discrimination. In other words, the degree of 
regression is not enough to compensate for their poor temporal resolution. Our findings reinforce other studies 
suggesting that internal priors are underweighted or less used in autistic children than in typical children (adap-
tive coding in face perception44,45 and number perception46, though see another study on perceptual causality47). 
Our approach also presents correspondences to alternative accounts of autistic perception suggesting inflexible 
weighting of cues by their estimated uncertainty31, although to examine explicitly this hypothesis one should vary 
the range of the intervals in two sessions of the time reproduction task (which was not the case in our paradigm).

Brock27 argued that, within a Bayesian model of perceptual inference, an asymmetric integration of prior 
knowledge with sensory estimates in autism could arise not only from attenuated prior knowledge (as posited by 
Pellicano and Burr48) but also from sensory estimates that are less noisy (akin to accounts positing a ‘bottom-up’ 
perceptual deficit in autism27). Our study does not support the latter possibility. Our data suggest that temporal 
estimates are indeed noisier in autism; however prior knowledge representations are also atypical as predicted by 
Pellicano and Burr26,48.

The reduced levels of central tendency (given their temporal resolution) might suggest autistic children have 
difficulties in restraining sensory noise, consistent with accounts of increased sensory noise in autism18). Autistic 
children do not use internal representations of an average stimulus as efficiently as typical children to moderate 
their noisy temporal resolution.

Our raw data suggest a consistent underestimation of almost all durations in all child groups, which did not 
occur in the earlier adult studies8,9. It is possible that this discrepancy results from methodological differences 
between our adapted child-friendly paradigm and the original paradigms8,9 (e.g., number of trials, range of tested 
stimuli). Nevertheless, we would argue that there are two different and separable effects in our time reproduction 
data: a consistent underestimation, and a compression of timescale. The underestimation biases did not affect the 
regression. As these biases were not the primary goal of the study, we did not investigate their origin, although 
they seem to decrease with age. However, a fuller account of time interval reproduction in typical and autistic 
children would need to address this issue in further detail.

Our data also present weaker context-dependency effects than the adult studies8,9 and the study of Sciutti et al.7  
in the spatial domain. This may be due to various methodological differences, including a smaller number of 
trials, introduced with a child-appropriate task, which might have resulted in less statistical power in detecting 
context dependency in our paradigm.

Our model assumes the same levels of motor noise in typical and autistic children, although it is likely that the 
levels are elevated in autistic participants49. A fully defined model would need to constrain motor error. However, 
since increases in motor error influences the error of variability rather than regression and bias, our conclusions 
do not depend on the precise estimate of noise and are nevertheless valid if elevated levels of noise are imple-
mented. Our model also assumes that prior knowledge representations are stationary during each session of the 
time interval reproduction task. This is a simplifying assumption of the model. A fully defined model would need 
to capture the learning or the progressive use of a prior during a session evidenced by the increase of regression 
indices from the first to the second half of a session in our split-half analysis. Finally, our approach does not dis-
tinguish between the nature of the atypicality in autistic children – that is, whether the atypicalities involve the 
learning of the prior or the use of priors, or indeed if the same model applies to different groups (either develop-
mental or autistic vs. typical).

Notwithstanding, our approach situates the anecdotally reported timing difficulties of autistic individuals 
within a more general framework of Bayesian perceptual inference, rather than suggesting a specific timing deficit 
in autism32,33. Crucially, this approach applies to magnitude estimation in other domains. For example, it predicts 
a similar pattern of results (less regression for autistic children given their spatial resolution) in a spatial interval 
reproduction paradigm like that of Sciutti et al.7. Furthermore, our approach unifies magnitude estimation diffi-
culties in autism to a broader range of sensory symptoms in the conditions, such as hypersensitivities and hypo-
sensitivities (e.g., to sounds or lights). All these problems, which can be very disturbing and stressful to autistic 
people, stem from inflexible perceptual processing, in particular from problems in effectively adapting to and 
calibrating against observed sensory evidence.

Methods
Participants.  Participants’ demographics are shown in Supplementary Table S1.
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Typically developing children.  Seventy-eight typically developing children and adults participated in this 
study, including twelve 6–7 year-old children (M =​ 7 years; 0 months, range: 6; 0–7; 10, 9 females), nineteen 8–9 
year-olds (M =​ 9 years; 0 months, range: 8; 1–9; 10, 7 females), eighteen 10–11 year-olds (M =​ 11 years; 1 months, 
range: 10; 2–11; 11, 11 females), fifteen 12–14 year-olds (M =​ 12 years; 9 months, range: 12; 0–14; 1, 10 females) 
and fourteen adults (M =​ 25 years; 11 months, range: 22; 0–32; 0, 10 females).

Autistic children.  Twenty-three autistic children (M =​ 12 years; 4 months, range: 7; 9–14; 8, 6 females) were 
recruited from schools in Greater London and community contacts. They had previously been diagnosed with 
autism or Asperger syndrome by independent clinicians according to the International Classification of Diseases 
criteria (ICD-10)50 or the criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)51. 
All autistic children obtained IQ scores of 70 or greater on the Wechsler Abbreviated Scales of Intelligence - 
2nd edition (WASI-II)52 (M =​ 100.30, SD =​ 15.72, range =​ 7–128) and were thus considered cognitively able. 
Autistic children were also administered the Autism Diagnostic Observation Schedule – Generic (ADOS-G)53, 
while the parents/carers of autistic children completed parental report versions of the Social Communication 
Questionnaire54. Children were included in data analysis if they had an independent clinical diagnosis of autism 
and scored above threshold for an autism spectrum disorder in either the ADOS-G or the SCQ55 (ADOS-G 
cut-off score =​ 753; SCQ cut-off score =​ 1554).

Typically developing comparison children.  A subset of the typically developing children (n =​ 23; M =​ 11 years; 
8 months, range: 7; 8–13; 10, 10 females) were also matched to autistic children in terms of chronological age, 
t(44) =​ 1.40, p =​ 0.17, non-verbal ability, t(44) =​ 0.19, p =​ 0.85, and verbal ability, t(44) =​ 0.96, p =​ 0.34, as meas-
ured by the WASI-II52.

Exclusions.  An additional eight typically developing children (five 6–7 year-olds, two 8–9 year-olds, two 10–11 
year-olds, and one 12–13 year-old) and an additional six autistic children were also tested but excluded from all 
analysis due to poor performance in the time discrimination task (Weber Fraction out of the range of [0, 1]).

Apparatus and Stimuli.  Stimuli were presented on the 15.6″​ LCD screen (refresh rate: 40 Hz; pixel resolu-
tion: 1366 ×​ 768) of a Dell Precision M4700 laptop using MATLAB (The Mathworks Inc., Natick, Massachusetts, 
USA) and routines of the Psychophysics Toolbox software56,57. The screen was black with a fixation pattern, con-
sisting of four dots (0.5°) arranged at the vertices of a 5°-edge centrally-aligned square, presented on it throughout 
each task.

In both tasks, stimuli were green discs with raised cosine edges and a diameter of 5° of visual angle when pre-
sented at a 57 cm distance. The discs were presented on a black background for 200 ms, i.e., 8 frames in the refresh 
rate used. They were centred 5° above centre-screen, exactly on centre-screen (0°), and 5° below centre-screen 
depending on whether they corresponded to the first, second and third stimuli in a trial.

Procedure.  Figure 1 provides a graphical illustration of the two tasks.

Time Interval Reproduction task.  This task was administered as a “Ready, Set, Go!” paradigm and within the 
context of a cover story about Marco, a 3D animated character. The task comprised two sessions, one testing the 
reproduction of 11 ‘short’ durations, in the range 1006–1536 ms, and the other testing 11 ‘long’ durations, from 
1270–1800 ms. Children completed seven trials per duration, yielding 77 testing trials per participant per session, 
separated into four blocks. For additional details on the administration of this task see Supplementary Method 
available.

Time Discrimination task.  The discrimination task was administered within the same cover story as the time 
interval reproduction task. It comprised 54 test trials, divided into three blocks. In each test trial, a reference 
interval of 500 ms (equal to the range of tested intervals in the two conditions of the time interval reproduction 
task) was followed by a comparison interval. Two QUEST58 functions, starting with initial comparison intervals 
of 1200 ms and 200 ms, ran interleaved for 27 trials each to estimate the participant’s temporal resolution. For 
additional details on this task see Supplementary Method available.

General procedure.  The study was conducted in accordance to the principles laid down in the Declaration of 
Helsinki. Ethics approval was granted by the UCL Institute of Education Research Ethics Committee and parents 
of all children gave informed consent prior to participation. Adults also gave their informed consent. Children 
were either tested in school, at the University or at the family home. All adults were tested at the University. The 
order of testing on the two conditions (short, long) of the interval reproduction task was counterbalanced across 
participants. Participants completed the discrimination task after one of the conditions of the reproduction task. 
Tests of intellectual functioning (WASI-II52) and autistic symptomatology (ADOS-G53) were administered in 
separate sessions.

Analysis of empirical data.  We used data from the time interval reproduction task to calculate regression 
indices (measurements of central tendency) for each session, as well as total error, which we divided to error or 
accuracy and error of reliability8,9. We used data from the time discrimination task to measure a Weber fraction 
for each participant, as a measure of his/her temporal resolution (see Supplementary Method available).

Computational modelling.  Modelling participants’ performance in the time interval reproduction was 
based on the modelling procedures of the previous studies7,8. We assumed that both the prior and the likelihood 
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functions are normal distributions with means μP and μL and standard deviations (widths) σP and σL, correspond-
ingly. In a given session, the prior function is centred on the average stimulus duration µ =S S: P . The likelihood 
function for stimulus Si is centred on a noisy measurement of the stimulus, ti ms away from the average stimulus: 
µ = +S tL i. Applying Bayes’ rule, the posterior distribution (reproduced times) is a normal distribution with a 
mean: μR:

µ µ
σ
σ σ

= −
+

t
(1)R L

L i

P L

2

2 2

and a standard deviation σR:

σ
σ σ
σ σ

=
+ (2)

R
P P

L P

2 2

2 2

We also assumed added motor noise with standard deviation

σ σ= .0 05 (3)MN R

i.e. at a 5% level (as in Cicchini et al.8).

Modelling performance in time interval reproduction under the assumption of different prior widths.  In a first set 
of computational simulations, we simulated the performance of participants who completed the two sessions 
of the time interval reproduction task employing prior knowledge distributions of different widths (assumed 
to be constant during the progression of each session task). In particular, we considered prior widths of 400 ms, 
300 ms, 200 ms and 100 ms – that is, corresponding to 80%, 60%, 40% and 20% of the reference interval of the 
time discrimination task. We combined these prior widths with Weber fraction values from the range 0 to 1 (with 
an increment of 0.1) considering 100 repetitions for each combination.

For each prior width/Weber fraction combination, we calculated the values predicted by the model for the 
following measures: regression index r (averaged across the two sessions) and the two components of error, BIAS 
and CV (averaged across sessions and across stimuli). We compared the empirical data from different partici-
pant groups to the predictions of the computational model by superimposing the human and the computational 
modelling data on two diagrams: one plotting regression indices against Weber Fractions and one plotting CV 
(response variability) against BIAS (response accuracy).

Assessing relative error.  In a complementary set of simulations, we used the model to generate a so-called rela-
tive error landscape. This landscape, which assigned a relative error value to different prior width/Weber fraction 
combinations, indicated the extent to which different prior widths minimised overall error for a given Weber 
fraction value. For a given Weber fraction value, the relative error was the total reproduction error normalised 
across the range of different priors.

We assessed the extent to which the different groups performed optimally in the time interval reproduction 
by superimposing the human data on the relative error landscape. The superimposition of empirical data on the 
simulated error landscape took into account the averaged Weber fraction values across groups, as obtained from 
the time discrimination task, and estimates of the width of the prior knowledge distribution of different groups. 
The estimates for the standard deviation of prior knowledge were a function of participants’ regression indices (r) 
and the Weber fractions (WF):

σ = −WF S r
r

1
(4)P

where S is the mean stimulus interval. Equation 4 was derived from the following formula for the slope of the fit-
ted curve to the reproduced time intervals in a group:

σ
σ σ

= − =
+

slope r1
(5)

P

P L

2

2 2

where σL, the width of the likelihood function, is a function of Weber fraction (WF) and the mean stimulus in a 
session S:

σ = .WF S (6)L

The standard deviations of the priors and the likelihood were calculated from Monte Carlo simulations with 
10,000 repetitions.

We note that an intuitive interpretation of Equation 5 is that when temporal discrimination is highly precise 
σ σ =⩾ 0P L ) then the slope of the fitted curve is 1, corresponding to veridical reproduction of time intervals. 
When, however, temporal resolution is poor σ σ( )L P , the slope is 0, corresponding to full regression.

We also note that the estimates of the standard deviation of the prior and the likelihood (Equations 4 and 6) 
are based on the assumption that the WF measured experimentally in the time discrimination task may be trans-
ferred to the time reproduction task. This approach has been successful in previous studies on interval reproduc-
tion7–9, as well as in multistable perception59,60.
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