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A B S T R A C T   

Introduction: Processing speed and executive function are often impaired after stroke and in typical aging. However, there are no reliable neurological markers of 
these cognitive impairments. The trail making test (TMT) is a common index of processing speed and executive function. Here, we tested candidate MRI markers of 
TMT performance in a cohort of older adults and individuals with chronic stroke. 
Methods: In 61 older adults and 32 individuals with chronic stroke, we indexed white matter structure with region-specific lesion load (of white matter hyper
intensities (WMHs) and stroke lesions) and diffusion tensor imaging (DTI) from four regions related to TMT performance: the anterior thalamic radiations (ATR), 
superior longitudinal fasciculus (SLF), forceps minor, and cholinergic pathways. Regression modelling was used to identify the marker(s) that explained the most 
variance in TMT performance. 
Results: DTI metrics of the ATR related to processing speed in both the older adult (TMT A: β = -3.431, p < 0.001) and chronic stroke (TMT A: β = 11.282, p < 0.001) 
groups. In the chronic stroke group executive function was best predicted by a combination of ATR and forceps minor DTI metrics (TMT B: adjustedR2 = 0.438, p <
0.001); no significant predictors of executive function (TMT B) emerged in the older adult group. No imaging metrics related to set shifting (TMT B-A). Regional DTI 
metrics predicted TMT performance above and beyond whole-brain stroke and WMH volumes and removing whole-brain lesion volumes improved model fits. 
Conclusions: In this comprehensive assessment of candidate imaging markers, we demonstrate an association between ATR microstructure and processing speed and 
executive function performance. Regional DTI metrics provided better predictors of cognitive performance than whole-brain lesion volumes or regional lesion load, 
emphasizing the importance of lesion location in understanding cognition. We propose ATR DTI metrics as novel candidate imaging biomarker of post-stroke 
cognitive impairment.   

1. Introduction 

Cognitive impairment affects approximately 40 % of individuals who 
survive a stroke (Sexton, 2019). Specifically, processing speed and ex
ecutive functions are often impaired after stroke (Knopman, 2009; 
Pohjasvaara, 2002), and are associated with poorer functional outcomes 
Barker-Collo et al., 2010, increased dependency Narasimhalu et al., 
2011, and reduced employment (Mahon, 2020) in individuals with 
chronic stroke. Despite its high prevalence and clinical importance, we 
do not understand the patterns of brain damage associated with post- 
stroke cognitive impairment. The aim of this study was to identify 
clinically relevant brain-based biomarker(s) of cognition in individuals 
who have had a stroke. This work is in direct response to the Stroke 
Recovery and Rehabilitation Roundtable, which identified the discovery 

of brain-based biomarkers of cognition as a research priority (Boyd 
et al., 2017). As summarized by the Roundtable (Boyd et al., 2017), an 
effective cognitive biomarker could be used to predict cognitive out
comes in typical brain degeneration (i.e., aging), injury (i.e., stroke), and 
/ or their interaction, to stratify patient subgroups in clinical trials of 
cognitive interventions, or to predict an individual’s treatment response 
in rehabilitation. However, more preliminary cross-sectional work is 
needed to identify promising neuronal pathways or networks that relate 
to cognition, with MRI-based measures that can capture disease pro
cesses in these pathways. 

In addition to stroke infarcts, concurrent aging and vascular neuro
degeneration may also impact cognition post-stroke (Arsava et al., 
2009). Declining processing speed and executive function in typical 
aging are strongly linked to white matter hyperintensities (WMHs) 

* Corresponding author at: University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada. 
E-mail address: lara.boyd@ubc.ca (L. Boyd).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2022.103174 
Received 20 April 2022; Received in revised form 8 August 2022; Accepted 27 August 2022   

mailto:lara.boyd@ubc.ca
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2022.103174
https://doi.org/10.1016/j.nicl.2022.103174
https://doi.org/10.1016/j.nicl.2022.103174
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage: Clinical 36 (2022) 103174

2

(Debette and Markus, 2010), the most prominent manifestation of ce
rebral small vessel disease. In typical aging WMHs impact processing 
speed and executive functions more than any other cognitive domain 
(Vasquez and Zakzanis, 2015). Individuals who experience a stroke are 
more likely to have large WMH volumes (Wen and Sachdev, 2004), due 
to the shared cardiometabolic risk factors for large and small vessel 
cerebrovascular disease (Jeerakathil et al., 2004). Thus, stroke lesions 
occur over a background of WMHs, and the common neuropsychological 
profiles between individuals with stroke and WMHs implies that there 
may be similar neurobiological pathways that accompany these cogni
tive changes. Combining information from WMHs and overt stroke le
sions could provide new insight into the neurological basis of cognitive 
impairment post-stroke. 

In previous analyses of processing speed and executive function four 
frontal-subcortical white matter tracts have emerged as likely imaging 
marker candidates: the anterior thalamic radiations (ATR), superior 
longitudinal fasciculus (SLF), forceps minor of the corpus callosum, and 
cholinergic pathways of the basal forebrain. These tracts encompass 
frontal-subcortical white matter circuits that have a theoretical role in 
cognitive impairment in cerebrovascular disease (Tekin and Cummings, 
2002). Additionally, cholinergic signaling modulates executive function 
(Ballinger et al., 2016), and disruption to cholinergic pathways may 
contribute to cognitive impairment in cerebrovascular disease (Lim 
et al., 2014). The evidence for these regional markers of processing 
speed and executive function falls into two methodological categories. 
The first is region-specific lesion load, which measures the degree of 
overlap between a lesion mask and a white matter tract. WMH lesion 
load in the ATR (Biesbroek et al., 2016; Biesbroek et al., 2013; Lampe, 
2019), SLF (Biesbroek et al., 2016; Biesbroek et al., 2013), and forceps 
minor (Duering et al., 2013; Duering et al., 2014) relate to processing 
speed and executive function in older adults. Stroke lesion load in 
cholinergic pathways relates to processing speed and executive function 
in individuals with chronic stroke (Muir et al., 2015). The second 
methodological tool is regional white matter microstrcuture measures 
from diffusion tensor imaging (DTI). DTI studies have shown some 
concurrence with regional lesion load studies; processing speed and 
executive function related to ATR (Cremers, 2016; MacPherson et al., 
2017) and SLF (Cremers, 2016) microstructure in older adult with 
WMHs, and SLF microstructure in individuals with subacute stroke 
(Veldsman et al., 2020). In addition to employing different methodo
logical techniques to characterize white matter damage, these previous 
studies have significant heterogeneity in the types of cognitive assess
ments used and the regions of interest examined. Moreover, most pre
vious work that has observed relationships between ATR (Biesbroek 
et al., 2016; Biesbroek et al., 2013; Lampe, 2019; MacPherson et al., 
2017), SLF (Biesbroek et al., 2016; Biesbroek et al., 2013), and forceps 
minor (Duering et al., 2014) were hypothesis-free, voxel-wise analyses, 
whereas a whole-tract approach could more feasibly be used as a clini
cally relevant cognitive biomarker. Thus, it is unknown which specific 
region (e.g., ATR, SLF, forceps minor, or cholinergic pathways) and 
which index of structural damage (e.g., lesion load, DTI, or a combi
nation of the two) are the most sensitive predictors of processing speed 
and executive function. 

In this study we indexed processing speed and set shifting, a 
component of executive function, with the trail making test (TMT), a 
widely used (Tombaugh, 2004) and sensitive (Rasmusson et al., 1998) 
neuropsychological assessment. The TMT is composed of two subtests, 
which are composite cognitive measures. TMT A measures processing 
speed, including psychomotor speed and visual search (Crowe, 1998). 
TMT B is more cognitively demanding than TMT A. TMT B relies on 
higher-order executive functions such as set shifting, in addition to 
processing speed and visual search components (Crowe, 1998). Addi
tionally TMT B-A can be computed to eliminate the processing speed 
components in the TMT and specifically index set shifting abilities 
(Stuss, 2001). The TMT is a useful clinical screening tool; TMT perfor
mance predicts conversion from mild cognitive impairment to overt 

dementia (Ewers, 2012), and TMT B is a predictor of fitness to drive after 
stroke (Devos et al., 2011). We employed the TMT, adapted for a robotic 
device (Mang et al., 2019), to comprehensively test relationships be
tween frontal-subcortical white matter pathways and components of 
TMT performance. 

Here we present a systematic analysis of a select number of candidate 
white matter biomarkers shown to be involved in processing speed and 
executive function. This analysis was specifically designed to resolve the 
heterogeneity in the cognitive biomarker literature regarding the choice 
of white matter region and structural metrics employed as promising 
biomarkers of cognition. We investigated four candidate brain-based 
biomarkers of processing speed and executive function (ATR (Duering 
et al., 2014; MacPherson et al., 2017), SLF (Veldsman et al., 2020; Perry 
et al., 2009), forceps minor (Duering et al., 2014), and cholinergic 
pathways (Muir et al., 2015) in a cohort of older adults and individuals 
in the chronic phase of stroke recovery.We indexed structural damage in 
these pathways using two methods: region-specific lesion load (for both 
WMH and stroke lesions) and DTI microstructure. We hypothesized that 
regional white matter markers would explain more variance in TMT 
performance than whole-brain lesion volumes, but we did not have 
specific hypotheses about which white matter tracts(s) or structural 
marker(s) (lesion load vs DTI microstructure) would emerge as the best 
candidate biomarkers of TMT performance. 

2. Methods 

2.1. Participants 

This study was a secondary analysis of pooled data from the baseline 
assessments of two research studies conducted by the UBC Brain 
Behaviour Lab. We included 62 healthy older adults and 34 individuals 
with chronic stroke who received multimodal neuroimaging between 
2016 and 2020. Participants were considered eligible if they were be
tween 40 and 80 years old, and for the stroke group if they were in the 
chronic phase of stroke recovery (>6 months post a clinically diagnosed 
stroke). Participants were ineligible if they: 1) had a history of seizure/ 
epilepsy, head trauma, a major psychiatric diagnosis, neurodegenerative 
disorders, or substance abuse, or 2) reported any contraindications to 
MRI. General cognitive performance was assessed with the Montreal 
Cognitive Assessment (MoCA) (Nasreddine, 2005). Informed consent 
was obtained for each participant in accordance with the Declaration of 
Helsinki. The University research ethics boards approved all aspects of 
the study protocol. 

2.2. Trail making test 

All participants completed the TMT on a Kinesiological Instrument 
for Normal and Altered Reaching Movement (KINARM) end-point de
vice (B-KIN Technologies, Kingston, Ontario). The KINARM TMT is part 
of the KINARM Standard Tests™ testing battery, and is a robotic adap
tation of the pen-and-paper TMT task (Nasreddine, 2005) (Fig. 1). Ro
botic assessment tools have advantages as objective, reliable and 
sensitive measures of behaviour (Scott and Dukelow, 2011). The KIN
ARM endpoint robot requires participants to grip and hold a frictionless 
manipulandum; this version of the TMT avoids any confound in TMT 
performance from reduced fine motor control or dexterity (Schear and 
Sato, 1989). The KINARM TMT-B had comparable test–retest reliability 
to the pen-and-paper TMT-B in a cohort of young adult athletes (Mang 
et al., 2018). 

Participants were seated, centered in the KINARM workspace. Par
ticipants grasped and moved the end-point handles during the task, with 
the hand represented by a small white circle as a cursor. TMT targets 
were displayed on the working side of the KINARM workspace, and 
participants were instructed to move their hand through the series of 
targets as quickly and accurately as possible. Regardless of the task, the 
first target was always numbered 1 and illuminated yellow. As 
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participants moved from one correct target to the next correct target, the 
line connecting the two targets became fixed and turned green, whereas 
if participants made an error by moving to an incorrect target, the 
previously correct target turned red. If this occurred, participants 
returned to the last correct target (displayed in red) to resume the task. 
After the instructions and prior to starting the full task, all participants 
completed a short practice comprised of a five-target version of the task 
(e.g., 1–2-3–4-5 for TMT A; 1-A-2-B-3 for TMT B). Older adults 
completed the TMT using their dominant limb. Individuals with chronic 
stroke completed the TMT with their preferred limb, meaning the par
ticipants decided which limb would give the best possible performance 
on the TMT based on their individual motor abilities. For the majority of 
participants (n = 29) the preferred limb was the non-paretic limb. 
However, a small number of participants (n = 5) who had mild motor 
deficits (upper extremity FM range: 55 to 60) chose to complete the TMT 
with their right hand, which was both their stroke-affected hand and 
their dominant hand pre-stroke. 

2.3. Trail making task A 

The TMT A was comprised of 25 white circular targets numbered 1 to 
25 (Fig. 1). Targets were randomly distributed in one of 8 possible 
random patterns. Participants were instructed to connect the targets in 
ascending numerical sequence as quickly and accurately as possible. 

2.4. Trail making task B 

The TMT B array was comprised of 25 white circular targets with 
numeric values from 1 to 13 and letter values from A to L (Fig. 1). 
Targets were randomly distributed in one of 8 possible random patterns. 
Participants were instructed to connect the numbers and letters in 
ascending alternating alpha-numeric order. 

2.5. Outcome measures 

We considered three standard TMT outcome measures of interest 
(Bowie and Harvey, 2006): total time to complete TMT A, total time to 
complete TMT B, and TMT B-A time. Total time was defined as the total 
time taken (seconds) to complete the TMT. The time started once the 
targets were presented on the screen and ended when the curser con
tacted the last target. TMT B-A was calculated by subtracting total TMT 
B time from total TMT A time. 

2.6. MRI acquisition 

MRI scans were acquired at the University of British Columbia MRI 
Research Centre on 3.0 T Phillips Achieva or Elition scanners (Philips 
Healthcare, Best, The Netherlands), with parallel imaging and an eight- 
channel and thirty-two-channel sensitivity encoding head coil, respec
tively. We acquired the following structural scans: 1) a 3D 

Fig. 1. Trail making test experimental setup Top panel: sche
matic of the KINARM-adapted trail making task (TMT), 
showing relative position of the participant and the TMT tar
gets. Participants grabbed an endpoint robotic manipulandum 
to move their cursor (small white circle) through the TMT 
targets. Bottom panel: TMT A and B. The start target appeared 
yellow. Participants moved the cursor between targets, con
necting numbers sequentially for TMT A (left) and alternating 
between numbers and letters in ascending order for TMT B 
(right). White lines appeared connecting targets mid- 
movement, which turned green once the participants con
tacted the next correct target.   
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magnetization-prepared rapid gradient-echo (MPRAGE) T1 anatomical 
scan (repetition time (TR)/time to echo (TE)/inversion time (TI) =
3000/3.7/905 ms, flip angle = 9◦, voxel size = 1 mm isotropic, field of 
view (FOV) = 256 × 224 × 180 mm), 2) a fluid attenuated inversion 
recovery (FLAIR) scan acquired in the axial plane (TR/TE/TI = 9000/ 
90/2500 ms, flip angle = 90◦, voxel size = 0.94 × 0.94 mm FOV = 240 
× 191 × 144 mm, slice thickness = 3 mm), and 3) a combined T2- 
weighted (T2) and proton density (PD) scan acquired in the axial 
plane (TR/TE1/TE2 = 2500/9.5/90 ms, flip angle = 90◦, voxel size =
0.94 × 0.94 mm, FOV = 240 × 191 × 144 mm, slice thickness = 3 mm). 
For DTI data, a 3D high-angular resolution diffusion imaging (HARDI) 
scan was acquired across 60 non-collinear diffusion gradients (b-value 
= 700 s/mm2, TR/TE = 7094/60 ms, voxel size = 2 mm, FOV = 224 ×
224 × 154 mm, slice thickness = 2.2 mm), along with two unweighted 
(b0) diffusion volumes. 

2.7. MRI preprocessing 

Structural segmentation was performed with the Semi-Automated 
Brain Region Extraction (SABRE) and Lesion Explorer pipelines (Ram
irez et al., 2011; Ramirez et al., 2020). Briefly, T1, FLAIR, T2 and PD 
scans were linearly co-registered and supratentorial cerebral tissue was 
segmented into cerebrospinal fluid (CSF; sulcal and ventricular), grey 
matter, normal-appearing white matter (NAWM), and WMHs. Stroke 
lesions were manually traced over co-registered T1 and FLAIR scans by a 
single experienced researcher (by J.K.F). 

T1 images were skull-stripped using the FMRIB Software Library 
(FSL) Brain Extraction Tool (BET) (Smith, 2002). For stroke participants 
with large cortical lesions, BET often fails to identify the boundaries of 
the stroke lesion. To improve BET segmentation in the presence of large 
cortical lesions, stroke lesion masks were set to a voxel intensity roughly 
corresponding to grey matter and added to T1 scans prior to BET skull 
strip. The generated binarized BET mask was then used to mask out the 
original T1 image, to create a skull stripped unaltered T1 image where 
BET follows the boundaries of the stroke lesion. BET skull strips were 
visually checked by a single researcher (J.K.F.). T1 scans were non- 
linearly registered to MNI space using FSL’s FNIRT (Andersson et al., 
2007). To minimize warping from stroke lesions in non-linear registra
tions, stroke lesion masks were flipped across the sagittal midline and a 
copy of contralesional tissue was created, which was then used to fill in 
the stroke region on the T1 scan prior to non-linear registration (Nachev 
et al., 2008). WMH masks were incorporated in the MNI registration 
using a cost-function mask, and registration was performed with a warp 
resolution of 5 mm. The quality of MNI registrations was visually 
confirmed by a single rater (J.K.F.). 

Diffusion images were preprocessed with FSL’s diffusion toolbox 
(FDT) (Smith et al., 2004). Briefly, DTI data were corrected for motion 
and eddy-current distortions, and the unweighted DTI volume was skull- 
stripped with BET. Fractional anisotropy (FA) and mean diffusivity (MD) 
maps were generated using DTIFIT. T1 scans were registered to the 
unweighted DTI volume using FSL’s FLIRT (Jenkinson et al., 2002) by a 
rigid-body linear registration with a correlation ratio cost function. 
Registration quality was visually checked by a single rater (J.K.F.) and 
manually adjusted where necessary with tkregister from Freesurfer 
v.6.0. 

2.8. Regions of interest 

ATR, SLF, and forceps minor tracts were taken as regions of interest 
(ROIs) from the JHU white matter atlas (Hua et al., 2008) and binarized 
with a probability threshold of 0.1 (Biesbroek et al., 2016; Duering et al., 
20112011). The left and right hemispheres of ATR and SLF were com
bined to create a single bilateral ROI for each region in order to reduce 
the number of comparisons in preliminary statistical investigations. To 
calculate regional lesion load: WMH and stroke masks were moved to 
MNI space, and we calculated the overlap between the lesion mask and 

the ROI. We then computed a weighted lesion load for each ROI, ac
cording to previously published methods (Feng, 2015). For lesion load 
calculations, ROIs were sliced in the plane that corresponded to 
capturing the cross-sectional area of each ROI (coronal plane for ATR 
and SLF; sagittal plane for forceps minor). To calculate regional DTI 
metrics: ROIs were moved to T1 space and eroded to subject-specific 
white matter anatomy by removing voxels containing grey matter or 
cerebrospinal fluid. Next, ROIs were moved to DTI space and mean FA 
and MD were extracted. Based on the Cholinergic Pathways Hyper
Intensities Scale (CHIPS) (Bocti et al., 2005), lateral cholinergic fiber 
projections from the most inferior point of the external capsule and 
extending to the center of the centrum semiovale (McNeely, 2015) were 
automatically parcellated from the SABRE atlas (Dade et al., 2004); and 
WMH and stroke lesion load was calculated in the cholinergic pathways, 
according to previously published methods (McNeely, 2015). DTI 
measures were not extracted from cholinergic pathways because this 
area contains unmyelinated white matter fibers (Selden et al., 1998) and 
overlaps with the trajectory of the SLF (Muir et al., 2015). See Fig. 2 for 
an overview of ROIs included in the analysis. 

2.9. Statistics 

Statistical analyses were performed with R (programming environ
ment v4.0.4); the alpha threshold for significance was set at p < 0.05. 
Whole-brain lesion volumes and tract-specific lesion load measures were 
positively skewed and were log-transformed prior to statistical analysis. 
Relationships between imaging markers and TMT performance were 
tested separately for each group (older adults, chronic stroke), and 
outcome measure (TMT A, TMT B, and TMT B-A). First, we performed 
exploratory Spearman’s correlations between cognitive outcome mea
sures and imaging metrics (WMH lesion load, stroke lesion load, FA, and 
MD) for each ROI (ATR, SLF, forceps minor, and cholinergic pathways). 
Next, we entered any variables that significantly correlated with the 
TMT outcome measure into linear regression models, to test which 
regional markers, or combination of markers, explained the most vari
ance in TMT performance. Regression models were adjusted for age and 
time post stroke (for chronic stroke group models). Scanner was added 
as an additional control variable in the older adult models to account for 
potential effects. All predictor variables were mean centered and stan
dardized. To identify which imaging metrics explained the most vari
ance in cognitive performance, we performed model testing of linear 
regression models by removing the predictor with the smallest beta- 
value, and comparing model fit with adjusted R2 and Akaike’s infor
mation criterion (AIC). We tested for collinearity in predictors by 
calculating the variance inflation factor (VIF). Separate models were 
constructed if VIF > 3.0 for any predictors, indicating a high degree of 
collinearity which may impact the model (Zuur et al., 2010). Because we 
relied on VIF in our model to indicate covariance we did not test for 
correlations between TMT performance and DTI or lesion load metrics 
Final models in this regression analysis were selected if the imaging 
metric was a significant predictor in the final model, the overall 
regression model was significant, and the model gave the highest R2 and 
lowest AIC in the tested model sets. We estimated effect sizes of pre
dictors in the model with partial η2. 

Once final models were established for TMT performance, we tested 
whether region-specific imaging metrics or whole-brain lesion volumes 
explained more variance in TMT performance. We fit a model entering 
both whole-brain lesion volumes and imaging metrics as predictors. 
Next, we compared performance between models fit with only whole- 
brain lesion volumes or regional imaging metrics as predictors. 

Finally, we compared model performance between imaging data 
separated by cerebral hemisphere (left versus right hemisphere for older 
adult group, ipsilesional versus contralesional for chronic stroke group) 
to test whether data from one hemisphere explained greater variance in 
TMT performance. For this analysis we excluded participants with 
bilateral stroke lesions. We further interrogated the role of hemisphere 
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in TMT performance with a supplementary analysis of individuals with 
chronic stroke, where we tested relationships between hemispheric 
imaging data and TMT performance between individuals with left 
hemisphere versus right hemisphere lesions. 

3. Results 

We included 62 otherwise healthy older adults and 34 individuals 
with chronic stroke in this analysis. All participants were successfully 
processed through MRI processing steps. One older adult was missing 
DTI imaging, but their lesion load and TMT data was included. One older 
adult and two individuals with chronic stroke were considered outliers 
in TMT times (≥3 standard deviations (SDs) above the mean); data from 
these individuals were excluded from final analyses. Our final sample 
included 61 older adults (age range: 46–80 years old, 23 males, 56 right- 
hand dominant) and 32 individuals with chronic stroke (age range: 
45–80 years old, 22 males, 7 bilateral stroke infarcts, 13 left hemisphere 
stroke infarcts, 12 right hemisphere stroke infarcts). In the older adult 
group, 39 individuals were scanned on the Phillips Achieva MRI, and 22 
were scanned on the Phillips Elition MRI. In the chronic stroke group, all 
34 individuals were scanned on the Phillips Achieva 3 T MRI. 

Table 1 presents participant demographics and mean TMT data for 
each group. Lesion overlap images for WMHs and stroke lesions are 
presented in Supplementary Fig. 1. Relative to older adults, the in
dividuals with chronic stroke had lower MoCA scores, larger whole- 
brain WMH volumes, and a lower proportion of females in the sample. 
Individuals with chronic stroke also had poorer performance on the TMT 
indicated by longer total TMT A and TMT B time, and greater differences 
in time to complete TMT B-A. Supplementary Table 1 presents mean 
imaging metrics between groups. Relative to older adults, individuals 
with chronic stroke had significantly lower FA and higher MD in ATR, 
SLF, and forceps minor (Supplementary Table 1: all p < 0.001), and 
significantly greater WMH lesion load in ATR, SLF, forceps minor and 
cholinergic pathways (Supplementary Table 1: all p < 0.010). We tested 
for potential sex differences in imaging metrics, presented in Supple
mentary Tables 2 & Table 3. There were no differences in any imaging 
metrics between sexes (all p’s > 0.05), therefore we did not include sex 
as a covariate in our statistical models. 

3.1. TMT models in older adults 

Preliminary spearman’s correlations for older adults are presented in 

Fig. 2. Overview of regions of interest (ROIs) included in analysis. ROIs included in this manuscript included the anterior thalamic radiations (ATR), cholinergic 
pathways of the basal forebrain, forceps minor of the corpus callosum, and superior longitudinal fasciculus (SLF). These are visualized in 3D in the sagittal (A) and 
axial (B) planes. 

Table 1 
Participant demographics.    

Older adults Individuals with 
chronic stroke 

p 

n  61 32  
Age 

mean  
(SD)  

64 (9) 66 (8)  0.245†

Sex  

n (%) females  

38 (63 %) 10 (31 %)  0.009‡

MoCA 
mean  
(SD)  

27 (2) 25 (3)  <0.001†

% ≥23  92 % 84 %  
range  [20–30] [19–29]  
WMH, mL 

median  
(IQR)  

0.350 
[0.126–1.068] 

1.828 [1.126–3.606]  0.001†

Stroke lesion, mL 
median (IQR)  

n/a 3.880 [1.260–43.733]  – 

Time since stroke 
mean  
(SD)  

n/a 70 (64)  – 

TMT A total (s) 
mean  
(SD)  

33 (11) 45 (16)  <0.001†

TMT B total (s) 
mean  
(SD)  

51 (17) 83 (46)  <0.001†

TMT B-A  18 (14) 38 (37)  0.003†
TMT A errors     0.413‡
0  

1 
≥2  

29  

23 
9 

17  

8 
7  

TMT B errors     0.356‡
0  

1 
≥2  

32  

13 
16 

14  

5 
13  

Note: Age is in years and time since stroke is in months, TMT errors is in number 
of individuals. IQR: interquartile range; SD: standard deviation; s: seconds. Bold 
values indicate statistical significance (p < 0.05). † = group comparison with 
independent samples t-test, ‡ = group comparison with chi-squared test. 
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Supplementary Table 4. Bivariate spearman’s correlations revealed that 
total TMT A time significantly correlated with the following variables: 
ATR FA (rs = -0.410, p = 0.001), forceps minor FA (rs = -0.335, p =
0.009), SLF MD (rs = 0.335, p = 0.009), SLF FA (rs = -0.289, p = 0.025), 
and ATR WMH lesion load (rs = 0.279, p = 0.029). These variables were 
therefore included in linear regression model testing. 

Table 2 presents the final best-fitting models for TMT outcome 
measures in the older adult group. Full regression model testing is pre
sented in Supplementary Table 5. The best linear regression model fit 
was achieved by ATR FA as a predictor, which showed a negative 
relationship with TMT A time after accounting for age and MRI scanner 
(Table 2). All other imaging variables failed to account for a significant 
amount of variance in TMT A time, and model performance was 
improved after these variables were removed (see: Supplementary 
Table 5). 

Bivariate spearman’s correlations revealed that total TMT B time was 
significantly correlated with SLF MD (rs = 0.387, p = 0.002), but SLF MD 
did not remain a significant predictor of TMT B time in the linear 
regression model after accounting for age and MRI scanner (Table 2). 
TMT B-A time did not significantly correlate with any imaging metrics 
(all p > 0.05) and therefore did not progress to regression model testing. 

3.2. TMT models in individuals with chronic stroke 

Preliminary spearman’s correlations for older adults are presented in 
Supplementary Table 6. Bivariate spearman’s correlations (rs) revealed 
that total TMT A time significantly correlated with the following vari
ables: ATR FA (rs = -0.460, p = 0.008), ATR MD (rs = 0.431, p = 0.014), 
and forceps minor stroke lesion load (rs = 0.355, p = 0.046). These 
variables were therefore included in linear regression model testing. 

Table 3 presents the final best-fitting models for TMT outcome 
measures in the chronic stroke group. Full regression model testing is 
presented for individuals with chronic stroke in Supplementary Table 7. 
Model testing was performed across two separate models due to high 
collinearity between ATR FA and MD data (VIF > 4.0). The best linear 
regression model fit was achieved by ATR MD as a predictor, which 
showed a negative relationship with total TMT A time, after accounting 
for age and time since stroke (Table 3). ATR FA was also significantly 
related to total TMT A time, but the ATR FA model explained less 
variance in TMT A time than the ATR MD model (adjusted (adj) R2 ATR 
FA model: 0.273, vs adj R2 ATR MD model: 0.390; see Supplementary 
Table 7). 

Bivariate spearman’s correlations revealed that total TMT B time was 
significantly correlated with the following variables: forceps minor MD 
(rs = 0.550, p = 0.001), ATR FA (rs = -0.521, p = 0.002), ATR MD (rs =

0.477, p = 0.006), forceps minor FA (rs = -0.376, p = 0.034). These 
variables were included in linear regression model testing, across two 
separate models due to high collinearity between FA and MD data (VIF 
> 4.0). The best linear regression model fit was achieved with ATR FA 
and forceps minor FA as imaging predictors (Table 3). ATR MD was also 
a significant predictor of total TMT B time, but the ATR MD model 
explained less variance in TMT B time than the ATR & forceps minor FA 
model (adj R2 ATR & forceps minor FA model: 0.438 vs adj R2 ATR MD 
model: 0.304; see Supplementary Table 7). 

TMT B-A time was significantly correlated with forceps minor MD (rs 
= 0.500, p = 0.004), but forceps minor MD was not a significant pre
dictor of TMT B-A in the linear regression model after accounting for age 
and time post-stroke (Table 3). 

3.3. Region-specific markers versus whole-brain lesion volumes 

We tested whether region-specific imaging markers explained more 
variance in TMT performance compared to whole-brain lesion volumes. 
We performed model comparison only for TMT measures with signifi
cant predictors in the previous linear regression model testing (total 
TMT A time for older adult group, total TMT A & B time for chronic 
stroke group). Full model comparisons are presented in Table 4. For 
every tested TMT outcome measure, regional DTI metrics explained a 
significant amount of variance in TMT performance over and above 
whole-brain lesion volumes. Further, the best fitting model in each case 
was the model with regional DTI metrics only, which provided a better 
fit to the data then models with whole-brain lesion volumes alone or 
models with combined whole-brain lesion volumes and regional DTI 
metrics (see Table 4). In other words, regional DTI metrics explained 
TMT variance above and beyond whole-brain lesion volumes, and model 
performance was improved when whole-brain lesion volumes were 
dropped. 

Table 2 
Imaging relationsthips with TMT performance in older adults.    

β VIF predictor p R2 adj R2 model p 

Total TMT A time       
0.378  0.294  <0.001 

Age   4.596  1.075  <0.001    
Scanner   2.101  1.124  0.418    
ATR FA   ¡3.431  1.197  0.010           

Total TMT B time       
0.176  0.132  0.012 

Age   4.810  1.267  0.046    
Scanner   − 1.247  1.010  0.776    
SLF MD   3.704  1.256  0.122    

Note: Imaging predictors were entered based on significance in exploratory 
correlations with outcome measure of interest. Model testing was performed by 
sequentially removing the imaging predictor with the lowest β-weight and 
comparing model performance. The presented models are the final models with 
best performance for each TMT outcome measure, see Supplementary Table 5 
for full model testing output. Bold values indicate statistical significance (p <
0.05). 

Table 3 
Imaging relationships with TMT performance in individuals with chronic stroke.    

β VIF predictor 
p 

R2 adj R2 model 
p 

Total TMT A time       
0.449  0.390 < 

0.001 
Age   2.062  1.057  0.376    
TSS   − 0.044  1.107  0.245    

ATR MD   11.282  1.123  <0.001            

Total TMT B time       
0.511  0.438 <0.001 

Age   20.637  1.144  0.005    
TSS   − 0.073  1.101  0.483    

ATR FA   ¡40.485  1.740  <0.001    
forceps 
minor 

FA   

14.740  1.511  0.065            

TMT B-A       
0.166  0.076 0.161 

Age   8.765  1.042  0.194    
TSS   0.030  1.045  0.774    

forceps 
minor 

MD   

11.525  1.024  0.088    

Note: Imaging predictors were entered based on significance in exploratory 
correlations with outcome measure. Model testing was performed by sequen
tially removing the imaging predictor with the lowest β-weight and comparing 
model performance. The presented models are the final models with best per
formance for each TMT outcome measure, see Supplementary Table 7 for full 
model testing output. TSS: Time since stroke (months). Bold values indicate 
statistical significance (p < 0.05). 
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3.4. Hemisphere-specific effects 

We tested whether observed TMT relationships with imaging 
markers were driven by hemisphere effects. For this analysis, we 
excluded seven participants with bilateral stroke infarcts, leaving a 
sample size of 25 in the chronic stroke group. We performed model 

comparison unilateral ATR tracts against TMT measures with significant 
predictors in the previous linear regression model testing (total TMT A 
time for older adult group, total TMT A and B time for chronic stroke 
group). Full model comparisons are presented in Table 5. For the older 
adult group, both right and left hemisphere ATR FA were significant 
predictors of TMT A performance, however right hemisphere ATR FA 

Table 4 
Regional imaging metrics versus whole-brain lesion volumes and TMT performance.  

Older adults   
β p partial η2 R2 adj R2 model p AIC 

Total TMT A time 
Both     0.370 0.324 <0.001*** 442.629 

WMH volume  − 0.052 0.973 <0.001     
ATR FA  − 3.448 0.016* 0.101     

Whole-brain     0.299 0.261 <0.001*** 447.027 
WMH volume  1.234 0.410 0.012     

ROI     0.370 0.336 <0.001*** 440.630 
ATR FA  ¡3.431 0.010* 0.112      

Individuals with chronic stroke 
Total TMT A time 
Both     0.456 0.352 0.005** 261.319 

WMH volume  1.460 0.579 0.012     
stroke volume  1.304 0.743 0.004     

ATR MD  10.191 0.004** 0.274     
Whole-brain     0.251 0.140 0.089 269.583 

WMH volume  4.677 0.101 0.096     
stroke volume  8.758 0.022* 0.180     

ROI     0.449 0.390 <0.001*** 257.760 
ATR MD  11.282 <0.001*** 0.449              

Total TMT B time 
Both     0.544 0.434 0.002** 326.198 

WMH volume  − 3.537 0.661 0.008     
stroke volume  11.197 0.271 0.048     

ATR FA  − 40.437 <0.001*** 0.401     
forceps minor FA  17.298 0.040* 0.158     

Whole-brain     0.232 0.119 0.117 338.843 
WMH volume  12.194 0.145 0.077     
stroke volume  21.251 0.056 0.129     

ROI     0.511 0.438 <0.001*** 324.441 
ATR FA  ¡40.485 <0.001*** 0.473     

forceps minor FA  14.740 0.065 0.120     

Note: Comparing final regression model performance for region-specific imaging metrics against whole-brain lesion volumes (log transformed) in the prediction of 
TMT performance. Bolded text indicates the model with best performance for each outcome measure. *** = p < 0.001; ** = p < 0.01; * = p < 0.05. 

Table 5 
Hemispheric effects of imaging relationships with TMT performance.  

Older adults   
β p partial η2 R2 adj R2 model p AIC 

TMT A 
Left hemisphere     0.359 0.324 <0.001*** 441.641 

ATR FA  − 3.112 0.017* 0.097     
Right hemisphere     0.370 0.336 <0.001*** 440.566 

ATR FA  ¡3.528 0.010** 0.113      

Individuals with chronic stroke 
TMT A 
Contralesional hemisphere     0.164 0.045 0.278 217.961 

ATR MD  7.046 0.063 0.155     
Ipsilesional hemisphere    0.526 0.459 0.001** 203.770 

ATR MD  15.968 <0.001*** 0.521      

TMT B 
Contralesional hemisphere     0.314 0.177 0.095 268.309 

ATR FA  − 26.620 0.027* 0.222     
forceps minor FA  3.895 0.733 0.006     

Ipsilesional hemisphere    0.458 0.350 0.012* 262.419 
ATR FA  ¡41.665 0.002** 0.385     

forceps minor FA  7.998 0.430 0.031     

Note: Comparing final regression model performance between hemispheres for unilateral tracts in prediction of TMT performance. Bolded text indicates the model 
with best performance for each predictor variable. *** = p < 0.001; ** = p < 0.01; * = p < 0.05. 
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explained more variance in the TMT A data, by a small margin (Table 5; 
adj R2 right hemisphere model: 0.336 vs adj R2 left hemisphere model: 
0.324). For the chronic stroke group, only ipsileisonal ATR data related 
to TMT A and TMT B time, the contralesional hemisphere model did not 
reach signficance (Table 5). 

To further interrogate the role of lesioned hemisphere in the 
observed DTI-TMT relationships, we conducted a supplementary anal
ysis comparing TMT performance and model fits between individuals 
with right hemisphere strokes (n = 12) and left hemisphere strokes (n =
13). TMT performance was not different between individuals with right 
and left hemisphere strokes (Supplementary Table 8; all p > 0.05). 
Within each group, TMT performance related to DTI data from the 
ipsilesional hemisphere, regardless of whether the ipsilesional hemi
sphere was a right or left hemispheres lesion (Supplementary Table 9). 

4. Discussion 

In this study we tested regional white matter markers of processing 
speed and executive funciton indexed by performance on the TMT. We 
evaluated multiple frontal-subcortical white matter tracts (ATR, SLF, 
forceps minor, and cholinergic pathways) using two methods to quantify 
structural damage in these tracts (regional lesion load and DTI micro
structure). This represents a comprehensive evaluation of promising 
candidate white matter biomarkers that have been identified in previous 
literature on this topic. Our study has three main findings. First, DTI 
metrics of the ATR emerged as the best candidate markers of TMT 
performance for both older adults and individuals with chronic stroke. 
Second, ATR DTI metrics explained significantly more variance in TMT 
performance than stroke or WMH volumes from the whole-brain. Third, 
ipsilesional, but not contralesional, ATR data related to TMT perfor
mance in individuals with chronic stroke, whereas both dominant and 
non-dominant ATR related to TMT performance in older adults. 

The development of a cognitive biomarker could facilitate advances 
in cognitive rehabilitation; a promising, but understudied, area of 
rehabilitation (Cumming et al., 2013). This study provides encouraging 
preliminary evidence for ATR microstructure as a candidate biomarker 
of processing speed and, to a lesser degree, executive function. For 
context, in the chronic stroke group the effect size of ipsilesional ATR 
MD with TMT A performance (partial η2 = 0.526; Table 5) is comparable 
to effect sizes seen for ipsilesional corticospinal tract FA and Fugl-Meyer 
scores (range 0.51–0.62 (Jin et al., 2017), a widely accepted neuro
imaging marker of upper extremity motor outcomes post-stroke7. 

4.1. Trail making test and cognition 

The TMT is a commonly used cognitive assessment for both healthy 
and clinical populations and measures multiple components of cognitive 
performance. For TMT A, we found that higher ATR FA was associated 
with faster times to complete the TMT A for both older adults and in
dividuals with chronic stroke, although in the chronic stroke group ATR 
MD explained more variance in TMT A times than ATR FA. We are the 
first study to show a relationship between ATR microstructure and 
processing speed in individuals with chronic stroke. 

TMT B performance in individuals with chronic stroke was best 
predicted by a combination of FA from the ATR and forceps minor. In
dividuals with agenesis of the corpus callosum show deficits in TMT B 
task performance (Marco, 2012), which may indicate a contribution of 
interhemispheric communication to the cognitive processes underlying 
TMT B performance. In our older adult group TMT B performance was 
not significantly related to any regional imaging measures, which may 
be explained by the characteristics of our sample. Our older adult sample 
had very low WMH volumes (mean 1.25 mL, roughly corresponding to a 
Fazekas score ≤ 1 (van Straaten et al., 2006) and relatively intact 
cognitive functioning (average MoCA score was 27, 92 % of the sample 
scored>23 on the MoCA (Carson et al., 2018). Previous studies reporting 
relationships between ATR structure and TMT B performance in older 

adults included participants with significantly greater WMH load than 
the current older adult sample (Duering et al., 2014; MacPherson et al., 
2017). Our data are in line with the hypothesis that critical structures for 
cognitive function become evident only with greater cumulative damage 
to white matter tracts (Duering et al., 2014) as we observed relationships 
between ATR microstructure and TMT B performance in the chronic 
stroke group only. 

No white matter tracts emerged as significant predictors of TMT B-A. 
TMT B-A was the most precise cognitive measure in our battery, and as 
such it may also require more specific neuroanatomical localization. 
fMRI studies suggest set-shifting is associated with dorsolateral pre
frontal cortex (DLPFC) activity (Moll et al., 2002; Zakzanis et al., 2005). 
The ATR region encompasses all fibers of the anterior limb of the in
ternal capsule; while this includes projections between the thalamus and 
DLPFC (Coenen et al., 2012), it also captures projections to other frontal 
cortex regions including from the medial forebrain bundle (Cho, 2015). 
It may be that relationships between thalamocortical structure and set- 
shifting ability will emerge with individualized tractography between 
the thalamus and DLPFC. 

Our findings suggest a relatively greater contribution of ATR 
microstructure to processing speed rather than set shifting, as ATR 
microstructure related to TMT A performance across our sample and 
related to TMT B performance in the chronic stroke group, whereas TMT 
B-A, a specific measure of set shifting, did not have any significant im
aging predictors. Additionally, individuals with chronic stroke took 
longer to complete TMT-B but did not make more errors relative to the 
older adult group. This indicates that it is slowed speed, rather than 
increased set-shifting errors, that contributed to TMT-B performance 
differences between groups. This argument is supported by Stuss et al. 
who reported that patients with focal frontal lobe lesions and executive 
dysfunction made more errors on TMT-B, but did not show differences in 
raw TMT-B completion time (Stuss, 2001; Stuss, 2011). A major theory 
of aging suggests that slowed processing speed is a central process that 
underlies poor performance in multiple other cognitive domains (Salt
house, 1996). Our data extend this theory, suggesting that frontal tha
lamocortical circuitry may be an early mediator of slowed processing 
speed. Considering the importance of processing speed to multiple 
components of cognitive abilities (Salthouse, 1996), our findings un
derscore the potential utility of ATR microstructure for use as a brain- 
based biomarker of post-stroke cognitive impairment. 

4.2. Anterior thalamic radiation 

The ATR connects the thalamus and the frontal cortex via the ante
rior limb of the internal capsule (Hua et al., 2008). The ATR is sensitive 
to age-related degeneration; in a study of 3,500 adults Cox et al. found 
that the ATR had the largest age-related changes in FA and MD among 
14 white matter tracts (Cox, 2016). Similarly, among thalamic grey 
matter nuclei, regions with frontal cortex connectivity show the most 
atrophy with aging (Philp et al., 2014). These age-related findings might 
reflect the vulnerability of the ATR to damage from WMHs, because the 
anterior limb of the internal capsule travels through the periventricular 
region of the lateral ventricles, the most common site of WMH formation 
(Veldsman et al., 2020). The vulnerability of the ATR to WMH formation 
would explain both the prevalence of processing speed and executive 
function deficits seen in individuals with WMHs (Vasquez and Zakzanis, 
2015), and the structure–function relationships observed in the current 
study. ATR therefore is a promising candidate marker of cognitive per
formance, given its widespread connectivity with the frontal lobes (Hua 
et al., 2008), its vulnerability to age and vascular related degeneration 
(Cox, 2016), and its relationships with cognitive performance in this and 
previous (Biesbroek et al., 2016; Biesbroek et al., 2013; Lampe, 2019; 
Cremers, 2016; MacPherson et al., 2017) reports. 

Both left and right hemisphere ATR DTI data related to TMT per
formance in the older adult group, however only ipsilesional hemisphere 
ATR FA related to TMT performance in individuals with chronic stroke. 

J. Ferris et al.                                                                                                                                                                                                                                    



NeuroImage: Clinical 36 (2022) 103174

9

This finding is likely explained by the profound negative impact a stroke 
has on white matter tracts, which in turn affects cognition. Individuals 
with chronic stroke had poorer TMT performance compared to older 
adults with mild WMHs. The effect size for contralesional ATR FA and 
TMT A performance was similar to the effect sizes observed in both 
hemispheres for older adults (contralesional partial η2 = 0.155 vs left 
hem partial η2 = 0.097; right hem partial η2 = 0.113; see Table 5), 
whereas the effect size for ipsilesional ATR FA was larger in magnitude 
(partial η2 = 0.521). This finding indicates that the damage to white 
matter caused by a stroke captures a greater amount of variability in 
TMT performance relative to age-related white matter changes alone. 
These hemisphere-specific effects of white matter structure in in
dividuals with chronic stroke may indicate that ipsilesional data will 
provide the most sensitive biomarker of cognitive function, even for 
cognitive functions without significant hemispheric lateralization. 

4.3. DTI-based biomarkers 

In this study we employed two methodological indexes of white 
matter structure to explain variability in TMT performance: DTI and 
regional lesion load. DTI markers, but not regional lesion load markers, 
related to TMT performance. ATR DTI microstructure was consistently 
the best marker across all tested regions and structural metrics, and it 
related to TMT performance above and beyond whole-brain WMH and 
stroke volumes. Conversely, region-specific lesion load metrics did not 
survive regression model testing, and all final models included only DTI 
metrics. 

DTI likely emerged as a sensitive structural marker because DTI can 
capture more variability in white matter structure than regional lesion 
volumetrics. In addition to underlying tract anatomy, DTI microstruc
ture is sensitive to both stroke lesions (Reijmer et al., 2013) and WMHs 
(Muñoz Maniega, 2019). Furthermore, DTI can detect subtle changes to 
white matter that extend beyond the boundaries of a segmented lesion, 
such as in the so-called “WMH-penumbra” (Muñoz Maniega, 2019; 
Ferris, 2022; Maillard et al., 2011) and in stroke-related Wallerian 
degeneration along the length of tracts (Thomalla et al., 2004). In 
contrast, lesion volumetrics are based on a binary measure of catego
rizing a voxel as lesioned or non-lesioned, and thus may miss more 
subtle effects of lesions on tract structure. In support of this idea, we 
found that DTI data from the ipsilesional ATR drove relationships with 
TMT performance, implying that stroke-related damage is involved in 
the relationship between ATR and TMT performance. However, stroke 
lesion load in the ATR did not relate to TMT performance, indicating DTI 
is capturing variability in ATR microstructure above and beyond the 
stroke lesion that contributes to TMT decline, potentially from co- 
occurring WMHs. DTI has promise as a clinical tool because it pro
vides a sensitive index of multiple forms of brain damage, and therefore 
may be useful across a variety of clinical populations. Future research 
should continue to interrogate the interactions between overt stroke 
lesions and WMH on behavioural outcomes. 

4.4. Limitations 

We acknowledge that there are limitations to our study. First, our 
study was cross-sectional in design; given this we cannot test whether 
ATR microstructure predicts individual trajectories of cognitive decline. 
While the cross-sectional design served to explore candidate markers of 
processing speed and executive functions, future longitudinal studies are 
needed to evaluate the predictive potential of ATR microstructure for 
cognitive performance. Second, our study employed a modest sample 
size, and our findings should be replicated in a larger group of in
dividuals. Third, we employed an atlas-based approach to white matter 
pathway delineation, which cannot capture individual differences in 
white matter anatomy. We balanced this limitation by eroding atlas 
regions to individual white matter anatomy. An atlas-based approach 
has several strengths, notably it is more easily scalable for clinical 

translation than individualistic tractography. However, future studies 
could use individualistic tractography approaches to further probe ATR- 
TMT relationships, especially to test contributions from specific cortical 
targets such as DLPFC thalamocortical pathways. Fourth, we do not have 
information on pre-stroke hand dominance for individuals in the chronic 
stroke group, and thus cannot speak to how pre-stroke hand dominance 
may have influenced our results. Finally, it is difficult to disentangle the 
contributions of processing speed and executive function in cognitive 
tasks (Albinet et al., 2012), and future studies should more fully inves
tigate the cognitive functions supported by ATR microstructure with a 
full neuropsychological testing battery. 

5. Conclusion 

Amongst a group of neuroimaging candidates, ATR microstructure 
emerged as a robust candidate marker of TMT A performance in older 
adults and individuals with chronic stroke, and TMT B performance in 
individuals with chronic stroke. TMT A and TMT B are complex tests that 
rely on multiple cognitive abilities; however, our data suggest a rela
tively greater contribution of ATR structure to processing speed, 
compared to set shifting abilities. ATR microstructure related to TMT 
performance above and beyond whole-brain WMH and stroke volumes, 
indicating the importance of regional metrics when considering 
behavioural relationships. ATR microstructure is a promising candidate 
for the development of novel markers to predict cognitive decline and 
response to intervention in cerebrovascular disease. 
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forebrain bundle (MFB) and anterior thalamic radiation (ATR): Imaging of two 
major subcortical pathways and the dynamic balance of opposite affects in 
understanding depression. J. Neuropsychiatry Clin. Neurosci. 24, 223–236. 

Cox, S.R., et al., 2016. Ageing and brain white matter structure in 3,513 UK Biobank 
participants. Nat. Commun. 7, 1–13. 

Cremers, L.G.M., et al., 2016. Altered tract-specific white matter microstructure is related 
to poorer cognitive performance: The Rotterdam Study. Neurobiol. Aging 39, 
108–117. 

Crowe, S.F., 1998. The differential contribution of mental tracking, cognitive flexibility, 
visual search, and motor speed to performance on parts A and B of the trail making 
test. J. Clin. Psychol. 54 (5), 585–591. 

Cumming, T.B., Marshall, R.S., Lazar, R.M., 2013. Stroke, cognitive deficits, and 
rehabilitation: Still an incomplete picture. Int. J. Stroke 8 (1), 38–45. 

Dade, L.A., Gao, F.Q., Kovacevic, N., Roy, P., Rockel, C., O’Toole, C.M., Lobaugh, N.J., 
Feinstein, A., Levine, B., Black, S.E., 2004. Semiautomatic brain region extraction: A 
method of parcellating brain regions from structural magnetic resonance images. 
Neuroimage 22 (4), 1492–1502. 

Debette, S., Markus, H.S., 2010. The clinical importance of white matter hyperintensities 
on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ 
341 (jul26 1), c3666–c. 

Devos, H., Akinwuntan, A.E., Nieuwboer, A., Truijen, S., Tant, M., De Weerdt, W., 2011. 
Screening for fitness to drive after stroke: A systematic review and meta-analysis. 
Neurology 76 (8), 747–756. 

Duering, M. et al. Strategic role of frontal white matter tracts in vascular cognitive 
impairment: A voxel-based lesion-symptom mapping study in CADASIL. Brain 134, 
2366–2375 (2011). 

Duering, M., Gonik, M., Malik, R., Zieren, N., Reyes, S., Jouvent, E., Hervé, D., 
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