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Abstract: The coronavirus disease (COVID-19) pandemic poses serious global health concerns with
the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging
infectious pathogens has elevated concerns and challenges for the future. To develop mitigation
strategies against infectious diseases, nano-based approaches are being increasingly applied in
diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of
various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents,
intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious
diseases have been highlighted. Moreover, physicochemical properties that confer physiological
advantages and contribute to the control and inhibition of infectious diseases have been discussed.
Safety concerns limit the commercial production and clinical use of these technologies in humans;
however, overcoming these limitations may enable the use of nanomaterials to resolve current
infection control issues via application of nanomaterials as a platform for the diagnosis, prevention,
and treatment of viral diseases.
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1. Introduction

Since 2009, numerous infectious diseases have been occurring periodically, includ-
ing those caused due to infection by influenza A virus (IAV; H1N1), West African Ebola
virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and the recent severe
acute respiratory syndrome coronavirus 2 [SARS-CoV-2; known as coronavirus disease
(COVID-19)]. SARS-CoV-2 has infected numerous individuals, which has resulted in
millions of deaths. Owing to the rapid global spread of SARS-CoV-2 infections and the con-
sequent damage, the World Health Organization (WHO) declared a COVID pandemic [1].

Strict measures, such as quarantining infected individuals, and technology-based
approaches have been employed to prevent the further spread of COVID. Various types
of healthcare technologies, including on-site rapid testing kits, vaccines, and antiviral
therapeutics for COVID, have been developed and applied in a short period of time via
Emergency Use Authorization (EUA) approvals. Most governments have carried out
extensive testing to identify potential infections and have rolled out mass vaccination
programs to prevent infection and reduce economic loss and human damage [2]. FDA-
approved antiviral agents, such as remdesivir, have been used to treat SAR-CoV-2-infected
patients, to reduce the number of severe cases that pose a serious burden on public health
systems. It is now being recognized that the peak of the pandemic has passed, although

Pharmaceutics 2021, 13, 1570. https://doi.org/10.3390/pharmaceutics13101570 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-5498-7328
https://orcid.org/0000-0002-8161-683X
https://doi.org/10.3390/pharmaceutics13101570
https://doi.org/10.3390/pharmaceutics13101570
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13101570
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13101570?type=check_update&version=1


Pharmaceutics 2021, 13, 1570 2 of 28

the morbidity and mortality rates require further reduction. However, infection rates
are fluctuating due to sporadic, rapidly rising infections with viral variants. The current
pandemic situation is a potent warning indicating that the emergence or re-emergence
of viral diseases is unpredictable but inevitable. Therefore, it is imperative to develop
technology-based countermeasures for diagnosis, prevention, and treatment to cope with
potential viral diseases in the future.

The introduction of nanomaterials in the development of technological countermea-
sures has advantages in many respects, such as facile functionalization, control of surface
chemistry, and availability as a delivery carrier [3]. Nanomaterials can be tailored for
specific uses by modulating physical and chemical properties, including size, morphology,
surface charge, and solubility. Due to these controllable properties, nanomaterials have
been used in biosensors to potentiate target-specific reactions that respond to biochemical
environments, such as temperature, pH, and the presence of enzymes (Table 1) [4]. Fur-
thermore, drug delivery carriers constructed with biocompatible nanomaterials have been
actively researched to improve the efficacy of therapeutics, especially in cancer therapy.
Nanomaterials can be applied in diagnosis, prophylaxis, and treatment systems to combat
infectious diseases [5].

Table 1. Nanomaterial-based diagnostics for emerging and re-emerging viral diseases.

Nanomaterials Diagnostic Techniques Target LOD Time Ref.

Carbon nanotubes

RDT DENV 8.4 × 102 TCID50/mL >10 min [6]

SARS-CoV-2 0.55 fg/mL >5 min [7]

Immunological Influenza A Virus
(H1N1) 1 PFU/ml 30 min [8]

Graphene

Immunological JEV/AIV 1 fM/10 fM 1 h [9]

AIV 1.6 pg/mL 30 min [10]

HIV-1 2.3 × 10−14 M 1 h [11]

Influenza A Virus
(H5N1) 25 PFU/mL 15 min [12]

Zika Virus 450 pmol/L 5 min [13]

AuNPs

Optical SARS-CoV-2 0.18 ng/µL >10 min [14]

50 RNA copies per reaction 30 min [15]

4 copies/µL 40 min [16]

Hepatitis B virus 100 fg/mL 10–15 min [17]

Immunological SARS-CoV-2 370 vp/mL 15 min [18]

0.08 ng/mL 30 min [19]

Influenza A Virus 7.8 HAU 30 min [20]

Zika Virus 0.82 pmol/L 50 min [21]

Quantum dots

ELISA Influenza A Virus 22 pfu/mL >35 min [22]

Influenza A Virus
(H5N1) 0.016 HAU >15 min [23]

SARS-CoV-2 5 pg/mL >15 min [24]

Immunological HEV3 1.23 fM 20 min [25]

SARS-CoV 0.1 pg/mL 1 h [26]

Synthetic polymer Immunological Influenza A Virus
(H1N1) 5 × 103~104 TCID50 9 min [27]

Nanofibers Immunological SARS-CoV-2 0.8 pg/mL 20 min [28]

Abbreviations: RDT: rapid diagnosis test, DENV: dengue virus, JEV: Japanese encephalitis virus, AIV: avian influenza virus, HEV3:
hepatitis E virus 3, AuNP: gold nanoparticle, HIV: human immunodeficiency virus, ELISA: enzyme-linked immunosorbent assay, LOD:
limit of detection, SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, TCID50: 50% tissue culture infectious dose, HAU:
haemagglutinin unit.



Pharmaceutics 2021, 13, 1570 3 of 28

Herein, we review the potential of nanomaterials with respect to the development of
technology for controlling viral diseases. First, we discuss rapid and sensitive detection
systems based on nanomaterials using optical, electrochemical, and colorimetric signals
(Figure 1). Next, we describe a nano-engineered vaccine system constructed with bio-
compatible materials and immune-stimulating compounds, eliciting potentially favorable
immunogenicity [29]. Finally, we review antiviral nanosystems that potentiate the efficient
delivery of antiviral therapeutics and exhibit virucidal activity. Thus, this review focuses
on comprehensively exploring advanced nanomaterials for the diagnosis, prevention,
and treatment of viral diseases, as well as their contribution to preparedness towards
unpredictable viral diseases that may occur in the future.
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Figure 1. Application of nanomaterials for diagnosis with advanced sensitivity and selectivity. (a) Schematic of using carbon
nanotubes for H5N2 isolation and concentration, directly from in situ samples. Transmission electron microscopy (TEM)
and scanning electron microscopy (SEM) images of H5N2 separated by carbon nanotubes are shown. Reproduced with
permission from [30]. Copyright (2016) American Association for Advancement of Science. (b) Schematic representation
of graphene as a sensing material for detecting SARS-CoV-2. The SARS-CoV-2 spike antibody binds to graphene and the
reaction with the target is converted into an electrochemical signal. Reproduced with permission from [31]. Copyright
(2020) American Chemical Society. (c) AuNP-based colorimetric diagnosis of coronavirus disease (COVID-19). The surface-
modified AuNPs with antibodies bind to the virus, which shifts the absorption wavelength of AuNPs. The shift in absorption
wavelength changes the color of AuNPs from red to purple. Reproduced with permission from [32]. Copyright (2020)
American Chemical Society. (d) Synthesis schematic of CdSe/CdS/ZnS quantum dots (QDs) and mechanism of application
in rapid diagnostic strips. TEM images and fluorescence spectrum of synthesized QDs. Influenza A virus was detected
using the fluorescence emission spectrum of the QDs on the rapid diagnostic strip. Reproduced with permission from [33].
Copyright (2020) Elsevier.

2. Diagnosis

Diagnostic tests are a key component of any successful strategy aimed at suppressing
emerging and re-emerging viral diseases and play an important role at all stages from early
detection to final resolution [34]. Diagnostic tests appropriate for epidemic prevention
and suppression are technically difficult to develop, validate, and implement and in-volve
complex and time-consuming processes.

The accuracy of nucleic acid amplification tests is highly dependent on the time of
obtaining the sample, as well as the type, storage, and handling of the sample. These tests
can only diagnose active infections. False-negative results can occur if the sample is not
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obtained appropriately or if the subject is tested too soon or too late after exposure to the
virus. In addition, the tests are complex and require specialized laboratory equipment and
reagents, as well as specialists to perform the tests, which can be problematic due to the
prolonged time required for obtaining the results.

Many researchers have attempted to overcome the limitations of reverse transcription
polymerase chain reaction (RT-PCR) assays [35–38]. Antibody detection assays present
several advantages over RT-PCR. Antibodies are more stable than RNA and are less
degradable during transport and storage, thus reducing the risk of false-negative results.
Although the research on antibody-based tests is ongoing, there are limitations to overcome.
The main reason for this is the lack of specificity. Additionally, there is a lag phase from
the initial virus exposure to the antibody response against infection. According to the
accumulated immunological data, the antibody response peaks at approximately 11 days,
indicating an insufficient time period for preventing the rapid spread of infectious diseases
at early stages of infection. Therefore, antibody detection assays are less effective in
diagnosing emerging and re-emerging viral diseases.

There is a need to develop new diagnostic platforms that are accurate, specific, fast,
and easy to use, to facilitate rapid screening. Currently, research dynamics have shifted
towards rapid diagnostics based on nanomaterials [39–42]. In this regard, nanotechnology-
based applications can greatly improve the sensitivity of previously developed detection
techniques, such as RT-PCR and immunoassays. Nanoparticles (NPs) have the character-
istics of high adsorption capacity, the quantum size effect, and high reactivity. The large
surface area of NPs can enhance detection effectiveness, as it allows efficient interaction
with target analytes. Therefore, through physical or chemical bonding, nanomaterial-based
diagnosis can be developed to increase selectivity and specificity and reduce detection time.
Appropriately using advanced nanomaterials is the key to achieving improvements in nan-
otechnology. Nanomaterials are the basis for the design of a wide range of virus diagnostic
tools. The unique characteristics of nanomaterials make them suitable for application in
state-of-the-art virus detection technologies.

2.1. Carbon Nanotubes

Carbon nanotubes (CNTs) are hollow cylindrical structures with nano-sized diame-
ters and are composed of sp2 sheets [43,44]. They are carbon-based nanomaterials that
have excellent electrical conductivity and reactivity. Therefore, they can sense analytes
and generate electrical signals as components of biosensors or improve recognition func-
tions [45,46]. In addition, CNTs have large surface areas and high tensile strength because
of the presence of sp2 bonds [47]. These nanomaterials are good candidates for nanoprobes
and biosensors to detect viruses, owing to their unique electrochemical properties and
chemical stability [48,49].

In a study on the detection of influenza A virus (IAV) using CNTs, a CNT-based DNA
sensor was formulated by immobilizing probe DNA on 700 µm wide CNTs by simple
physical adsorption. Owing to the excellent electrical conductivity and reactivity of CNTs,
the reaction time for detecting the target DNA was less than one minute, and target samples
of at least 1 pM were detectable [50]. In addition, after the first detection, the target DNA
was removed, and reproducible results were reported in successive repeated measurements.
Therefore, this CNT-based DNA sensor is expected to perform as an efficient virus diagnosis
system because it can successfully detect IAV with high speed and a very low limit of
detection (LOD), and can be reused [51].

In addition to biosensors, studies have reported that CNTs can be used to detect
and concentrate viruses without labels due to their porous structure and high physical
strength (Figure 1A) [52]. We developed CNT size-tunable enrichment microdevice (CNT-
STEM) technology by bonding a multi-walled CNT with very high porosity to a poly
(dimethylsiloxane) chamber. It has been reported that vertically aligned multiwall CNTs
detect viruses in a viable state and can separate them from contaminants present in the
sample. This system has enabled the detection of the H5N2 virus at a detection limit that is
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more than 100 times lower than that of real-time RT-PCR (rRT-PCR). The pore size of CNTs
can be adjusted, resulting in selective virus detection and concentration. This system has
the advantage of being able to capture viruses without labeling, enabling rapid detection
of viruses in the field without the need for an amplification process [30].

2.2. Graphene

Graphene is composed of a single two-dimensional layer in which carbon atoms
are covalently connected in a honeycomb lattice structure [30,53]. Graphene is widely
used biologically because it allows easy immobilization of various biomolecules, such
as nucleic acids and proteins, and its large surface area confers an advantage for the
adsorption of analytes [53]. Conjugation with other materials increases the sensitivity
of graphene, and this technique has been applied in pathogen detection systems [54,55].
Moreover, graphene is a conductive material with high electron mobility and chemical
stability [56,57]. Therefore, it is possible to detect the interaction of the target material with
a receptor immobilized on graphene. These properties make graphene particularly useful
in biosensors that detect various viruses [58].

Recently, a graphene-based immunological diagnostic method was reported for SARS-
CoV-2 (Figure 1B), which was used to detect the antigen protein via a conjugated SARS-CoV-
2 spike antibody. The application of graphene resulted in an optimal sensing environment
with improved sensitivity. This system exhibited a lower LOD (1 fg/mL) compared to
the enzyme-linked immunosorbent assay. In addition, pre-treatment was not needed,
and the analysis time was less than three minutes, thereby enabling real-time diagnosis.
When a MERS-CoV protein was applied in combination with the target SARS-CoV-2
protein, the electrical signal of the latter was dominant. Therefore, this graphene-based
system is expected perform as a point-of-care diagnostic system that can efficiently detect
SARS-CoV-2 in real time with excellent signal detection ability and high selectivity [31].

2.3. Gold NPs (AuNPs)

AuNPs have a unique absorption spectrum in the visible region due to their surface
plasmon characteristics. These characteristics are associated with the size, shape, and
morphology of the AuNP. The surface free electron arrangement of AuNPs changes in
response to the physicochemical environment, such as the presence of redox agents, pH,
and physical binding. AuNP responses involve color changes, thus making them potential
nanomaterials for a diagnostic platform that is based on optical signals. Another charac-
teristic of AuNPs is their amenability to easy surface modification. Au–thiol chemistry
facilitates easy and robust covalent bonding of the AuNPs with various compounds of
interest, such as probes, antigens, and antibodies [59–61]. Thus, surface-modified AuNPs,
engineered to bind to target molecules, can facilitate target-specific detection with the
naked eye [62].

Color changes occurring due to the binding of the AuNP to the target are rapid,
and the optical response of the AuNP can be interpreted visually; this is an important
characteristic that contributes to the rapidity of viral detection. For example, a colorimetric
diagnostic detection system based on AuNPs labeled with three types of antibodies against
a surface protein of SARS-CoV-2 has been reported (Figure 1C). When the antibody-labeled
AuNP is mixed with the SARS-CoV-2 surface protein, the binding of the AuNP to the target
protein results in a change in the absorption wavelength of the AuNP. This results in a color
shift and is achieved within three minutes. This system demonstrates the effectiveness
of AuNPs as part of a rapid diagnostic platform enabling the detection of SARS-CoV-2
without sophisticated instrumentation [32].

A lateral flow system associated with AuNPs is currently being used as a rapid diag-
nostic device. This device captures target molecules in the flowing specimen by capillary
action, and the results are immediately visualized on a strip labeled with antibodies [63].
This rapid diagnostic system combined with a simple detection procedure and easy read-
out with the naked eye enables portable detection of the virus outside the laboratory [64].
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This simple method of detecting a target depending on the presence or absence of a red line,
and the rapid and visual diagnosis of the results, are valuable in field diagnoses, especially
when the sample size is large. A recent study has reported a lateral flow-based rapid
diagnostic system for SARS-CoV-2 that uses antigen-antibody reaction. This system uses
surface-modified AuNPs linked to anti-human IgM antibodies that capture SARS-CoV-2
viral particles via antigen-antibody reaction, and the results are evaluated based on the
appearance of a red line [65]. In addition, the application of AuNP-based lateral flow sys-
tems is not limited to antigen–antibody reaction-based detection, and surface modification
of AuNPs has been widely used to detect genetic material. For example, a AuNP-based
dengue virus (DENV) detection system has recently been reported. AuNPs combined
with the reporter probe (rDNA) are prepared using a simple modification process to detect
target genetic material via a nucleic acid sandwich reaction. AuNP-rDNA interacts easily
with the target DENV-1 RNA in lateral flow strips; the occurrence of this interaction is
confirmed via the appearance of a red line. This system demonstrated an analysis time of
less than 20 min for the detection of DENV [66]. AuNP-based lateral flow can be applied
to point-of-care testing because it can be utilized outside the laboratory; the associated
procedure is simple and consumes a small amount of sample, and there is a minimal
requirement for equipment [67]. In addition, AuNPs can be applied to PCR (which is
the gold standard for rapid diagnosis) to reduce analysis time and improve sensitivity.
Another study reported the use of spherical nucleic acids (SNAs) with AuNPs to improve
the detection of SARS-CoV-2 by conventional PCR. SNAs attached to the surface of AuNPs
form novel three-dimensional nanostructures with nucleic acids that are complementary to
linker-DNA probes (binding occurs via covalent bonding) [68]. Target-dependent cleavage
of the linker-DNA probes results in the aggregation of AuNP-SNAs, leading to a colori-
metric change. The color change occurs within 10 minutes of mixing the PCR product
with AuNP-SNAs, and the sensitivity is comparable to that of RT-PCR [69]. A simple PCR-
and AuNP-SNA-based colorimetric analysis can contribute as a complementary technique
to RT-PCR, to shorten detection time by simplifying the analysis process. Therefore, this
system can serve as a powerful diagnostic tool for infectious diseases and will help reduce
the burden on real-time RT-PCR testing. In conclusion, AuNPs can play a pivotal role
in the development of detection systems for various types of viruses. Certain properties,
such as ease of surface functionalization and visualization, aid in the development of rapid
diagnostics that ultimately contribute to minimizing the spread of viral diseases at the
early stages [70].

2.4. Quantum Dots (QDs)

QDs are being applied in various fields, such as diagnosis and biosensing, owing to
their unique optical and electrical properties. QDs characteristically show various emission
wavelengths and colors, depending on their size and shape [71–74]. However, as electrons
are easily lost from QDs because of their high energy states, a structure in which a polymer
coats the core and shell is mainly used [75,76]. This core/shell structure has a long persis-
tence and high photoluminescence efficiency. QDs are inorganic fluorophores that show
minimal reactivity with surrounding materials, which results in high photostability [33,77].
Due to these optical properties, QDs are strongly fluorescent even when illuminated with a
single light source. Therefore, they can be applied as visualization tools in systems that
detect and label viruses [74].

A CdSe/CdS/ZnS QD-based rapid fluorescence immunochromatographic test (FICT)
has been reported for detecting the IAV (Figure 1D). By combining QDs with anti-influenza
A antibodies, a QD complex was formulated to detect H1N1 and H3N2 in clinical samples.
The QD complex reported a sensitivity of 93.75%. This sensitivity was higher than that
of the europium NP-based FICT, which reported a clinical sensitivity of about 79%. The
QD complex also performed eight times better than europium NPs and 64 times better
than a rapid diagnostic test. The aforementioned study reported the rapid detection of two
subtypes of IAV (H1N1 and H3N2) with superior sensitivity using QDs [78].
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QDs can also be used to detect hepatitis B virus (HBV) gene mutations due to their
excellent sensitivity. When a streptavidin-labeled QD binds to HBV DNA, it emits a green
fluorescence signal with a wavelength of 460–550 nm, which can be detected via microscopy.
This system exhibited a high sensitivity and very low LOD. HBV mutant detection is simple
and rapid with this system, showing excellent signal strength and photostability without
the need for additional procedures [79].

2.5. Synthetic Polymers

Synthetic polymers have been widely used in diagnostic fields, and those with biocom-
patibility and biodegradability have contributed to advancements in the biomedical field.
The convergence of biotechnology and diagnostic technology has brought forth a need for
biomedical materials and novel synthetic polymers with unique properties [80–82]. Poly-
lactic acid (PLA) is a synthetic polymer characterized by biodegradability, biocompatibility,
and ease of manufacture [83]. Due to its polymeric properties, it can be used to prepare
biocompatible membranes. These membranes show improved physical properties, such
as increased tensile strength. Additionally, the rate of decomposition and ion release can
be controlled according to the surrounding environment [84]. PLA can also help improve
adhesion and the stability of metallic materials [85]. In this regard, several types of syn-
thetic polymers use an electrospinning process. For example, polyvinyl alcohol (PVA) is a
biocompatible, soluble, linear synthetic polymer that has a variety of uses in biomedical
applications [86]. Its tension-activated properties facilitate the electrospinning process,
enabling the application of metallic nanomaterials. PVA has excellent film-forming ability
and physical and chemical strength. Due to these properties, PVA is often used in the
development of diagnostic systems. Other conjugated polymers with unique colorimetric
and optical properties, such as polydiacetylene (PDA) and polyaniline, are also used as
nanomaterials [87,88].

PDA reacts to environmental changes, such as a change in pH, and chemical and
biological stimuli. Due to these unique properties, PDA changes color in response to the
binding of the target to the receptor, allowing it to be used to detect viruses [89]. For exam-
ple, a PDA-based biosensor for the detection of influenza virus has been reported. A PDA
vesicle formed with an optimized ratio of 10,12-pentacosadiynoic acid and 1,2-dimyristoyl-
sn-glycero-3-phosphocholine was designed for the rapid detection of H5 influenza virus. A
change in color, from blue to red, was visible upon detection of H5 influenza virus by the
PDA-based biosensor within 20 minutes. Specificity towards various viruses, such as H3
influenza virus, Newcastle disease virus strain, and a porcine reproductive and respiratory
syndrome virus strain, was tested (at the same concentration). However, the PDA-based
biosensor exhibited a color change only in response to the H5 influenza virus. These
results demonstrated that the PDA biosensor could specifically discriminate H5 influenza
virus from non-target viruses. In addition, the sensitivity was 13.5 copies/µL, which is
considered an outstanding performance. This diagnostic system is simple and rapid, and
it allows for easy visualization and interpretation of the results with the naked eye. This
system may overcome certain limitations in existing detection methods, demonstrating the
potential of PDA-based diagnostic systems in point-of-care testing [90].

Polyaniline (PANI) can act as an electron transfer mediator, owing to its unique
chemical structure, and thus, can exhibit high conductivity and redox activity, as per the
pH of the surroundings. PANI is useful for biosensor development because it has excellent
electrochemical and mechanical stability, which make it suitable for structurally binding
various biomolecules [91]. Recently, a PANI-based immunological diagnostic system for
DENV was reported. This electrochemical immunosensor for DENV was constructed
by immobilizing an antibody on PANI bound to the surface of a glassy carbon electrode.
The conductive polymer, PANI, converted DENV NS1 antigen–antibody reactions into
an electrical signal. This immunosensor achieved a wide detection range, from 1 ng/mL
to 100 ng/mL, with an LOD of 0.33 ng/mL. These results show that the PANI-based
immunosensor demonstrates the potential to detect DENV with excellent sensitivity and
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via successful signal transduction of antigen–antibody reactions. This technology does not
require additional labeling, which can reduce time and manufacturing costs. Therefore,
conductive polymer-based immunosensors may be used to increase the efficiency of on-site
diagnosis of DENV [92].

3. NP Vaccines for Emerging Viruses

Vaccines are the most effective and cost-efficient means for preventing infectious
diseases. Despite the significant successes of various vaccines, the ongoing development
of new, safer, and more potent vaccines is required because of the emergence of new
pathogens, recurrence of old pathogens, and mutations in existing pathogens. Typically,
vaccines incorporate adjuvants, which are supplementary substances that compensate for
the poor immunogenicity of antigens and enhance the cellular and humoral immunity.
Several nanoplatforms that improve vaccine immunogenicity by enhancing the delivery
of antigens to the immune system or via a depot effect have been developed. The WHO
Emergency Use Listing for combating the COVID-19 pandemic includes vaccines that
incorporate a delivery system based on NPs, such as lipid NPs (LNPs) (Moderna, MA,
US and Pfizer-BioNTech, NY, US) and adenovirus viral vectors (Janssen, NJ, US and
AstraZeneca, UK) (Figure 2).
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Figure 2. Overview of nanoplatform-based vaccines approved by the World Health Organization (WHO) for the prevention
of emerging infectious diseases. Viral vectors and lipid NPs (LNPs) elicit potent immune responses by stably delivering
DNA and mRNA encoding antigens, respectively, to antigen-presenting cells.

Delivery systems formulated with NPs are being used in next-generation vaccines for
effectively delivering antigens and/or intrinsic immunostimulants [93–97]. These vaccines
are being engineered not only for the prevention of emerging infectious diseases, but also
for treating chronic diseases, such as diseases caused by hepatitis C infections [98,99],
human immunodeficiency virus (HIV) infections [100,101], herpes [102], and cancer. Next-
generation vaccines aim to induce both humoral and cellular immune responses, while
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being applied prophylactically and therapeutically [103,104]. Various nanoplatforms have
been incorporated into delivery systems and immunogenicity-enhancing strategies, such as
LNPs, polymeric NPs, nano-complexes, virus-like particles, and inorganic NPs. The main
principle of delivery systems is to deliver the vaccine antigens or immunopotentiators to
the antigen-presenting cells (APCs; including macrophages and dendritic cells) responsible
for the induction of innate immune responses. A delivery system that is similar in size
to nano-sized pathogens is expected to be advantageous for APC phagocytosis and for
presenting antigens to naïve T cells in lymphoid tissues. Further, nanoparticulate delivery
agents can protect the payload, deliver it in an intact native conformation to a target site
within the immune system, and create a sustained release of antigens over time. In the
future, the usage of such next-generation nano-delivery systems in vaccine technology
is expected continue with sufficient safety and stability. Herein, we discuss the use of
several representative nanoplatforms (LNPs and polymer particles) in delivery systems that
enhance vaccine efficacy. We also review nanotechnology-based adjuvants that enhance
the intensity and quality of cellular and humoral immune responses for the development
of vaccines.

3.1. LNPs

Nucleic acid-based vaccine technologies developed using plasmid DNA and mRNA
have emerged as potential alternatives to conventional vaccines. mRNA vaccines function
as non-infectious antigens, owing to which the risk of infection and subsequent transmis-
sion is eliminated. As mRNA molecules are fragile and are easily degraded during normal
cellular processes, special delivery methods or LNPs are used to secure stability and to
deliver the molecules to the cytoplasm for transcription. LNPs have been widely used as
mRNA delivery agents for decades. Generally, they consist of four components, namely,
lipids, phospholipids, poly (ethylene glycol) (PEG), and cholesterol, which support self-
assembly into NPs (~100 nm) with bilayer membrane-like structures. These components
affect the flexibility and stability of the structure and prolong the half-life of the structure by
preventing the degradation of proteins and enzymes. The first mRNA vaccine entrapped
in LNPs was developed in 1993 against the influenza virus. Thereafter, LNPs were mainly
used for delivering clustered, regularly interspaced short palindromic repeats (CRISPR)-
Cas9 RNA; neo-antigens; and tumor-associated antigen mRNAs for cancer therapeutic
vaccines. In addition, recent studies have been conducted to utilize bioactive lipids such
as plasmalogen for therapeutic, prophylactic components as well as delivery agents [105].
Given the recent clinical success of mRNA-LNP vaccines and the dramatic efficacy of these
vaccines against COVID-19, many institutions worldwide are studying and developing
these systems to create next-generation vaccines.

mRNA delivery for efficient translation requires cellular uptake and escape from the
endosome into the cytosol of APCs. LNPs facilitate efficient uptake of the mRNA and
prolonged interaction with the target cells; moreover, they protect the mRNA from being
degraded in the cellular environment (5′ and 3′ exonucleases, endonucleases, and pH). The
liposomal delivery systems usually use cationic lipids, such as DOTMA (1,2-di-O-octadecenyl-
3-trimethylammonium-propane) and DOTAP (1,2-dioleoyl-3-trimethylammonium-propane),
which readily form complexes with anionic mRNA. Repulsion between an mRNA molecule
and an anionic cell membrane reduces the uptake rate of the mRNA. The electrostatic
interactions between cationic LNPs and mRNA molecules ensure stable intracellular de-
livery [106,107]. Additionally, cationic lipid components induce prolonged retention at
the injection sites and activation of innate immunity, including both Th1- and Th2-type
immune responses [108–110].

Potent immunogenicity was observed after intradermal injection of mice with cationic
LNPs (~80 nm) encapsulating mRNAs that encoded the Zika virus target antigen (ZIKV-
LNP) [111]. ZIKV envelope protein-specific CD4+ T cell activation and the enhanced
induction of cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin
(IL)-2 in re-stimulated splenocytes were observed two weeks after administering a single
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dose of the vaccine (30 µg of ZIKV prM-E mRNA-LNP) to mice. Potent antigen-specific
antibody responses and ZIKV-neutralizing activity were observed in C57BL/6 mice at
8–12 weeks and in BALB/c mice at 2–20 weeks. Additionally, intradermal immunization
with 50 µg of ZIKV prM-E mRNA-LNP induced a significant production of antigen-specific
antibodies and resulted in neutralizing efficacy and protection against ZIKV challenges,
five weeks after vaccinating a non-human primate species (rhesus macaques).

Furthermore, Perrie et al. investigated and compared various cationic lipids, namely, 3ß-
[N-(N’,N’-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), dimethyldioctadecylam-
monium (DDA), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), 1,2-dimyristoyl-
3-trimethylammonium-propane (DMTAP), 1,2-stearoyl-3-trimethylammonium-propane
(DSTAP), and N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis (oleoyloxy)propan-1-aminium
(DOBAQ), with respect to efficient mRNA transfection and antigen expression induc-
tion [112]. The cationic lipid-formulated NPs included the following combinations: DOPE
and DMG-PEG2000 or DSPC; and Chol and DMG-PEG2000. Self-amplifying RNA (SAM)
encoding the rabies virus glycoprotein (RVG) was used as the nucleic acid antigen. Cationic
LNPs, including combinations with DOPE and DOTAP or DDA, induced the most po-
tent in vitro RVG expression in the presence or absence of 5% FBS. Furthermore, DOTAP-
or DDA-LNP formulations induced efficient production of RVG-specific antibodies and
cytokine-producing CD8+ and CD4+ T cells in vivo. Both cationic formulations and lipo-
fectamine 2000 (a proprietary cationic lipid formulation), which has been widely used in
clinical studies, induced significant humoral and cellular immunity in mice when com-
plexed with SAM at high doses. These results revealed a useful alternative to ionizable
lipids for the delivery of SAM vaccines.

Although the properties of LNPs for vaccine delivery are suitable for clinical appli-
cation, there are a few safety concerns that need to be addressed. Despite the associated
desirable outcomes, such as efficient delivery and translation of anionic nucleic acids,
cationic lipids have been associated with cellular toxicity and inflammatory responses. For
example, cationic LNPs have induced several changes in cells, including cell shrinking,
reduced mitosis, and vacuolization of the cytoplasm, followed by cell lysis and necro-
sis [113–115]. The capture of LNPs by Kupffer cells in the liver can trigger excessive
inflammation by inducing the expression of cytokines (TNF-α, IFN-γ, IL-6, and IL-12),
which may cause liver damage [116]. In addition, several components of LNPs (e.g.,
PEG, hydrophobic chains, hydrophilic groups, and linker bonds) can potentially promote
local and systemic toxicities. Consequently, achieving a balance between acceptable tox-
icity and good performance remains a key challenge in the development of LNP-based
vaccines [117].

3.2. Polymeric NPs

To enhance the immunogenicity of vaccines, several different types of nano-vehicles
other than LNPs have been used as carriers for antigens or other agents, such as antibodies,
ligands, and immune-stimulators. Specifically, biocompatible and biodegradable polymeric
NPs, such as polymersomes, micelles, nanospheres, and hydrogels, are potent delivery vec-
tors for modulating vaccine-induced immune responses. Polymeric NPs provide various
options to enhance the activation of APCs, increase presentation of antigens on both MHC
class I and II molecules, prolong antigen release, induce long-lasting immune responses,
and increase neutralization efficacy. These properties are vital for ensuring protection
against infections. The advantages of using polymeric NPs in vaccines are associated with
their physicochemical properties (size, shape, rigidity, ionization, and protein conjugation),
which can be custom engineered for application in extra- and intracellular environments.

In vaccine development, nanoparticulate vaccines have been customized to mimic
viruses, with respect to morphology and multivalent epitope exhibition, as well as to
co-deliver and release immune-stimulants [118–120]. PLGA NPs (~120 nm) have been used
extensively to formulate viromimetic matrices with hollow aqueous cores to entrap the
soluble stimulator of interferon gene (STING) agonist adjuvants and can be engineered
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to have a thin shell (~10 nm) to enable conjugation of viral antigens (Figure 3A) [120].
Hollow polymeric NPs have been prepared with PLGA and DSPE-PEG-maleimide via
water-in-oil-in-water double emulsion methods. Upon subsequent antigen conjugation
and STING agonist encapsulation, the quantities of the loaded agonist and MERS-CoV
RBD proteins were analyzed using high performance liquid chromatography (HPLC)
and bicinchoninic acid (BCA) assays, respectively. Antibody-conjugated colloidal gold
was used for staining, to enable the visualization of the conjugated antigens. Adjuvant-
loaded MERS-CoV viromimetic NP vaccines showed pH-responsive release under acidic
conditions (pH 5) in endosomes and were effective for the co-delivery of antigens and
STING agonists to drain lymph nodes. MERS-CoV vaccines elicited prominent immune
responses in vivo, including potent neutralization efficacy and antigen-specific T cell
responses. These vaccines further conferred protection against lethal challenges associated
with MERS-CoV infection in transgenic mouse models.
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Figure 3. Antigen and immunostimulant delivery using nanoparticles. (a) Schematic showing the preparation of a
viromimetic nanoparticle vaccine using hollow PLGA nanoparticles with encapsulated adjuvant and surface maleimide
linkers for conjugating viral antigens. Protection efficiency of vaccinated hDPP4 transgenic mice against lethal infection
with Middle East respiratory syndrome coronavirus (MERS-CoV). Statistical analyses were performed by unpaired t-tests
(* p < 0.05, ** p < 0.01, *** p < 0.001). Reproduced with permission from [120]. Copyright (2019) Wiley. (b) Schematic of
solid-core NP and watery-core polymersome (PS). Proportions of IFNγ-producing CD4+ and CD8+ T cells in the spleen,
lymph nodes, and lungs after immunization with NP and PS. The non-parametric Manne-Whitney U-test was used to
compare experimental groups (* p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant). Reproduced with permission from [121].
Copyright (2013) Elsevier. (c) Schematic showing inhalable bionic-virus nanovaccine activating cellular immunity and
humoral immunity of respiratory mucosa. TEM images of bionic-virus particles. Scale bars, 200nm. Antigen-specific
immune responses (IgG, IgA titer, and inhibition titer) upon immunization with inhalable bionic-virus nanovaccine. (I:
PBS, II: Intramuscular Injection, III: Intraperitoneal Injection, IV: Nasal Delivery) Reproduced with permission from [122].
Copyright (2021) Elsevier.
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The conjugation of antigens and TLR agonists to the delivery vehicles has been shown
to elicit enhanced immune responses in some cases. However, the type of association
method (conjugation or encapsulation) may affect the extent of immune responses [121].
The co-encapsulation of antigens and MPLA in polymersomes significantly increased
antigen-specific antibody production and cytokine expression levels compared to those
achieved via the association of antigens and MPLA without vehicles [123]. Associat-
ing antigens with nanoparticulate systems may also promote immune responses medi-
ated by T helper or cytotoxic T lymphocytes. In the PEG-b-PPS polymer compositions,
antigen-conjugated solid core NPs (30 nm) showed prevalent CD8+ T cell responses in the
spleen, lymph nodes, and lungs, whereas antigen-loaded polymersomes induced enhanced
antigen-specific CD4+ T cell responses (Figure 3B). The ability to selectively elicit different
T cell responses using different nanoparticulate antigen delivery systems could be valuable
for proactive vaccine design; it would also enable modulation of naïve immune systems to
combat emerging and re-emerging infectious diseases.

Mucosal vaccines present a potential strategy for inducing potent immune responses,
suppressing infection, and preventing viral transmission. As pathogens generally invade
the host through the mucosa, inducing protective immunity in the mucosal routes of in-
fection is the most effective preventive measure for reducing the incidence of mucosally
transmitted infectious diseases. Specifically, the nasal administration strategy has been
effective for inducing mucosal immunity against respiratory tract-based infectious diseases.
The administration of mucosal vaccines leads to the production of antigen-specific im-
munoglobulin A (IgA), which neutralizes invading pathogens and protects against lethal
infections; consequently, viral binding to target cells is inhibited and viral proliferation is
suppressed. Ming et al. suggested the formulation of a biomimetic coronavirus to imitate
the structure of the pathogen and utilization of the pathogen-specific route of infection.
This biomimetic formulation has been proposed as a potential mucosal immunity-inducing
vaccine [122]. Biomimetic pulmonary surfactants and PEG-lipid-based virosomes were
conjugated with the receptor binding domains of the multivalent spike protein of SARS-
CoV-2 to simulate the structure of coronaviruses (Figure 3C). Poly (I:C) is a synthetic
double-stranded RNA that activates the toll-like receptor 3 pathway to induce strong in-
nate immunity; this molecule was encapsulated in virosomes to formulate a nano-virosome
vaccine. This vaccine can be administrated intranasally to imitate a COVID-19 infection. It
demonstrated the capacity to induce a high titer of IgA and a potent neutralization efficacy
against SARS-CoV-2. In addition, many published studies have shown that intranasally
administrated ionic polymeric NPs induce an immune response by overcoming mucociliary
clearance and delivering antigens within the epithelial barrier [124–126]. The mucosal route
of administration is a non-invasive route of vaccine delivery and enables the induction
of both systemic and mucosal immunity against mucosal infectious pathogens such as
coronaviruses, influenza viruses, herpes simplex virus type 2, and HIV type 1 (HIV-1).

3.3. Nanoparticulate Adjuvants

Most adjuvants in advanced development focus on nanoparticulate platforms and im-
munomodulatory properties [127]. MF59 is a well-known adjuvanted seasonal flu vaccine
(FluadTM) and was approved in Europe in 1997. This vaccine is composed of nano-sized
squalene droplets with biocompatible surfactants (Tween 80 and Span 85) in a citrate buffer.
Although the specific mechanisms of action of emulsions are incompletely understood,
emulsions are known to induce the recruitment of CD11b+ inflammatory cells to the injec-
tion site and the production of a broad range of cytokines and chemokines. Additionally,
they control the release rate of the antigen (depot effect) for enhanced and consistent induc-
tion of immune responses [128]. Alternative squalene-based nano-emulsions, such as AF03
and AS03, have been developed with additional excipients [129,130]. These formulations
have long-term stability and elicit robust innate immune and antibody responses.

Alum has been administered as a safe and effective vaccine adjuvant to diverse
populations globally over the past 80 years. It has been licensed for use as an adjuvant in
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the clinic; however, its primary limitation is that it does not elicit Th1 responses. Alum
formulated as micro-sized gels has been used widely as a vaccine carrier to adsorb antigens.
Some studies have elucidated that the physicochemical characteristics (particle size, surface
charge, and shape) of the formulation affect the biological activity of the vaccines [131–133].
The MHC-I pathway is essential to induce a strong CD8+ T cell-mediated immune response.
However, exogenous antigens proceed through MHC-II presentation. This can be improved
by involving the cytosolic endocytosis pathway within APCs. Jiang et al. demonstrated
that aluminum oxyhydroxide [AlO(OH)] NPs effectively escaped from the endosome to
the cytosol by causing lysosomal swelling and damage. Further, lymph node targeting and
long-term retention were achieved using 90 nm-sized nanoparticulate AlO(OH) adjuvants;
this led to an effective CD8+ T cell response in vivo (Figure 4A). Another study reported
that the shape, crystallinity, and surface hydroxyl group display of AlO(OH) NP adjuvants
regulated NLRP3 inflammasome stimulation in human THP-1 myeloid cells or murine
bone marrow-derived dendritic cells (Figure 4B) [131,134]. These results show that the
nano-engineered design of aluminum-based adjuvants can be used to develop more potent
next-generation vaccines.

Modern adjuvants are being incorporated into NP design processes, though their
presence is primarily motivated by the need to improve cellular immune responses and
suppress lytic properties in physiological environments. Quillaja saponin-based adjuvants,
immune stimulating complexes (ISCOMs), and Matrix-MTM consist of 40 nm cage-like
nanostructures comprising cholesterol and phospholipids [135–138]. These adjuvants
induce Th1 and Th2 responses to activate cytotoxic T lymphocytes, in addition to stimu-
lating a robust antigen-specific humoral response. An evaluation of several inherent im-
munomodulatory soluble adjuvants demonstrated significant differences between Matrix-
MTM and other evaluated adjuvants. Matrix-MTM induced a significantly higher level
of T cell co-stimulatory molecules CD86 and CD69 in activated dendritic cells located in
draining lymph nodes. Further, vaccination using an influenza antigen adjuvanted with
Matrix-MTM led to the induction of expression of a broad range of cytokines (IL-2, IFN-γ,
IL-1β, TNF, IL-4, IL-5, IL-10, keratinocyte-derived cytokine, and IL-12), a re-stimulation
response, and balanced antigen-specific IgG1 and IgG2a responses in mice. ISCOM- and
Matrix-MTM-formulated vaccines have been successfully used in animals for many years
and are currently being tested in human clinical trials against COVID-19, seasonal influenza,
respiratory syncytial virus, and Ebola virus.
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Figure 4. Nanoparticulate aluminum-based adjuvants. (a) Schematic representation of aluminum hydroxide-PpAS nanopar-
ticles (APNs) adsorbing OVA and CpG. APNs promote antigen cross-presentation via a cytosolic pathway in dendritic cells.
Enhanced antigen-specific humoral and cellular immune responses after immunization with APNs. Statistical analysis
was performed using one-way ANOVA, followed by the Bonferroni post-test. * p < 0.05; ** p < 0.01; # p < 0.05; ### p < 0.001;
ns, not significant; nd, not detectable. Reproduced with permission from [132]. Copyright (2018) American Association
for Advancement of Science. (b) Schematic of the surface charge functionalization of aluminum oxyhydroxide [AlO(OH)]
with APTES and HSPSA. Representative TEM images of ALNR, ALNR-NH2, ALNR-SO3H and ALNR-C, where the scale
bars was 200 nm. NLRP3 inflammasome activation after treatment with ALNR has also been shown. Statistical analysis
was performed using Tukey’s test. The values that do not share the same letter indicate statistical differences at p < 0.01.
Reproduced with permission from [131]. Copyright (2017) American Chemical Society.

3.4. Future Directions of Vaccine Development Using Nanoplatforms

Vaccines play a key role in protecting humans from emerging infectious diseases. Cur-
rently, in the case of COVID-19, the continuous appearance of viral mutants since the first
outbreak in 2019 and breakthrough infections after vaccinations are major issues. A broad
range of novel or next-generation vaccine antigens, such as mRNA, DNA, and synthetic
and recombinant components, are being developed and used instead of microbial-derived
components. These types of components show clear advantages over conventional classical
antigens from a manufacturing and process control standpoint. As novel antigens have
successfully completed clinical trials and have been approved for human use, antigens tai-
lored to emerging infectious diseases will continue to be widely proposed. Future vaccine
research requires technology that can be applied immediately to clinical and preclinical
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experiments, with easy production when a viral disease emerges. Nanoengineering is
being applied to overcome major issues associated with recombinant protein subunit,
mRNA, and DNA vaccines that have potential for clinical application. These issues in-
clude poor immunogenicity and insufficient induction of inappropriate immune responses.
Nanoparticulate vaccines are primarily being developed to safely deliver antigens to APCs
and to maximize immune activity by protecting against proteolysis in the physiological
environment. Nanoplatforms can be optimally engineered for various molecules and
specific antigens by modulating the physicochemical properties of their components or by
presenting multimeric forms conjugated or formulated with immune potentiators. Further,
it is important to develop systems that use antigens and molecules encapsulated within
NPs to deliver them to the desired location with appropriate timing; it is also important
to ensure tightly controlled release kinetics. Consequently, nanoengineered vaccines have
great potential to be a flexible platform and provide novel strategies for the development
of the next generation of vaccines.

4. Treatment

The development of effective antiviral agents is essential for treating or alleviating
severe symptoms and preventing death in infected patients. Timely antiviral therapy is
an important measure to reduce the burden on the health care system. A variety of syn-
thetic and natural antiviral agents have been developed, including chemical compounds,
peptides, and essential oils. These agents exhibit antiviral activity against various types
of viruses [139]. Other FDA-approved therapeutics, such as oseltamivir, zanamivir, and
abacavir, are being utilized in antiviral therapy for influenza and HIV infection [140].
Remdesivir is now being used for the treatment of COVID-19, and its usage is associated
with a significant reduction in the mortality of infected patients [141]. Despite the contri-
butions of antiviral agents, there are several challenges associated with their usage, such
as limited efficacy because of poor solubility, low biostability, and toxicity. Additionally,
improvements can be made regarding the therapeutic effects of antiviral agents, which
mostly block viral proteins and cellular receptors involved in viral infection pathways,
such as site-specific delivery of antiviral agents to enhance efficacy and reduce off-target
effects. Thus, there is a need for efficient delivery of antiviral agents [142].

4.1. Delivery

To address the aforementioned issues, nanoparticulate delivery systems have been
applied in the development of antiviral treatments. These delivery systems ensure stable
systemic circulation and sustained release of antiviral agents, thus optimizing therapeutic
effects [143]. Various types of nanomaterials have been utilized to develop nanoscale
delivery systems, and the properties of these nanomaterials can be adjusted by controlling
the size of the system, modulating its surface charge, and conjugating targeting moieties
to the surface (Table 2). A wide range of nanomaterials, such as LNPs [144], polymeric
NPs, AuNPs [145], and silver NPs (AgNPs), are commonly used as carriers for entrapped
antiviral agents. These carriers can be easily functionalized with targeting moieties, in-
cluding antibodies, ligands, and receptors. A delivery system using bilayer polymeric
vesicles functionalized with phenylboronic acid (PBA) has been reported for IAV treat-
ment [146]; the surface density of the cell-targeting moiety was modified for improved
performance (Figure 5A). The optimal ratio of the carrier and PBA (which interacts with the
cell receptor sialic acid) was carefully evaluated via in vitro studies, which led to increased
cellular uptake of the antiviral agents mir-323a and favipiravir that were co-loaded in the
carrier (Figure 5B). Polymeric vesicles functionalized with PBA enhanced the therapeutic
effect of the antiviral agents and preserved cell viability to a greater extent than the free
drug (Figure 5C). This demonstrated the synergistic therapeutic effects and significantly
enhanced biocompatibility of these systems. The synergistic therapeutic effects associated
with dual-delivery were further explored to inhibit the entry of HIV-1 [147]. Liposomes
constructed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-
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sn-glycero-3-phosphoethanolamine-N-[methoxy-(poly(ethylene glycol))-2000] successfully
encapsulated two clinically relevant entry inhibitors: enfuvirtide and protoporphyrin IX.
Dual-loaded liposomal delivery carriers enabled enhanced antiviral activity against HIV-1
compared to single-loaded carriers. These results highlight the advantages of employ-
ing efficient delivery systems that elicit synergistic effects to inhibit HIV-1. The delivery
of dual-loaded inhibitors in a single carrier with high efficiency was the key factor in
this regard.

Table 2. Nanomaterials for antiviral therapy.

Nanoparticles Drugs Target Virus Strategy Level of
Study

Advantages in Antiviral
Therapy Ref.

Cellulose
PEG NPs Zidovudine HIV Inhibition

of viral replication In vitro

Improved encapsulation
efficiency

Targeted delivery with sustained
release

[148]

Lipid
PLGA NPs

Latency
-reversing agents HIV Inhibition

of viral replication In vitro Synergistic latency-reversal
and low toxicity [149]

PVP/SA
PEG NPs Zidovudine HIV Inhibition

of viral replication In vitro Improved cellular
internalization [150]

PLA NPs Chloroquine HSV-1 Blocking
viral entry In vitro Targeted delivery with sustained

release [151]

Lipid
nanodisc IAV Viral inactivation In vitro

In vivo

60% reduction of viral infection
40% reduction of death rate in

mice
[152]

AuNPs
IAV Inhibition

of viral infection In vitro 40% reduction of viral infection [153]

RSV, VSV
HPV, dengue Viral inactivation In vivo

Ex vivo 87% inactivation of virus [154]

GO-AgNPs FCoV
IBDV

Blocking
viral entry In vitro 25% inhibition of FCoV infection

23% inhibition of IBDV infection [155]

AgNPs TGEV-CoV Inhibition
of viral replication In vitro 67.35% reduction of viral

replication [156]

RSV Inhibition
of viral replication

In vitro
In vivo

75% reduction of viral
replication [157]

SeNPs Zanamivir IAV Inhibition
of viral infection In vitro Improved infected cell viability

up to 73% [158]

ZnO NPs Oseltamivir IAV Viral inactivation In vitro Improved infected cell viability
up to 90% [159]

SiO2NPs HIV
VSV

Inhibition
of viral infection In vitro 50% reduction of viral infection [160]

FE3O4@SiO2 HSV Viral inactivation In vitro Improved antiviral activity [161]

Ag2S Glutathione PEDV-CoV
model

Inhibition
of viral replication In vitro Reduction of viral titer [162]

CDs

HCoV-229E Blocking
viral entry In vitro CD-mediated inhibition of

viral entry [163]

PEDV-CoV
Model

Inhibition
of viral replication In vitro 80% reduction of viral

replication [164]

PRRSV-CoV
Model

Viral
Inactivation In vitro Reduction of viral replication [165]

Zika,
dengue

Inhibition
of viral infection In vitro Improved infected cell viability

up to 90% [166]

Cellulose
nanocrystals Alphavirus Inhibition

of viral infection In vitro 100% inhibition of viral infection [167,168]

Abbreviations: PEG: poly (ethylene glycol), PLGA: polylactide-co-glycolide, PVP: Poly (vinyl pyrrolidone)-, SA: sialic acid, PLA: poly (lactic)
acid, HSV: herpes simplex virus, IAV: influenza A virus, CD: carbon dot, VSV: vesicular stomatitis virus, HPV: human papillomavirus, RSV:
respiratory syncytial virus, GO: graphene oxide, IBDV: infectious bursal diseases virus, FCoV: feline coronavirus, AuNP: gold nanoparticle,
AgNP: silver nanoparticle, HIV: human immunodeficiency virus, PEDV: porcine epidemic diarrhea virus, PRRSV: porcine reproductive
and respiratory syndrome virus, TGEV: transmissible gastroenteritis coronavirus, NP: nanoparticle.
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Figure 5. (a) Characterization of phenyl boronic acid (PBA)-conjugated polymersome (PBASome)-controlled inter-ligand
distance between PBA conjugates. (b) Confocal laser scanning microscopy (CLSM) images of PBASomes in the presence of
various weight fractions, as observed when stained for lectin. Green, fluorescein isothiocyanate; blue, DAPI; red, WGA.
Reproduced with permission from [146]. Copyright (2018) Royal Society of Chemistry. (c) Enhanced expression of RIG-I
and IFN-β in A459 cells treated with GNR-5′PPP-ssRNA indicates inhibition of infection by H1N1 influenza virus and
Solon Islands seasonal flu strain. (d) Inhibition of viral replication of the 2009 pandemic H1N1 influenza virus and Solomon
Islands seasonal flu strain in the presence of GNR-5′PPP-ssRNA, evaluated in A459 cell lines. Reproduced with permission
from [169]. Copyright (2010) National Academy of Sciences. (e) Schematic of the mechanism of T-Fc-IVM-NP in HEK293T
via decreased ACE2 expression and viral uptake. (f) Inhibition of ACE2 expression and pseudovirus uptake in HEK293T
cells were evaluated using therapeutic (left) and preventative (right) treatment methods. Reproduced with permission
from [170]. Copyright (2020) American Chemical Society.

Tuning the surface charge of the delivery system provides an attractive strategy for
improving delivery. It assists in increasing the cellular uptake of NPs and facilitates
the loading of negatively charged nucleic acid therapeutics [168]. AuNPs are especially
noteworthy in this regard and have been used frequently in biomedical applications because
of their amenability to surface modification. Gold nanorods (GNRs) modified with cationic
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charges were reported to function as stable delivery carriers, facilitating electrostatic
interactions with anionic antiviral agents against pandemic H1N1 influenza virus [169].
GNR nanoplexes, consisting of GNRs and a genetic agent [5′PPP-ssRNA; ligand of retinoic
acid-inducible gene I (RIG-I)] that activates antiviral signaling pathways in respiratory
epithelial cells, showed cellular internalization comparable to that of commercially used
agents (Figure 5D). The expression of RIG-I and IFN-β is associated with immune responses
and the inhibition of viral replication. The expression of these molecules was significantly
increased by GNR nanoplexes, ultimately reducing the replication of both seasonal and
pandemic H1N1 influenza viruses (Figure 5E).

Nanoparticulate delivery systems can be administered using various delivery routes,
which allows for site-specific delivery of these systems. Thus, the delivery routes can
be optimized based on the mechanism of action of the antiviral agents. The intravenous
route is commonly used because of its effectiveness in emergencies; however, this route
has several disadvantages, such as high cost and inconvenience associated with injections.
Non-invasive oral administration has been studied as an alternative [171]. Dhar et al.
investigated an orally administrable nanoparticulate system encapsulating the clinically
approved antiviral drug ivermectin (IVM) for the treatment of COVID-19 [170]. A nanocar-
rier was constructed with poly (lactide-co-glycolide)-b-poly (ethylene glycol)-maleimide
(PLGA-b-PEG-Mal) and the Fc immunoglobulin fragment; it elicited a FcRn-driven cross-
ing of the epithelial barrier in the intestine, to access the bloodstream. The NP-mediated
delivery of IVM facilitated sustained release, enabling the maintenance of an optimal
concentration of the drug. This significantly improved prophylactic efficacy by suppressing
the expression of ACE2, which contributes to viral entry (Figure 5F,G). The aforementioned
delivery system demonstrated potential as an effective antiviral platform for the treatment
of COVID-19.

4.2. Viral Inhibition

Inhibition of viral replication is crucial for antiviral treatment and many antiviral
agents have been developed in this regard. Nanoparticulate systems are primarily used
to complement antiviral agents as delivery carriers, to improve therapeutic efficacy [172].
Using an understanding of the fundamentals of NPs, nanoparticulate systems capable of
inhibiting viral replication have been developed and have been strategically designed to
block certain viral replication stages, such as receptor binding, cellular entry, and translation
of viral proteins [154].

Receptor binding is the first stage of the virus life cycle and is an effective target
for nanoparticulate systems. Recently, it has been reported that NPs prepared via facile
surface modulation showed strong binding with viruses. This prevented the viruses from
accessing the cell receptor, resulting in the effective blockage of viral replication [160,173].
For example, Nie et al. reported that spiky nanostructures (SNSs) with geometry-matching
topography inhibit the IAV [174]. SNSs, consisting of silica NPs (SNPs), were designed
to match the size and topography of IAV and were coated with a erythrocyte membrane
to target the hemagglutinin of IAV. SNSs allow for strong binding to IAV and block viral
entry into the cells, thereby reducing up to 85% of cellular infections. This study provided
a potential feature, the topography of NPs, to consider during the development of viral
inhibitors. The antiviral activity of mesoporous SNPs grafted with distinct organic groups,
such as aminopropyl, glycidyloxypropyl, or phenylethyl groups, was investigated against
HIV [160]. Various SNPs with distinctive colloidal properties can be produced by bal-
ancing the hydrophilicity and hydrophobicity during the surface modification process.
SNPs also have different virucidal activity and cytotoxicity profiles, depending on the
surface-grafted chemicals. Peptide-polymer NPs with an affinity for influenza virus were
evaluated for effective receptor blocking by adjusting the peptide density (Figure 6A) [175].
Biocompatible polyglycerol NPs decorated with a peptide (PeB) at a high density exhibited
a strong affinity for the influenza virus via multivalent binding, eliciting significant inhibi-
tion of influenza virus infections (Figure 6B). These results highlight that tuning the surface
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properties of NPs may potentially help in controlling viral transduction; these NPs can be
used as antiviral agents and as delivery carriers for antiviral treatments. The synergistic
antiviral effects of curcumin-modified AgNPs (cAgNPs) were investigated for the efficient
inhibition of respiratory syncytial virus (RSV) infections [176]. The poor water solubility of
curcumin and the toxicity of AgNPs were effectively mitigated by combining these two
agents. Additionally, as both agents have virucidal properties, the combination system
exhibited remarkable antiviral activity against RSV infections without notable cytotoxicity.
Regarding viral inhibition, biocompatible cell-mimicking nanodecoys derived from cells
have been reported [177]. Rao et al. developed nanodecoys with genetically engineered
human embryonic kidney 293T/ACE2 cells for treating COVID-19. The nanodecoys with
ACE2 and cytokine receptors significantly inhibited viral replication and infection by com-
peting with host cells for virus and cytokine binding. Nanodecoys enable customization
with various types of cellular vesicle components. Li et al. reported that ACE2 nanodecoys
derived from human lung spheroid cells (LSCs) neutralized COVID-19 and mitigated lung
injury [178]. Furthermore, LSC-nanodecoys promoted viral clearance and reduced lung
injury via inhalation administration.

Controlling the redox environment in the host cell reportedly provides control over
viral replication in the cell. Reactive oxygen species (ROS) are representative messengers
of cell signaling and can trigger inflammatory signaling pathways and apoptosis in virus-
infected cells. A ROS-scavenging system using curcumin-derived copper QDs (Cur-CQDs)
has been developed to inhibit enterovirus 71 [179]. The CQD component of Cur-CQDs
regulated ROS levels, while the curcumin component blocked viral entry, leading to the
effective suppression of viral replication (Figure 6C). Polymeric NPs constructed with
conductive polymers have also been used to inhibit viral replication by regulating ROS
levels [88]. This polymeric nano-regulator successfully decreased ROS levels in cells
incubated with various types of influenza viruses, including H1N1, H3N2, and H9N2,
without significantly affecting the viability of the infected cells (Figure 6D). Modulation of
ROS can also affect the apoptosis pathways of infected cells; these pathways are essential
for the proliferation of viruses. Decreasing cell death is a different approach for developing
antiviral therapy. Based on this strategy, nanoparticulate systems co-employing antiviral
therapeutics with viral binding properties and NPs with antiapoptotic properties have
been developed [180]. For example, AgNPs decorated with antiviral therapeutics, such
as oseltamivir [181] and zanamivir [182] (targeting the influenza virus), potentiated the
inhibition of viral replication in, and apoptosis of, the infected cell. These results revealed
improved cellular uptake and similar inhibition of influenza virus infections (Figure 6E–G).
Consequently, AgNPs associated with antiviral therapeutics significantly decreased the
apoptosis of H1N1 influenza virus-infected cells by regulating ROS levels, demonstrating
the potential application of such NPs in antiviral therapy.

Therefore, nanomaterials possess virucidal potential and provide novel routes for the
development of antiviral systems utilizing the dual functionality of NPs. Antiviral nano-
systems can be applied as antiviral barriers to coat frequently contacted surfaces, such as
masks, public areas, and healthcare infrastructure [183]. The use of antiviral nanomaterials,
including copper [184], graphene oxide [168], zinc oxide [185], and AgNPs [186], has shown
potential in preventing the spread of viruses through contact transmission. Antiviral
nanomaterials may play a pivotal role in the development of practical measures to prevent
future outbreaks.
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Figure 6. (a) Scheme for polymeric nanoparticle (PGs) conjugated with peptide (PeB) in various molecular weights is
represented. (b) Inhibition of influenza A virus infection by PG-PeBs, prepared using different molecular weights of PeBs,
was evaluated in vitro (top) and in vivo (bottom) (*** p < 0.001). Reproduced with permission from [175]. Copyright
(2017) Wiley. (c) Schematics showing the synthetic process of curcumin-derived copper QDs (Cur-CQDs) (top) and their
mechanism of antiviral activity (bottom). (d) Therapeutic effect of Cur-CQDs against enterovirus 71 (EV71) infection was
evaluated in an in vivo study. Survival rates, clinical scores, and body weights of (i) mice without infection and mice
injected with (ii) PBS, (iii) curcumin, or (iv) Cur-CQDs, followed by challenge with EV71. Reproduced with permission
from [179]. Copyright (2019) Wiley. (e) Antiviral activity of silver nanoparticles decorated with antiviral agents (Ag@OTV)
was evaluated by determining the viability of H1N1-infected cells (top) and analyzing the ROS production detected based
on DCF fluorescence intensity (bottom) in H1N1-infected cells. One-way analysis of variance (ANOVA) was used for
statistical analysis. Data represent mean ± standard deviation (* p < 0.05 or ** p < 0.01) (f) TEM image cell sections treated
with control media (left), virus (middle), and virus + Ag@OTV (right), where the scale bars were 1 µm (left), 200 nm (middle),
and 200 nm respectively. (g) ROS-mediated apoptotic signaling pathway, as well as p53 and AKT signaling pathways, are
regulated by Ag@OTV. Reproduced with permission from [181]. Copyright (2016) American Chemical Society.

5. Conclusions

Viruses have appeared in the past and will continue to appear in the future. As is
currently being observed, a single pandemic can threaten the lives of many and create
numerous economic and social challenges. The need for an effective solution to this
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problem has now been fully recognized. The nano-sized nature of viruses suggests that
nano-sized technological solutions may be needed to successfully combat these agents.
Consequently, nanotechnology research for the development of prophylactic vaccines,
diagnostics, and therapeutics against infectious pathogens is likely to continue advancing
in the future.

Studies on diagnostic technologies are essential for combating emerging and re-
emerging viruses, as well as for the rapid control and prevention of illness and death.
Nanomaterials may improve the sensitivity of existing diagnostic technologies because
of their controllable properties, such as high reactivity, adsorption capacity, particle size,
and physicochemical bonding capacity. In addition, application of NPs may lead to im-
provements in technology, with respect to cost, time, specificity, mobility, and convenience.
Studies using nanomaterials to identify transmission patterns of infectious diseases and the
mechanisms underlying virus infections, to apply NPs to virus diagnostic technologies, are
being actively proposed and carried out. Thus, using nanotechnology-based innovations, it
is possible to establish a predictive and early monitoring system that will help prevent the
spread of viral diseases; additionally, these innovations will aid in the rapid and accurate
diagnosis of infected individuals.

Safety concerns will be the most important issues concerning the development of
nanotechnology-based vaccines and anti-infective therapy. Potentially severe adverse
effects may include anaphylaxis, pyrogenic fever responses, organ-specific toxicity, and
immune-mediated toxicities (e.g., immune activation or suppression and autoimmune
diseases induced by excessive cytokine release). Therefore, adequate information regarding
the pharmacological and toxicological effects of the prophylactic and therapeutic agents
should be available prior to the initiation of clinical research and product development.
Under the EUA approval, some nanomaterials are being applied to humans to combat the
COVID-19 pandemic. It is certain that the number and speed of approvals for the use of
nanomaterials in humans will increase in the future. The implementation of nanomaterial-
based prophylactic and therapeutic systems with appropriate safety profiles will contribute
to being suitably prepared for combating and managing emerging infectious diseases.

Although further research is needed regarding the clinical use of nanomaterials, the
prophylactic and therapeutic effects of existing modalities have been clearly improved
by the application of NP-based delivery systems. Further, the incorporation of nano-
engineered materials has led to an increase in the sensitivity and speed, as well as a
reduction in the cost, of existing diagnostic methods. Innovations in the usage of nanoma-
terials in diagnostic systems, vaccines, and treatment modalities will continue to advance
and will ultimately help combat infectious disease pandemics.
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