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Abstract

Homologous genes in prokaryotes can be described using phylogenetic profiles which summarize their patterns of presence or

absence across a set of genomes. Phylogenetic profiles have been used for nearly twenty years to cluster genes based on measures

such as the Euclidean distance between profile vectors. However, most approaches do not take into account the phylogenetic

relationships amongst the profiled genomes, and overrepresentation of certain taxonomic groups (i.e., pathogenic species with

many sequenced representatives) can skew the interpretation of profiles. We propose a new approach that uses a coevolutionary

method defined by Pagel to account for the phylogenetic relationships amongst target organisms, and a hierarchical-clustering

approach to define sets of genes with common distributions across the organisms. The clusters we obtain using our method show

greater evidenceofphylogenetic and functional clustering thana recentlypublishedapproachbasedonhiddenMarkovmodels.Our

clusteringmethod identifies setsof amino-acidbiosynthesisgenes that constitutecohesivepathways, andmotility/chemotaxisgenes

with common histories of descent and lateral gene transfer.
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Introduction

Lateral gene transfer (LGT) is an important force in microbial

evolution, enabling processes such as adaptation to extreme

environments (Ochman et al. 2000; Gogarten and Townsend

2005), acquisition of new metabolic functions (P�al et al.

2005), and defense against antimicrobial agents (Barlow

2009). Coordinated transfers of genes can enable rapid eco-

logical shifts, and identification of sets of genes implicated in

these shifts can highlight the events that took place during the

diversification of prokaryotic groups, and suggest functional

linkages between the implicated genes. Given the large phy-

logenetic diversity of microorganisms that inhabit the human

microbiome (Turnbaugh et al. 2007), and in many cases the

uncertainty associated with their precise ecological roles

(Huttenhower et al. 2012), augmenting comparative genomic

and metagenomic analysis with examination of LGT can pro-

duce more information about the capabilities of a given mi-

croorganism. Although strong evidence exists for preferential

patterns or “highways” of gene sharing among specific

groups of prokaryotes (Beiko et al. 2005; Skippington et al.

2011), small amounts of LGT connect many different taxo-

nomic groups and the overall pattern of sharing resembles a

web rather than a clear reticulated tree (Kloesges et al. 2011).

These diffuse patterns, coupled with the methodological chal-

lenges associated with LGT inference (Philippe and Douady

2003; Kloesges et al. 2011), make it difficult to identify sets of

genes with similar evolutionary trajectories.

Many approaches have been used to identify sets of genes

with similar evolutionary histories. Puigb�o et al. (2009) per-

formed a comparative analysis of the topological similarity

among 6,901 phylogenetic trees built for clusters of ortholo-

gous groups of proteins representing a set of 100 prokar-

yotes, showing that LGT did not obscure a significant

central tendency so that a consistent phylogenetic signal still

exists. Kunin et al. (2005) applied tree reconstruction methods

to infer vertical evolutionary inheritance and then detect LGT

events by using an ancestral-state inference algorithm and

estimated the number of genes exchanged across organisms
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using a weighting scheme. The results suggest genes might

propagate across a microbiome rapidly, with certain organ-

isms functioning as hubs in a broader LGT network.

Phylogenetic profiles (Pellegrini et al. 1999) summarize the

presence and absence of homologous genes across a set of

organisms, and have been used to identify laterally transferred

genes (Ochman et al. 2000) and to predict the functions of

hypothetical genes (Pellegrini 2012). Differences in gene con-

tent between related species result from processes such as

gene loss, duplication and LGT, and proteins that are involved

in similar biological processes (BPs) may be gained and lost

together, leading to similar phylogenetic profiles. However,

taxonomic sampling can pose a serious challenge to the in-

terpretation of phylogenetic profiles. Calculating Manhattan

or bit distances between pairs of profiles, for example, can be

overly simplistic because it weights each contributing genome

equally. In a scenario where the phylogenetic sampling of

genomes is nonuniform, these distances will be unduly influ-

enced by closely related genomes that have similar profiles

due to common descent. The most informative profiles will be

those that are widely but sporadically dispersed across very

distantly related genomes, as their distribution will not be

readily explained solely through a hypothesis of common de-

scent. Vert (2002) and Barker and Pagel (2005) applied phy-

logenetic reweighting schemes to the assessment and

comparison of phylogenetic profiles, and showed that genes

that evolve in a correlated fashion also tend to be functionally

linked. CLIME (Radivojac et al. 2013), short for Clustering by

Inferred Models of Evolution, was developed to explicitly con-

sider phylogenetic relationships among genes by inferring

evolutionarily conserved modules (ECMs) using a Bayesian

mixture model. Each ECM represents a tree-structured hidden

Markov model (HMM) with a single gain branch and branch-

specific gene loss probabilities. CLIME assigns genes within

the genome to the most likely ECM or a new ECM by com-

paring with a background null model using the likelihood-

ratio test. However, CLIME is based on models in which genes

can emerge only once and then be lost multiple times. Since

the effect of LGT is to create multiple apparent gene gains

throughout a tree, the model of CLIME may not be appropri-

ate for modelling prokaryotic genes that are subject to signif-

icant amounts of LGT.

Here, we propose a phylogenetic-profile-based method

that uses phylogenetic modelling to identify pairs of genes

with similar historical patterns of gain and loss. Our approach

uses the method of Pagel (1994) to test hypotheses of corre-

lated evolution between pairs of genes. The statistics gener-

ated by this approach are used to generate clusters using a

hierarchical approach based on average linkage. The resulting

clusters can be evaluated in terms of the similarity of their

phylogenetic distributions, the functional similarity of the pro-

teins in each cluster, and the phylogenetic trees built from

different sets of proteins contained within the cluster, which

can be further used to detect LGT events and infer genome

evolution via tree reconstruction methods. The main work

flow of this study is shown in figure 1.

One taxonomic group that has shown evidence for high

levels of LGT is the class Clostridia. As part of the Firmicutes

phylum, the class is a significant component of the human

microbiome and contains an ecologically diversified set of

organisms, including the pathogens Clostridioides difficile

(previously Clostridium difficile; a notorious cause of nos-

ocomial diarrhea), commensals from genera such as

Roseburia and Faecalibacterium, and organisms that are

less well understood (Pflughoeft and Versalovic 2012;

FIG. 1.—Workflow of our weighted phylogenetic profile approach.

Genome-sequence are collected to construct the protein profiles and

phylogenetic tree. Then, Pagel’s likelihood method is implemented to

calculate the evolutionary similarities among genes and the hierarchical-

clustering approach is used to define sets of genes with common distri-

butions across the given genomes. An evaluation framework based on the

GO terms (BP) is also developed to study the function associations in

the clustering results. In addition, the individual trees of the members

within a same cluster are compared with detect potential LGT events.
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Antharam et al. 2013). Commensurate with its ecological

importance, over 1,000 genomes from class Clostridia have

been sequenced at least in draft form, providing a rich re-

source for comparative genomics. Here, we apply our new

method to a set of 687 genomes from class Clostridia, with a

particular focus on Lachnospiraceae bacterium 3-1-57FAA-

CT1, a microorganism which was isolated from a patient

with Crohn’s disease and has an abnormally large genome

for the group. Our method successfully recovers phylogenet-

ically and functionally cohesive clusters of genes, and high-

lights probable highways of gene sharing that have shaped

this genome and its close neighbors.

Materials and Methods

Data Sets

The bacterium “Lachnospiraceae bacterium 3-1-57FAA-CT1”

lacks a formal taxonomic designation, and we refer to in this

paper as “LachnoZilla” or LZ. LZ was isolated from a biopsy

retrieved from the transverse colon of a female Crohn’s

Disease patient aged 22 years at the time of colonoscopy.

The patient was suffering a flare at the time of colonoscopy

and biopsy material recovered was taken from an inflamed

site. Isolation was carried out through serial dilution and cul-

ture on fastidious anaerobe agar (Acumedia) containing 5%

defibrinated sheep’s blood (Hemostat Laboratories) with

streak purification. gDNA was extracted using a Maxwell 16

instrument (Promega) according to manufacturer’s instruc-

tions. Sequencing was performed at the Broad Institute, as

part of the Human Microbiome Project Reference Genomes

effort (http://www.hmpdacc.org/reference_genomes/refer-

ence_genomes.php), generating sequence data to 140� cov-

erage. The protein-coding genes were predicted with Prodigal

(Hyatt et al. 2010) and filtered to remove genes with �70%

overlap to tRNAs or rRNAs. The tRNAs were identified by

tRNAscan-SE (Lowe and Eddy 1997). The rRNA genes were

predicted using RNAmmer (Lagesen et al. 2007). The gene-

product names were assigned based on top BLAST hits

against the UniProtKB/SwissProt protein database (�70%

identity and �70% query coverage), and protein family pro-

file search against the TIGRfam HMMer equivalogs.

We retrieved all available completed and draft genomes

from class Clostridia (687 genomes including LZ; supplemen-

tary table S1, Supplementary Material online), and a set of

eight outgroup genomes from class Bacilli and phyla

Actinobacteria and Proteobacteria which are used to root

the phylogenetic tree. All genome information used in this

work were retrieved from the National Center for

Biotechnology Information on August 22, 2014.

Phylogenetic Analysis and Profile Construction

We used a customized version of the AMPHORA2 pipeline

(Wu and Scott 2012) to construct a reference phylogeny

based on concatenated, conserved protein sequences

encoded by the set of genomes. Complete protein sequences

were searched against the set of HMMs specified by

AMPHORA2, yielding a maximum of 31 protein sequences

per genome. Each set of homologous proteins was aligned

using the corresponding HMM, then trimmed to remove any

column that had a scaled alignment confidence score <7.

Trimmed alignment files were then concatenated into a single

alignment, with any missing genes represented in the

alignment using missing-data (i.e., gap) characters.

Maximum-likelihood phylogenetic analysis of this supermatrix

was performed using RAxML-HPC version 7.2.5, using all de-

fault parameters and the “PROTCATLG” model of sequence

substitution (Stamatakis 2006). One hundred bootstrap repli-

cate alignments were generated using the SEQBOOT package

of PHYLIP version 3.695, and the resulting bootstrap support

values mapped to the appropriate bipartitions in the tree. The

tree was rooted arbitrarily among the eight outgroup taxa,

providing a defined rooting of the clostridial subtree.

Phylogenetic profiles were constructed using rapsearch

version 2.14 (Ye et al. 2011). The complete set of predicted

LZ proteins was compared against all other genomes in the

data set, with an expectation-value threshold of 10�20.

Profiles were interpreted as presence/absence matrices, with

no weighting of profiles by the number of matching proteins

in a given reference genome. Given the computational

demands of the Pagel method, we uniformly subsampled

73 random taxa in addition to LZ from the full tree (supple-

mentary fig. S1, Supplementary Material online), to produce a

more tractable data set for cluster construction.

Modelling Correlated Patterns of Evolution among Sets of
Proteins

We used the BayesTraits software that implements the statis-

tical approach of Pagel (1994) to correct profiles for shared

evolutionary history. This method aims to identify significant

evolutionary correlations between two discrete characters,

which in our case corresponds to the presence or absence

of two different homologous gene families, as represented

by their phylogenetic profiles across a phylogenetic tree. To

characterize the discrete-trait evolution in this method, two

continuous-time Markov models are contrasted: One model

where the two characters are assumed to evolve indepen-

dently, and a second model where two characters are as-

sumed to evolve in a correlated way, possibly due to

interactions. The hypothesis of correlated evolution is tested

by comparing the fit of the two different models to the ob-

served data set. Under the assumption that the two charac-

ters evolve independently, the null model (independent

evolution model) is a special case of the alternative model

(dependent evolution model), and the two models can be

assessed using a likelihood-ratio test. The dependent-

evolution model with more parameters will almost certainly
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have a higher likelihood. Thus, the likelihood ratios, which

follow a v2 distribution with four degrees of freedom (differ-

ence in parameters), will express the relative strength of the

evolutionary dependencies between genes.

We used the resulting likelihood ratios as the basis for a

hierarchical clustering of all profiles. The likelihood ratios for

all pairs of profiles were subtracted from the largest such ratio

to generate a symmetrical 2,697� 2,697 distance matrix.

Clustering of this distance matrix was performed using the

method of between-group average linkage (UPGMA).

Specific clusters for analysis were generated by cutting the

resulting dendrogram at different heights h.

Evaluation of Profiles Based on Phylogenetic and
Functional Similarity

Gene Ontology (GO) is a widely used classification scheme

that was also used in the Critical Assessment of Functional

Annotation (CAFA) large-scale evaluation experiment

(Radivojac et al. 2013). To measure the performance of the

clustering methods, we developed a framework based on

the BP category from GO to evaluate the clustering results.

All the available GO annotation of the proteins in this study

are acquired from the Uniprot Knowledgebase (www.uni-

prot.org). To measure the biological significance, we evaluate

the clusters from two directions: The quality of the clustering

and the enrichment of GO terms. To evaluate the perfor-

mance of the hierarchical clustering at different cutting

heights, we calculate the mean of GO semantic scores

weighted by the sizes of clusters according to the G-

SESAME method (Wang et al. 2007) which accounts for the

fraction of the aggregate contribution of all GO terms up to

the closest shared ancestor term. In order to quantify the ex-

tent to which the clusters of co-evolved genes are functionally

related, we performed a GO enrichment test for the distribu-

tion of each GO term across the clusters of co-evolved genes.

We adopted the Pearson’s Chi-squared statistic as our test

statistic. However, the chi-square distribution is not appropri-

ate for this test because there are many gene clusters relative

to the number of members in each GO term, which will result

in many clusters with zero count of the considered GO term.

To address this limitation, we used a resampling technique to

estimate the null distribution of the Pearson’s Chi-squared

statistic by randomly assigning 100,000 times all the GO terms

to the clusters of genes with the sizes given by the sizes of our

clusters of co-evolved genes from the hierarchical clustering

methods. This test is similar to the hypergeometric tests but

faster in computation.

Results

Genome Phylogeny and Profiles

All profiles were constructed from a set of 687 genomes,

including LZ (supplementary table S1, Supplementary

Material online). A total of 21 genera were represented,

with 38 genomes from genus Clostridium including 20

genomes of C. difficile. Seven genomes including LZ were

not taxonomically assigned at the genus level, although the

SILVA taxonomy (Quast et al. 2012; Yilmaz et al. 2014)

assigned LZ to the genus Eisenbergiella. A total of 6,505 pro-

files were constructed with these genomes, including 2,814

proteins unique to LZ (supplementary fig. S2a, Supplementary

Material online). A total of 2,697 distinct profiles were

obtained (supplementary fig. S2b, Supplementary Material

online) based on the uniformly subsampled 74 genomes.

Figure 2 illustrates the differences between the nonphyloge-

netic Manhattan distance and Pagel’s likelihood based

co-evolutionary method in contrasting the similarity of three

phylogenetic profiles to a reference profile.

Robustness of Pagel’s Statistics

Different tree rootings and the randomness in computing the

maximum-likelihood estimators in Pagel’s software may affect

the calculation of coevolutionary similarities, which can result

in inconsistent likelihood-ratio statistics for the same pair of

genes. To evaluate this instability, we reran the full data set

using the other two tree-rooting methods: MAD which is

based on the minimum ancestor deviation (Tria et al. 2017),

and the naı̈ve midpoint-rooting method. The likelihood-ratio

statistics computed from three different ways of tree-rooting

all showed correlation scores> 0.9 (supplementary fig. S4a–c,

Supplementary Material online). The correlations are high de-

spite the instability introduced by the errors involved in the

maximum-likelihood computation process. We can conclude

from these results that Pagel’s statistics are robust relative to

different tree-rooting methods and the errors introduced in

the computation of MLEs.

Properties of Clusters Generated by the Hierarchical
Method and CLIME

In spite of the similar cluster-size distributions produced by our

method and CLIME, there are substantial differences in the

clusters produced. We first used the weighted average of the

GO semantic similarity to compare the overall clustering

results between two methods. The CLIME approach, which

generates a single set of clusters, yielded an average GO sim-

ilarity within clusters of 0.61 (fig. 3). The hierarchical approach

generated a large range of similarity values depending on the

choice of threshold, from 0.3 when the cutting height

h ¼ 100, to 0.85 when h ¼ 60. Both approaches generated

similarity scores that were greater than random. The increase

in GO similarity with decreasing h is reasonable, since lower

values of h produce clusters with higher overall profile simi-

larity. However, the cost of lower h is that fewer profiles are

assigned to nonsingleton clusters.

A key distinction between the hierarchical approach

and CLIME is the treatment of gene gain-and-loss events.
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CLIME allows only a single gain of a trait on the phylogenetic

tree. In cases where a gene has a sparse distribution due to

LGT, the CLIME model will be a poor fit. This is illustrated in

supplementary figure S5, Supplementary Material online,

where a hierarchical cluster containing four profiles (supple-

mentary fig. S5a, Supplementary Material online), all anno-

tated with the mannose metabolic (alpha-mannosidase

activity) GO functional category, is split into four singleton

clusters by CLIME. In spite of their similar phylogenetic distri-

bution, CLIME’s single-gain constraint assigns events to differ-

ent parts of the tree (supplementary fig. S5b–e,

Supplementary Material online), yielding different historical

inferences for these four profiles. We also compared with

another novel probabilistic evolutionary model CoPAP

(Cohen et al. 2012, 2013) at different cut-offs (supplementary

fig. S6, Supplementary Material online) and showed that our

method performs significantly better than other two methods

(supplementary fig. S7 and table S5, Supplementary Material

online) via a permutation test. However, the runtime of

CoPAP was considerably faster than CLIME and our hierarchi-

cal method.

The most time-consuming step of our method is calculat-

ing the Pagel statistics. Each pairwise comparison of genes

requires only a few seconds, but over 3 million comparisons

are needed to do comparisons over all 2,600 genes. However,

this step is easy to run in parallel because the pairs of genes

are independent. In our case, we spent�7 days by running 30

jobs in parallel. For the same data set, CoPAP took around 3 h

by using the web service developed by its authors and CLIME

took around 1 day by running on a local computer.

Biological Significance

To test the biological significance of our clustering results, we

implemented a GO enrichment test by comparing the

Pearson’s chi square statistics between the observed gene

clusters and 100,000 randomly generated clusters in the

same size distributions. We used the Benjamini–Hochberg

FIG. 2.—Similarity of phylogenetic profiles (1, 2, 3) to a reference profile (R) according to Pagel’s likelihood-ratio statistics and Manhattan distance scores.

Gray bars indicate the presence of a given gene in the genome that corresponds to the phylogenetic tree on the left. When considering the Manhattan

distance, Gene 2 is the most similar to the reference profile, whereas Gene 1 has a very large Manhattan distance due to its representation in a closely related

set of Clostridioides difficile genomes that do not contain genes in profile R. However, this drastic dissimilarity can be attributed to a single LGT event, and

Gene 1 is most similar to the reference profile according to the likelihood-ratio statistic.
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FDR procedure to control for multiple tests. Figure 4 shows

the significance of the nonrare GO terms (frequency� 5) in

our gene set at different cutting heights of the hierarchical

dendrogram (the details of the test provided in supplementary

table S2, Supplementary Material online). Among those inter-

esting gene clusters, we take the amino-acid biosynthesis and

motility-associated gene clusters as illustrative examples.

Pathway Mapping of an Amino-Acid Biosynthesis Cluster

From figure 3, it is anticipated that many clusters will have a

high degree of functional cohesion based on the GO scores.

However, examination of clusters with even relatively low GO

similarity scores still showed strong functional similarities in

spite of annotations with different terms. We examined in

detail a cluster containing 28 distinct profiles, with a height

of 100 and a GO score of 0.62 (fig. 5). A striking property of

this cluster is that it contains many profiles that either include

or exclude all of the 20 C. difficile genomes, whereas a phy-

logenetically naı̈ve approach would assign a great deal of

significance to this difference. Although the GO terms in

this cluster are not identical, the majority of profiles assigned

to the cluster are associated with amino-acid biosynthesis.

Several amino-acid biosynthesis pathways are represented,

including leucine, isoleucine, histidine, valine, tryptophan, glu-

tamate/glutamine, and cysteine. Many of these pathways are

tightly interconnected, notably valine and leucine, but some

pathways, in particular histidine, are more distant.

Supplementary figure S9, Supplementary Material online

shows how the proteins in this cluster connect in the corre-

sponding “Valine, Leucine and Isoleucine biosynthesis” and

“Phenylalanine, Tyrosine and Tryptophan biosynthesis” path-

ways (KEGG database).

Phylogenetic Analysis of a Motility-Associated Cluster

Figure 6 shows a functionally cohesive cluster consisting of the

proteins related to flagellar assembly and motility, and their

corresponding phylogenetic profiles. Besides predicting the

functions for unannotated genes in this cluster, we can also

FIG. 3.—Comparison of functional-similarity scores within clusters. The similarity was evaluated using Gene Ontology (GO) terms, for CLIME (dashed

line) and the hierarchical approach at different h thresholds (solid line). Gray lines show the distribution of similarities obtained for five sets of clusters obtained

by randomly reassigning tip labels in the cluster tree.
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infer the LGT events based on the evolutionary pattern we

found. The patchy distribution of flagellar gene profiles sup-

ports a history that includes many LGT events. To assess the

phylogenetic cohesion of the genes in this cluster, we con-

structed individual phylogenetic trees and compared them

with the reference full tree. All flagellar proteins from LZ

grouped with the almost same set of other genomes (supple-

mentary table S3, Supplementary Material online):

Clostridium hylemonae DSM15053, Clostridiales bacterium

VE202-28, C. bacterium 1_7_47FAA, Clostridium bolteae

90B7, C. bolteae 90B8, none of which was a close neighbor

in the reference tree or the SILVA taxonomy (supplementary

table S1, Supplementary Material online).

Connections between LZ and C. bolteae

LZ has a large genome containing 6,887 protein-coding

genes, whereas the median genome size in our data set is

3,728 genes, and the mean genome size is 3580.4. One

possible explanation for this disparity is a genome expan-

sion due to gene duplication and LGT. The two strains of

C. bolteae whose flagellar genes were proximal to those

of LZ may show similar evidence of LGT with LZ and its

close relatives. To address this possibility, we examined

the homology-search results of LZ versus all genomes,

and defined criteria to represent “unexpected similarity”

between LZ proteins and their corresponding homologs in

C. bolteae. We set threshold criteria that required the

e-values of the match between the LZ protein and the

C. bolteae protein sequence be <10�20, and also required

that the C. bolteae protein rank within the top 20 of all

matches from a given LZ protein to the entire database of

687 genomes. We then identified the corresponding pro-

files in our cluster tree, and implemented a binomial test

to identify clusters in which these proteins were signifi-

cantly overrepresented.

Individual profiles of proteins belonging to the flagellar-

associated cluster were subjected to phylogenetic analysis.

Each of the 36 profiles was first aligned using MUSCLE version

3.7 (Edgar 2004) with default parameters. The resulting align-

ments were used to infer phylogenetic trees using RAxML

version 7.2.5, with the PROTGAMMALG model of sequence

substitution. Using this approach, we identified the flagellum/

motility cluster and three additional clusters. Although each of

these clusters showed significant overrepresentation of the

identified proteins, none was completely homogeneous in

this regard: However, a majority of profiles did contain rep-

resentatives from at least one of the two C. bolteae genomes

(strain 90B7, 97.8%; strain 90B8, 89.6%). The predominant

GO annotations within the three additional identified clusters

comprised 1) relaxase/mobilization nuclease and ParB-like par-

tition proteins (supplementary fig. S8a, Supplementary

FIG. 4.—Adjusted P values of the nonrare GO terms obtained at different cutting heights of the hierarchical dendrogram. Each dot represents a GO term

with frequency>5 in our gene set at different cutting heights. More details of the GO enhancement test are provided in supplementary table S2,

Supplementary Material online.
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Material online); 2) sequence-specific DNA binding, ATPase

activity, and methyltransferase activity (supplementary

fig. S8b, Supplementary Material online); and 3) PAS do-

main S-box protein, two-component system hybrid sensor

kinases, response regulators, and diguanylate cyclase

(GGDEF) domain-containing proteins (supplementary fig.

S8c, Supplementary Material online). Each cluster covers

different subsets of the sampled genomes, but in each

case, it is difficult to explain the distributions with only

gene-loss events, suggesting an important role for LGT.

Many of the functional annotations of these proteins are

very general, but cluster 1) suggests a possible role for

plasmid-based transfer, and 2) suggests that environmen-

tal sensitivity and response may be adaptive in a niche

occupied by LZ (and/or C. bolteae).

Discussion

Phylogenetic profiles were initially developed at a time when

the relatively few sequenced genomes available were phylo-

genetically very diverse, and their similarity due to common

descent was not explicitly incorporated into profile-similarity

calculations. However, the intensive focus on sequencing

many strains of some named species, notably those species

that contain pathogenic isolates, has led to highly uneven

sampling across the breadth of microbial diversity. An exam-

ple in our data set is the >100 sequenced genomes of

C. difficile, of which 21 were retained in our subsampled

data set. Our new phylogenetic-profile-based clustering ap-

proach successfully addresses these phylogenetic correlations

using Pagel’s method for the comparative analysis of discrete

characters. The success of our approach is most striking in the

FIG. 5.—Structure, phylogenetic distribution and functional categories of a hierarchical cluster enriched in amino-acid biosynthesis proteins. Each column

represents a gene profile; the gray bars indicate the presence of genes and blanks indicate the absence. The dendrogram on the left side is the phylogenetic

tree of 74 genomes and the dendrogram on the top is computed by the distance between the profiles. The labels on the x-axis are the genes’ functional

annotations retrieved from the UniProt database.
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many instances we show where clustered profiles can differ in

the presence or absence of all 21 strains of C. difficile,

whereas a phylogenetically naı̈ve approach would assign a

very large distance between such profiles. Furthermore, by

explicitly allowing multiple gains of proteins in the tree rather

than a single common ancestor followed by potentially many

gene losses, our method is more suitable than CLIME in the

analysis of LGT-prone prokaryotic genomes.

LZ has a very large genome relative to most other clostridia,

and elucidating its ecological role will be challenging.

However, by examining a subset of its clusters, we can identify

not only specific functions that appear to be present in the

genome of LZ, but also identify sets of proteins with similar

(but not identical) distributions. Our analysis of even a small

subset of LZ clusters shows a complex set of relationships with

other genomes, but also highlights the functional cohesion of

our recovered clusters. In the cases of amino-acid metabolism

and flagellar/motility genes, complementary evidence from

pathway diagrams, genetic linkage, and phylogenetic trees

supports our inferred connections. We were also able to focus

on a small subset of clusters in which LZ appeared to have

unusual patterns of similarity to C. bolteae; the identified

genes provided clues to transfer mechanisms, environmental

adaptation, and potentially (in the case of flagella) pathoge-

nicity (Stecher et al. 2012).

Protein functional prediction is one of the greatest chal-

lenges in bioinformatics (Sjolander 2004; Friedberg 2006;

Radivojac et al. 2013). Although we did not explore the ef-

fectiveness of this method in functional prediction of proteins,

the functional cohesion of many of our recovered clusters

FIG. 6.—Structure, phylogenetic distribution and functional categories of a hierarchical cluster enriched in flagellar motility proteins. Each column

represents a gene profile; the gray bars indicate the presence of genes and blanks indicate the absence. The dendrogram on the left side is the phylogenetic

tree of 74 genomes and the dendrogram on the top is computed by the distance between the profiles. The labels on the x-axis are the genes’ functional

annotations retrieved from the UniProt database.
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suggests that it may have value as a predictive tool. Since we

use techniques that are based only indirectly on homology

search, it may prove to be complementary to homology-

based (PSI-BLAST) and other approaches.

Since more genomes provide more opportunities to differ-

entiate profiles and give further resolution to clusters, a

method that can consider all available genomes would be

desirable. One significant limitation of our method is the

heavy computational cost of applying Pagel’s coevolutionary

method to all pairs of distinct phylogenetic profiles: Although

our full data set included 687 genomes, computational time

limitations restricted us to the analysis of a set of 74 genomes.

Even this reduced computation required a total of 13,000

CPU hours approximately on a Linux system. Our future

work will consider alternatives to Pagel’s method including

phylogenetic regression and HMMs that also take phyloge-

netic correlations into account, and heuristics to subdivide the

full tree into tractable subsets of taxa to perform the analysis,

then merge the results to obtain a full set of distances.

However, our results on even a small subset of available

genomes demonstrate that our phylogenetic-profile-based

clustering method has the capacity to identify sets of genes

with similar distributions and evolutionary histories, with the

potential to represent genomes as distinct combinations of

these sets, thereby highlighting the important genetic and

environmental connections between them.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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