Supplementary Information

Engineering Microbial Division of Labor for Plastic Upcycling

Teng Bao^{1,2,9}, Yuanchao Qian^{1,2,9}, Yongping Xin^{1,2,9}, James J. Collins^{3,4,5,*}, and Ting Lu^{1,2,6,7,8,*}

¹ Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

² Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA

³ Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA

⁴ Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA

⁵ Broad Institute of MIT and Harvard, Cambridge, MA, USA

⁶ Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA

⁷ Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA

⁸ National Center for Supercomputing Applications, Urbana, IL 61801, USA

⁹ These authors contributed equally to the work.

^{*}Corresponding authors. E-mail: luting@illinois.edu and jimjc@mit.edu

Supplementary Tables

Supplementary Table 1: Strains and plasmids used in this study.

Name	Description	Source or Reference
Strains		•
Pseudomonas	KT2440 derivative; Δprophage1 Δprophage4 Δprophage3	Martínez-
putida EM42	Δprophage2 ΔTn7 ΔendA-1 ΔendA-2 ΔhsdRMS Δflagellum	García et
	ΔTn <i>4652</i>	al., 2014 ¹
Pp00 (Pp-T ₀)	EM42 derivative; contains the plasmid pBb(B5)1k-tpa, Km ^R	This study
Pp01	EM42 derivative; Δ <i>ped</i>	This study
Pp02 (Pp-T)	Pp01 derivative; contains the plasmid pBb(B5)1k-tpa, Km ^R	This study
Pp03 (Pp-TS)	Pp01 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421, Sm ^R , Km ^R	This study
Pp04 (Pp-TP)	Pp01 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R , Km ^R	This study
Pp05	Pp01 derivative; Δ <i>ped,</i> Δ <i>phaZ</i> , Δ <i>fadBA</i> Δ <i>fadBAxE</i>	This study
Pp06 (PpΔ-TP)	Pp05 derivative; contains the plasmids pBb(B5)1k-tpa and	This study
	pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R , Km ^R	
Pp07	Pp01 derivative; Δ <i>catRBCA</i>	This study
Pp08 (Pp-TC)	Pp07 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421-aroY-EcdB, Sm ^R , Km ^R	This study
Pseudomonas	EM42 derivative; UV mutation, has an ability to metabolize	Lab stock
putida M31	ethylene glycol	
PpM01	M31 derivative; ΔgclR	This study
PpM02 (Pp-E)	PpM01 derivative; synthetic expression cassette (Ptac-glcDEF)	This study
	in chromosome	
PpM03 (Pp-TE)	PpM02 derivative; contains the plasmid pBb(B5)1k-tpa, Km ^R	This study
PpM03 (Pp-ES)	PpM02 derivative; contains the plasmid pSEVA421, Sm ^R	This study
PpM04 (Pp-EP)	PpM02 derivative; contains the plasmid pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R	This study
PpM05 (Pp-TES)	PpM02 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421, Sm ^R , Km ^R	This study
PpM06 (Pp-TEP)	PpM02 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R , Km ^R	This study
РрМ06 (РрΔ-Е)	PpM02 derivative; Δ <i>phaZ</i> Δ <i>fadBA</i> Δ <i>fadBAxE</i>	This study
PpM07 (PpΔ-EP)	PpM06 derivative; contains the plasmid pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R	This study
ΡρΜ08 (ΡρΔ-ΤΕΡ)	PpM06 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421-phaG-alkK-phaC1-phaC2, Sm ^R , Km ^R	This study
PpM09	PpM02 derivative; $\Delta catRBC$ with synthetic expression cassette (P_{tac} -catA) in chromosome	This study
PpM10 (Pp-EM)	PpM09 derivative; contains the plasmid pSEVA421, Sm ^R	This study

PpM11 (Pp-TEM)	PpM09 derivative; contains the plasmids pBb(B5)1k-tpa and pSEVA421-aroY-ecdB, Sm ^R , Km ^R	This study
Plasmids		
pBb(B5)1k-GFPuv	<i>E. coli</i> and <i>P. putida</i> shuttle vector, IPTG-inducible P _{trc} promoter expressing GFPuv, BBR1-B5 origin, Km ^R	Cook et al., 2018 ²
pBb(B5)1k-tpa	Expression plasmid, constitutive expression of tpa operon (tpaAa-tpaAb-tpaC-tpaB-tpaK from <i>Rhodococcus jostii</i> RHA1) using P _{tac} promoter, Km ^R	This study
pSEVA421	E. coli and P. putida shuttle vector, oriV (RK2) origin; Sm ^R	Silva- Rocha et al., 2012 ³
pSEVA421-phaG- alkK-phaC1-phaC2	Expression plasmid, constitutive expression of phaG-alkK - phaC1-phaC2 using P _{EM7} promoter, Sm ^R	This study
pSEVA421-aroY- ecdB	Expression plasmid, constitutive expression of aroY-ecdB using P _{tac} promoter, Sm ^R	This study
pK18mobsacB	Gene knockout vector, Km ^R	Schäfer et al., 1994 ⁴
pK18-ped	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>ped</i> DNA region of EM42, Km ^R	This study
pK18-gclR	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>gclR</i> DNA region of EM42, Km ^R	This study
pK18-Pro-glcDEF	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>glcDEF</i> DNA region of EM42 and P _{tac} -glcDEF cassette, Km ^R	This study
pK18-phaZ	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>phaZ</i> DNA region of EM42, Km ^R	This study
pK18-fadBA	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>fadBA</i> DNA region of EM42, Km ^R	This study
pK18-fadBAxE	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>fadBAxE</i> DNA region of EM42, Km ^R	This study
pK18-catRBC	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>catRBC</i> DNA region of EM42 and P _{tac} promoter, Km ^R	This study
pK18-catRBCA	Gene knockout vector, pK18mobsacB containing the homologous arms of the <i>catRBCA</i> DNA region of EM42, Km ^R	This study

Supplementary Table 2: Sequence information for genes, promoters, and insertion fragments.

Primer Name	Primer sequence	Description			
For ped gene deletion plasmid construction					
PK18-F	CCGGATGAATGTCAGCTACT	To clone the 5100 bp DNA			
PK18-R	GCGGTAATACGGTTATCCAC	fragment from the pK18mobsacB.			
ped-UF	TACAGGCCCCACCGCGTCGCGGCCTT C	To clone the 1481 bp upstream			
ped-UR	AGTAGCTGACATTCATCCGGTCTCGC GCAGCGCAATATCAGTAGGG	DNA fragment of <i>ped</i> gene from the <i>P. putida</i> EM42 chromosome.			
ped-DF	GTGGATAACCGTATTACCGCGCTGGT GCACAACTTGTATCCG	To clone the 1292 bp downstream DNA fragment of <i>ped</i> gene from			
ped-DR	GACGCGGTGGGGCCTGTAGGCGC	the <i>P. putida</i> EM42 chromosome.			
V-ped-F	TGCGGGTGGCGGGTGA	To verify the <i>ped</i> gene deletion			
V-ped-R	TTAATGCACGGGGGCGGACTG	strain, wild strain yields 10002 bp, the Δped yields 409 bp.			
For gclR gene de	eletion plasmid construction				
pk18-F1	TGGCGCACATCCATAAGCTTGGCACT GGCCGTCGTTTTACAA	To clone the 5724 bp DNA			
pk18-R1	CAGATAACCCTTCTGGGATCCCCGGG TACCGAGCTCGAATTCGTAA	fragment from the pK18mobsacB.			
gcIR-UF	CACGCAGGCAAACGAGGGCTCTCGA GGCACGAAGAGAAAGTATGG	To clone the 1462 bp upstream			
gcIR-UR	GCCAGTGCCAAGCTTATGGATGTGCG CCATGCTGCCCATCATC	DNA fragment of <i>gclR</i> gene from the <i>P. putida</i> EM42 chromosome.			
gclR-DF	GGTACCCGGGGATCCCAGAAGGGTT ATCTGGACGTCTACGATCACTTCGAG CTGC	To clone the 1431 bp downstream DNA fragment of <i>gclR</i> gene from			
gcIR-DR	GTGCCTCGAGAGCCCTCGTTTGCCTG CGTGATCGAGGGGCTG	the <i>P. putida</i> EM42 chromosome.			
V-gclR-F	ATCACCTGGGCGATCACATAAGGCAG	To verify the ped gene deletion			
V-gcIR-R	CCATGATGTTGGGGTTGACGAAGATG ATGTAGG	strain, wild strain yields 1646 bp, the $\Delta gclR$ yields 409 bp.			
For P _{tac} -glcDEF i	ntegration plasmid construction				
PK18-F	CCGGATGAATGTCAGCTACT	To clone the 5100 bp DNA			
PK18-R	GCGGTAATACGGTTATCCAC	fragment from the pK18mobsacB.			
glcDEF-UF	ATGAATATCCTGTACGACGAACGCGT CG	To clone the 1520 bp upstream DNA fragment of <i>glcDEF</i> operon			
glcDEF-UR	AGTAGCTGACATTCATCCGGTCAGAA GCGCTCCAGCTCGGGGAAGG	from the <i>P. putida</i> EM42 chromosome.			
glcDEF-DF	GTGGATAACCGTATTACCGCCCGCTTC GCTGTATTCGACCTTCAAGG	To clone the 1254 bp downstream DNA fragment of <i>qlcDEF</i> operon			
glcDEF-DR	CGGCTCACTCGCAACGGTTTTTGTTG TTGTTGG	from the <i>P. putida</i> EM42 chromosome.			

ATATCGCCAATCTAGCCAGACAGAAC CG	To verify the constitutively expression <i>glcDEF</i> strain, wild			
TGAACAATGCCAGCAGGTCGAAGC	strain yields 790 bp, the engineered strain yields 897 bp.			
<u>ACAACAACAAAAACCGTTGCGAGTG</u>				
<u>AGCCG</u> CGCAAAAAACCGCACCCAGG	Synthesized DNA fragment of			
TGCGGTTTTTTGAATTCGAGCTGTTG	strong constitutive promoter (P _{tac})			
ACAATTAATCATCGGCTCGTATAATGT	and an artificial RBS. Gibson			
GTCAGACTCAATAATAATAATAAGGA				
GGTATCGA <u>ATGAATATCCTGTACGACG</u>	overlaps are underlined.			
AACGCGTCG				
e deletion plasmid construction				
ACCTGACCTCCATAGACACACCATGC	To clone the 1234 bp upstream			
CCACAGGGG	DNA fragment of catRBC gene			
GTAGCTGACATTCATCCGGCAAGGCG	from the <i>P. putida</i> EM42			
CAGGAAAAAGGGTTGC	chromosome.			
AATTTTCACGGTCATATGATACCCTCG				
TGTGTGAGTTAATC				
GTGGGCATGGTGTGTCTATGGAGGTC	To clone the 149 bp P _{tac} promoter.			
AGGTATGATTACTATTGA				
GTGGATAACCGTATTACCGCAGGAAG	To clone the 1254 bp downstream			
	DNA fragment of catRBCA operon			
	from the <i>P. putida</i> EM42			
	chromosome.			
	To verify the <i>catRBC</i> gene deletion			
CGCATGCACCGCAAGAACCTGTAC	strain, wild strain yields 2853 bp, the $\Delta catRBC$ yields 487 bp.			
ne deletion plasmid construction	,			
	To clone the 1234 bp upstream			
	DNA fragment of catRBCA gene			
GTAGCTGACATTCATCCGGCAAGGCG	from the <i>P. putida</i> EM42			
	chromosome.			
	To clone the 1270 bp downstream			
GAAACTGCGAAAGCTTGGC	DNA fragment of catRBCA operon			
GTGGGCATGGTGTGTTCGAGGTTA	from the <i>P. putida</i> EM42			
	chromosome.			
	To verify the catRBCA gene			
	deletion strain, wild strain yields			
CGCATGCACCGCAAGAACCTGTAC	3847 bp, the $\triangle catRBCA$ yields 426			
	bp.			
For phaZ gene deletion plasmid construction				
GATAGCAGACCTTCATCATCAGC	To clone the 1048 bp upstream			
	DNA fragment of <i>phaZ</i> gene from			
TGTCAGGCCGCAGCTGTTGCACGTGA CTCTTGGGTG	the <i>P. putida</i> EM42 chromosome.			
	TGAACAATGCCAGCAGGTCGAAGC ACAACAACAAAAAACCGTTGCGAGTG AGCCGCGCAAAAAAACCGCACCCAGG TGCGGTTTTTTGAATTCGAGCTGTTG ACAATTAATCATCGGCTCGTATAATGT GTCAGACTCAATAATAATAATAAGGA GGTATCGAATGAATACCTGTACGACG AACGCGTCG deletion plasmid construction ACCTGACCTCCATAGACACACCATGC CCACAGGGG GTAGCTGACATTCATCCGGCAAGGCG CAGGAAAAAAGGGTTGC AATTTTCACGGTCATATGATACCCTCG TGTGTGAGTTAATC GTGGGCATGGTGTGTCTATGGAGGTC AGGTATGATTACTATTGA GTGGATAACCGTATTACCGCAGGAAG TTGAGCAAGTCCGG ACGAGGGTATCATATGACCGTGAAAA TTTCCCACACTGC GTGTCTTGCAGCACGCGCAG CGCATGCACCGCAAGAACCTGTAC ne deletion plasmid construction GACATAACCTCGAACACACCACCATGC CCACAGGGG GTAGCTGACATTCATCCGCAAGGCG CAGGAAAAAGGGTTGC GTGGTTATCCTGTACCGCAAGGCG CAGGAAAAAAGGGTTGC GTGGATAACCTGAACACCACCACCATGC CCACAGGGG GTAGCTGACATTCATCCGCAATCGA GAAACTGCGAAAGGTTGC GTGGGTAAACCGTATTACCGCAATCGA GAAACTGCGAAAGCTTGGC GTGGGCATGGTGTGTTTCGAGGTTA TGTCACTGTGATTTTGC GGTAGAGATTCATCCGCAATCGA GAAACTGCGAAAGCTTGGC GTGGGCATGGTGTGTGTTTCGAGGTTA TGTCACTGTGATTTTTCC GGTAGAGATTCCCCTGATTCTGTG GGTAGAGATTCCCCTGATTCTGTG GGTAGAGATTCCCCTGATTCTGTG GGTAGAGATTCCCCTGATTCTGTG GGTAGAGACCTTCATCACCGC TGTCCAGCCCCAAGCCTTCACCTGATTCTGTG GATAGCAGACCTTCATCATCAGC TGTCAGGCCGCAGCTGTTGCACGTGA TGTCAGGCCGCAGCTGTTGCACGTGA			

	CACCCAACACTCACCTCCAACACCT	1		
phaZ-DF	CACCCAAGAGTCACGTGCAACAGCT GCGGCCTGACA	To clone the 1048 bp downstream DNA fragment of <i>phaZ</i> gene from		
phaZ-DR	CAGATAGCCCAGTAGCTGACATTCAT CCGGCCGGCGCAATTGCTTCTT	the <i>P. putida</i> EM42 chromosome.		
V-phaZ-F	TCTTTAACGGCATCGGC	To verify the <i>phaZ</i> gene deletion		
V-phaZ-R	TGGCACCATTACCGCA	strain, wild strain yields 308 bp, the $\Delta phaZ$ yields 0 bp.		
For fadBAxE ge	ne deletion plasmid construction	, , , , , , , , , , , , , , , , , , , ,		
	TTTCCTGCGTTATCCCCTGATTCTGTG			
fadBAxE-UF	GATAGCTGGGTATCACCAACCTG	To clone the 893 bp upstream DNA		
	ATTTGCTTCCACTGGAGTACTTTCCTT	fragment of fadBAxE operon from		
fadBAxE-UR	TCAGACGCT	the <i>P. putida</i> EM42 chromosome.		
	CTGAAAGGAAAGTACTCCAGTGGAA			
fadBAxE-DF	GCAAATTCGCA	To clone the 821 bp downstream DNA fragment of <i>fadBAxE</i> operon		
	CAGATAGCCCAGTAGCTGACATTCAT	from the <i>P. putida</i> EM42		
fadBAxE-DR	CCGGCACATCGACTCGGCTATTCA	chromosome.		
V-fadBAxE-F	GACCTCAAGAGCCTGACTGC	To verify fadBAxE operon deletion,		
V-fadBAxE-R	GCCGTGGATATTGACCTTGT	wild strain yields 966 bp, the ΔfadBAxE yields 0 bp.		
For fadBA gene	deletion plasmid construction			
fadBA-UF	TTTCCTGCGTTATCCCCTGATTCTGTG	To clone the 1043 bp upstream		
IdubA-01	GATATGTCCTTCATGCGCGGC	DNA fragment of <i>fadBA</i> operon		
fadBA-UR	TCCCGCTACGCGCAACTGATCTCCAC	from the <i>P. putida</i> EM42		
	GATATGGAAG	chromosome.		
fadBA-DF	TATCGTGGAGATCAGTTGCGCGTAGC	To clone the 1048 bp downstream		
	GGGACAGCAG	DNA fragment of <i>fadBA</i> operon		
fadBA-DR	CAGATAGCCCAGTAGCTGACATTCAT	from the <i>P. putida</i> EM42		
\/ fo dDA	CCGGGGCCCACAGCAGCAGC	chromosome.		
V-fadBA-F	GTCTTCGATGCCACCGTG	To verify <i>fadBA</i> operon deletion, wild strain yields 712 bp, the		
V-fadBA-R	GTTACCGGTCATGATCGCC	$\Delta fadBA$ yields 0 bp.		
For pBb(B5)1k-	tpa plasmid construction			
Ptac-TPA-F	GGCAATTCCGACGTCCTATGGAGGTC			
	AGGTATGATTACTATTGA	To clone the 143 bp P _{tac} promoter.		
ptac-TPA-R	GCTTTCCATATGATACCCTCGTGT			
TPA-F	ACACGAGGGTATCATATGGAAAGCAG			
TPA-R	CGTTGTCGACACGGT	To clone the 5218 bp <i>tpa</i> operon		
	CGAGTTTGGATCCCTACTTGCGGGCG	from <i>Rhodococcus jostii</i> RHA1.		
	AGCGAATGACTTT			
BR5-F	TCGCCCGCAAGTAGGGATCCAAACTC	To along the 2547 by DDS and the		
	GAGTAAGGAT	To clone the 2517 bp BR5 origin		
BR5-R	CTGACCTCCATAGGACGTCGGAATTG CCAGC	from pBb(B5)1k-GFPuv plasmid.		

For pSEVA421	L-aroY-ectB plasmid construction			
pSEVA-F	ACTAGTCTTGGACTCCTGTTGATAG	To clone the 3865 bp RK2 origin		
Ptac-R	ATGATACCCTCGTGTGTGAGTTAAT	from pSEVA421 plasmid.		
	ATTAACTCACACACGAGGGTATCATAT			
	GCAGAACCCGATCAACGACCTGCGCT			
	CCGCGATCGCGCTGCTGCAACGCCAT			
	CCGGGTCACTACATCGAAACCGACCA			
	CCCGGTCGACCCGAACGCCGAACTG			
	GCCGGTGTGTACCGCCACATCGGTGC			
	GGGTGGCACCGTGAAACGTCCGACC			
	CGCACCGGTCCAGCCATGATGTTCAA			
	CAGCGTGAAGGGCTACCCAGGCAGC			
	CGCATCCTGGTGGGCATGCACGCCAG			
	CCGTGAACGTGCCGCCCTGCTGCTGG			
	GCTGCGTGCCAAGCAAACTGGCGCA			
	GCACGTGGGCCAGGCCGTGAAGAAC			
	CCGGTGGCCCCAGTGGTGGTGCCAG	Synthesized DNA fragment 1 of		
aroY-frag1	CCAGCCAAGCCCCATGCCAAGAACA	aroY. Gibson overlaps are		
	GGTGTTCTACGCCGACGACCCGGACT	underlined.		
	TCGACCTGCGCAAGCTGCTGCCAGCC			
	CCAACCAACACCCCGATCGATGCCGG			
	TCCGTTCTTCTGCCTGGGCCTGGTGC			
	TGGCGAGCGACCCGGAAGATACCAG			
	CCTGACCGACGTGACCATCCACCGCC			
	TGTGCGTGCAAGAGCGCGACGAGCT			
	GAGCATGTTCCTGGCCGCCGGTCGCC			
	ACATCGAGGTGTTCCGCAAGAAGGC			
	CGAAGCCGCCGGTAAGCCGCTGCCG			
	GTGACCATCAACATGGGCCTGGACCC			
	AGCCATCTACATCGGTGCCTGCTTCG			
	AAGCGCCAACCACCCGTTCGGCTAC			
	AACGAGCTGGGTGTGGCC			
	ACAACGAGCTGGGTGTGGCCGGTGC			
	CCTGCGTCAGCAACCGGTGGAACTG			
	GTGCAGGGCGTGGCCGTGAAAGAG			
	AAGGCGATCGCGCGTGCCGAGATCAT			
	CATCGAGGGCGAACTGCTGCCAGGC			
	GTGCGCGTGCGCGAAGATCAGCACA			
	CCAACACCGGTCACGCCATGCCGGA			
	ATTCCCAGGCTACTGCGGTGAGGCCA	Synthesized DNA fragment 2 of		
aroY-frag2	ACCCGAGCCTGCCGGTGATCAAGGT	aroY. Gibson overlaps are		
	GAAGGCCGTGACCATGCGCAACCAC	underlined.		
	GCCATCCTGCAGACCCTGGTGGGTCC			
	GGGTGAGGAACACACCACCCTGGCG			
	GGTCTGCCGACCGAAGCCAGCATCC			
	GCAACGCCGTGGAAGAGGCGATCCC			
	AGGCTTCCTGCAGAACGTGTACGCCC			
	ACACCGCCGGTGGCGGTAAGTTCCT			
	ACACCOCCOOTOUCCOOTAAGTTCCT	1		

	T	
	GGGCATCCTGCAGGTCAAGAAGCGC	
	CAGCCGAGCGACGAAGGCCGTCAGG	
	GCCAAGCCGCCCTGATCGCCCTGGCC	
	ACCTACAGCGAGCTGAAGAACATCAT	
	CCTGGTGGACGAGGACGTGGACATC	
	TTCGACAGCGACGACATCCTGTGGGC	
	CATGACCACCCGCATGCAGGGCGAC	
	GTGAGCATCACCACCCTGCCAGGCAT	
	CCGTGGCCATCAGCTGGACCCGAGC	
	CAGAGCCCAGACTACAGCACCAGCAT	
	CCGTGGCAACGGCATCAGCTGCAAG	
	ACCATCTTCGACTGCACCGTGCCGTG	
	GGCCCTGAAAGCCCGTTTCGAGCGT	
	GCCCCATTCATGGAAGTGGACCCGAC	
	CCCGTGGGCCCCAGAGCTGTTCAGC	
	GA <u>CAAGAAGTGAGGAGGTTCGAATA</u>	
	TGCGCCT	
	CAAGAAGTGAGGAGGTTCGAATATG	
	<u>CGCCT</u> GATCGTGGGCATGACCGGTGC	
	GACCGGTGCGCCACTGGGCGTGGCC	
	CTGCTGCAGGCCCTGCGTGATATGCC	
	GGAAGTGGAAACCCACCTGGTGATG	
	AGCAAGTGGGCCAAGACCACCATCG	
	AGCTGGAAACCCCGTACACCGCCCA	
	GGACGTGGCCGCCCTGGCCGATGTG	
	GTGCATAGCCCAGCCGATCAAGCCGC	
	CACCATCAGCAGCGGCAGCTTCCGCA	
	CCGACGGCATGATCGTGATCCCGTGC	
	AGCATGAAAACCCTGGCCGGTATCCG	6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
and D. Com	TGCCGGTTACGCCGAAGGCCTGGTG	Synthesized DNA fragment of
ecdB-frag	GGTCGTGCCGCCGACGTGGTGCTGA	ecdB. Gibson overlaps are
	AAGAGGGTCGCAAGCTGGTCCTGGT	underlined.
	GCCACGCGAAACCCCACTGAGCACC	
	ATCCACCTGGAAAACATGCTGGCCCT	
	GAGCCGCATGGGCGTGGCCATGGTC	
	CCACCGATGCCAGCCTACTACAACCA	
	CCCGCAGACCGCCGACGACATCACCC	
	AGCACATCGTGACCCGTGTGCTGGAC	
	CAGTTCGGCCTGGAACACAAGAAAG	
	CCCGTCGCTGGAACGGCCTGCAAGC	
	CGCCAAGCACTTCAGCCAAGAGAAC	
	AACGACGGCATCTGAACTAGTCTTGG	
	ACTCCTGTTGATAG	
For pSEVA421-p	haG-alkK-phaC1-phaC2 plasmid const	ruction
EM7-F	CCTACGTGCTGACCCGATGAGCGTCG	
	TGACTGGGAAAACC	To clone the 3857 bp RK2 origin
EM7-R	ATTTCTGGCCTCATGGTATATTCCTCTT	from pSEVA421 plasmid.
•	GCTAGAATTCGC	.== p
		<u> </u>

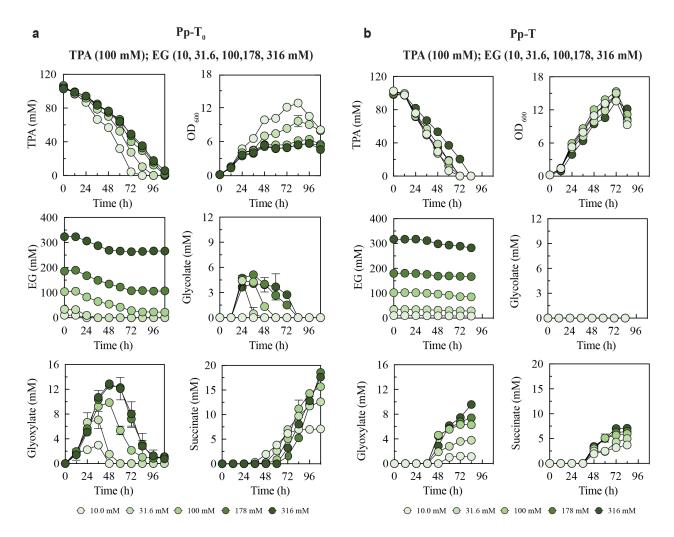
phaG-F	AGCAAGAGGAATATACCATGAGGCCA GAAATCGCTGTACT	To clone the 924 bp <i>phaG</i> gene from the <i>P. putida</i> EM42
phaG-R	TCCCTTTTCTGAAAAGCGGTCAGATG GCAAATGCATGCTG	chromosome.
alkK-F	GCATGCATTTGCCATCTGACCGCTTTT CAGAAAAGGGATC	To clone the 1745 bp <i>alkK</i> gene from the <i>P. putida</i> EM42
alkK-R	GACGCTCCGTTGTCCTGAGTTACAAC GTGGAAAGGAACGC	chromosome.
phaC1-F	TTCCTTTCCACGTTGTAACTCAGGAC AACGGAGCGTCGTA	To clone the 1739 bp <i>phaC1</i> gene
phaC1-R	ACTCCCTCGTCTGATCCATCAACGCTC GTGAACGTAGGTG	from the <i>P. putida</i> EM42 chromosome.
phaC2-F	TACGTTCACGAGCGTTGATGGATCAG ACGAGGGAGTGTTG	To clone the 1744 bp <i>phaC2</i> gene from the <i>P. putida</i> EM42
phaC2-R	GTTTTCCCAGTCACGACGCTCATCGG GTCAGCACGTAGGT	chromosome.

Supplementary Table 3: Comparison of microbial mcl-PHA production from PET-derived substrates.

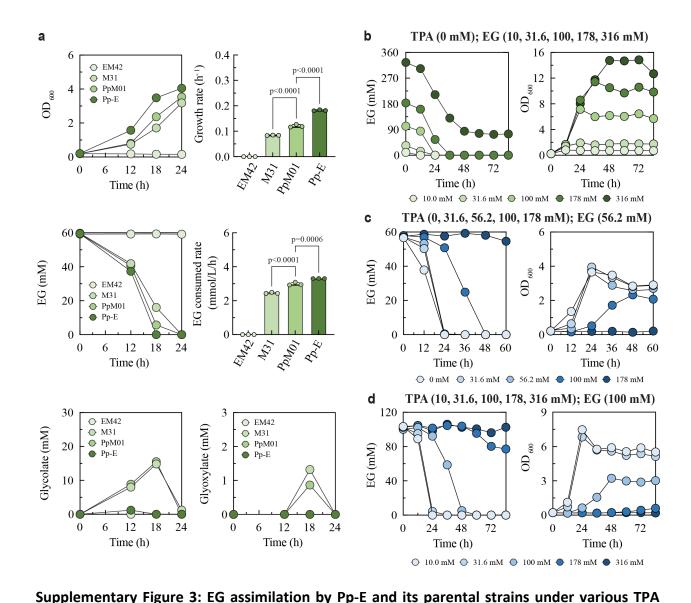
Substrate	Strain	Cultivation mode	mcl-PHA titer (mg/L)	mcl-PHA yield (mg/g _{substrate})	mcl-PHA yield (mg/g _{CDW})	Ref.
Pure EG	P. putida KT2440	Batch Flask	372 ª	60	321.9	Franden et al., 2018⁵
	Pseudomonas sp. MPC6	Batch Flask	210	NA	155	Orellana- Saez et al., 2019 ⁶
Pure TPA	P. umsongensis GO16	Fed-batch Bioreactor	2349 ª	14 ^a	27.0 a	Kenny et al., 2012 ⁷
Pure TPA and EG	P. umsongensis GO16	Batch Bioreactor	130	11.95 ^{a,b}	90	Narancic et al., 2021 ⁸
	P. putida GO19	Batch Flask	~207 ª	50 ª	18.8 ^a	Kenny et al., 2008 ⁹
Hydrolyzed PET (TPA) ^c	P. frederiksbergensis G023	Batch Flask	~205 ª	50 ª	18.7 ª	Kenny et al., 2008 ⁹
	P. umsongensis GO16	Fed-batch Bioreactor	~210 ª	50 ª	21.0 a	Kenny et al., 2008 ⁹
I Is refused, use and	P. umsongensis GO16	Batch Bioreactor	150°	14 ^b	7.0	Tiso et al., 2021 ¹⁰
Hydrolyzed PET (TPA and EG)	P. putida consortium -	Batch Flask	296.46	21.33	10.16	This study
and EG)		Fed-batch Flask	637.30	22.57	11.60	- This study


a: Estimated from reference. b: EG did not reach complete depletion. c: EG was present in hydrolyzed PET but was not uitilized as a substrate. NA: Not available.

Supplementary Table 4: Comparison of MA production from various substrates.

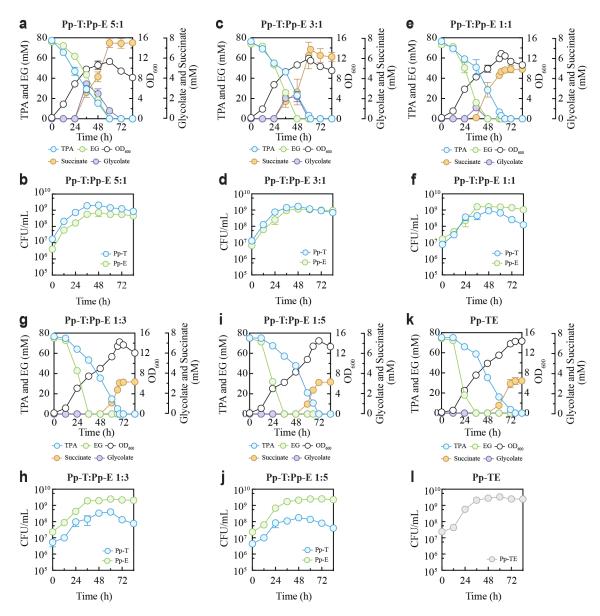

Strain	Strain Substrate Cultivation mode		cis-cis MA titer (g/L)	cis-cis MA yield (mol/mol)	Ref.
	Glucose	Fed-batch Bioreactor	22.0	0.36	Bentley, G.J., et al., 2020 ¹¹
P. putida KT2440	Catechol	Fed-batch Bioreactor (Glucose as an additional growth substrate)	64.2	~1.00	Kohlstedt, M., et al.,2018 ¹²
	Hydrolyzed PET (TPA and EG) ^a	Batch Flask (Glucose as an additional growth substrate)	4.59	1.01 b	Liu, P., et al., 2022 ¹³
P. putida EM42	Catechol	Fed-batch Bioreactor (Glucose as an additional growth substrate)	73.8	NA	Kohlstedt, M., et al., 2022 ¹⁴
E. coli MA-1	Hydrolyzed PET (TPA) ^c	' Whole-cell catalyst		0.85	Kim, H.T., et al., 2019 ¹⁵
<i>P. putida</i> consortium	' (FG as an additional		4.73	0.64	This study

a: EG did not reach complete depletion. b: Probably due to the experimental error. c: EG was removed from the hydrolyzed PET solution prior to fermentation.NA: Not available.

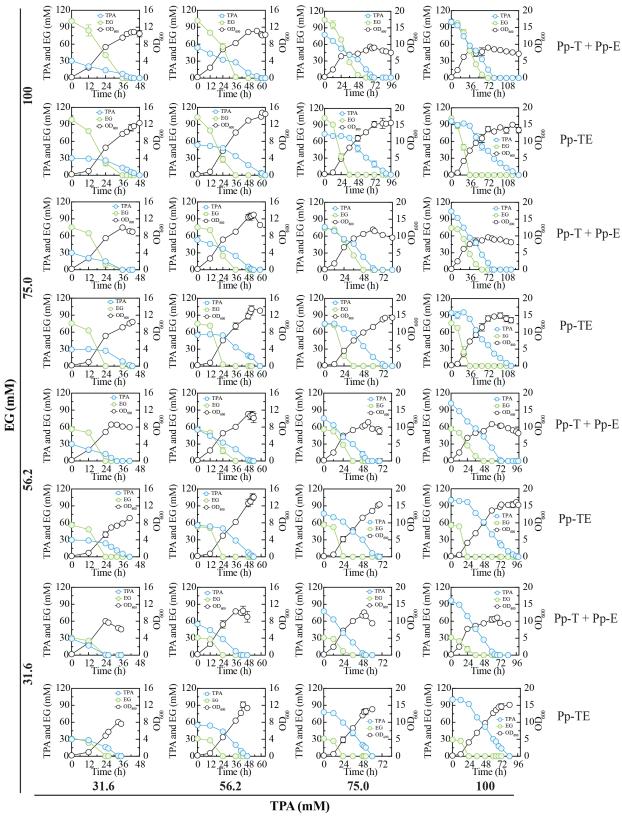

Supplementary Figures

Supplementary Figure 1: TPA assimilation by the Pp-T strain under various EG levels. a, Temporal profiles of TPA assimilation (left) and cell growth (right) of Pp-T in the presence of TPA only. Initial TPA concentrations tested include 10, 31.6, 100, 178 and 316 mM. b, Temporal profiles of TPA assimilation (top left), cell growth (top right), EG assimilation (bottom left) and glyoxylate accumulation (bottom right) of Pp-T under 56.2 mM TPA mixed with varied EG levels (0, 31.6, 56.2, 100 and 178 mM). Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.


Supplementary Figure 2: Comparison of metabolite concentrations and cell growth TPA-utilizing strains Pp-T₀ and Pp-T. a,b, Temporal profiles of TPA assimilation (top left), cell growth (top right), EG assimilation (middle left), glycolate accumulation (middle right), glyoxylate accumulation (bottom left), and succinate accumulation (bottom right) of Pp-T₀ (a) and Pp-T (b). In both panels, a fixed 100 mM of TPA but varied EG concentrations (10, 31.6, 100, 178 and 316 mM) were used as different initial conditions. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

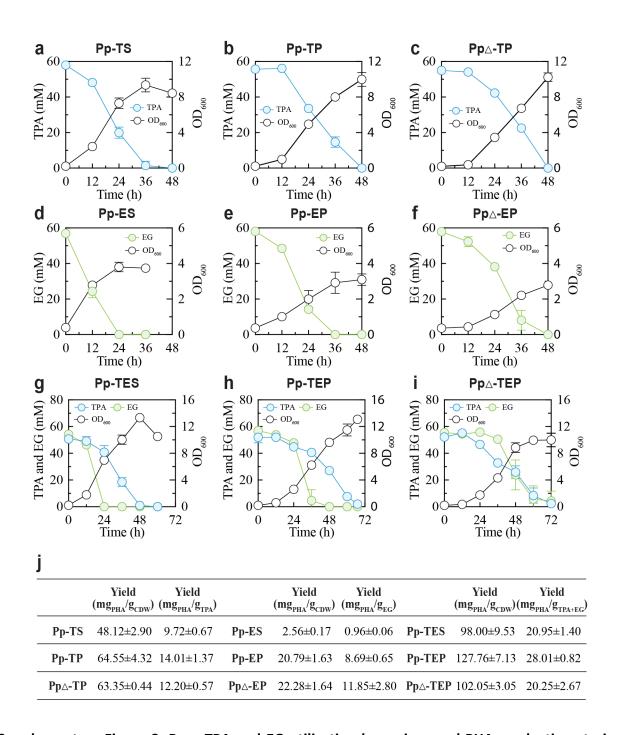

levels. a, Temporal profiles of cell growth (top left), growth rate (top right), EG assimilation (middle left), EG consumed rate (middle right), glycolate accumulation (bottom left) and glyoxylate accumulation (bottom right) of *P. putida* EM42, M31, PpM01 and Pp-E (PpM02) in the presence of 56 mM EG only. **b**, Temporal profiles of EG assimilation (left) and cell growth (right) of Pp-E in the presence of EG only. Initial EG concentrations tested include 10, 31.6, 100, 178 and 316 mM. **c,d**, Temporal profiles of EG assimilation (left) and cell growth (right) of Pp-E for different initial TPA and EG mixtures. Panel **c** corresponds to 56.2 mM of EG and varied initial TPA concentrations (0, 31.6, 56.2, 100 and 178 mM). Panel **d** corresponds to 100 mM of initial EG

level but varied initial TPA concentrations (10, 31.6, 100, 178 and 316 mM). In panel a, the results


of growth rate and EG consumed rate were compared using one-way ANOVA (one-sided) with Dunnett's multiple comparison test. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

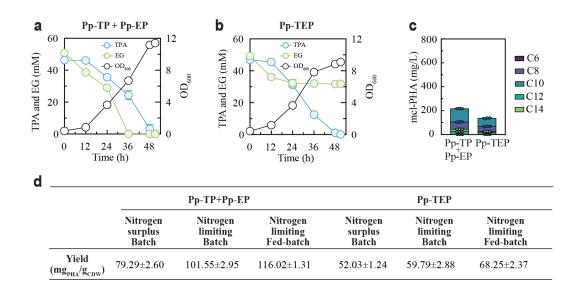
Supplementary Figure 4: TPA and EG co-consumption by the Pp-TE strain. a, Temporal profiles of TPA assimilation (left) and cell growth (right) of Pp-TE in the presence of TPA only. Initial TPA concentrations tested include 10, 31.6, 100, 178 and 316 mM. b, Temporal profiles of the EG assimilation (left) and cell growth (right) of Pp-TE in the presence of EG only. Initial EG concentrations tested include 10, 31.6, 100, 178 and 316 mM. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 5: Temporal profiles of metabolite concentrations and cell growth of the T-E consortium with different initial population ratios. a-j, Temporal profiles of TPA, EG, OD₆₀₀, succinate, glycolate, and Pp-T and Pp-E populations (CFU) of the T-E consortium. Different initial Pp-T:Pp-E ratios include 5:1 (a,b), 3:1 (c,d), 1:1 (e,f), 1:3 (g,h), and 1:5 (i,j). k,l, Temporal profiles of TPA, EG, OD₆₀₀, succinate and glycolate (k) and temporal population dynamics (l) of the single strain Pp-TE. The initial concentrations of TPA and EG were both 75 mM. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

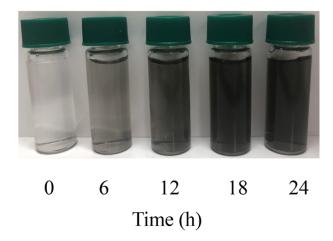


Supplementary Figure 6: Temporal profiles of substrate utilization and cell growth of the T-E consortium and Pp-TE under various TPA and EG mixtures. A total of 32 fermentations were

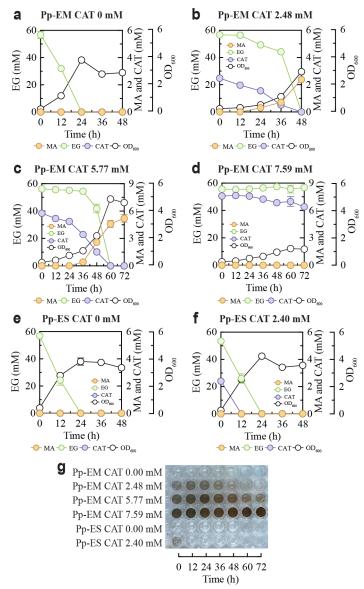
carried out to systematically compare the substrate degradation rates of the T-E consortium and Pp-TE under 16 substrate conditions. A 3:1 inoculation ratio was used for Pp-T and Pp-E. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.



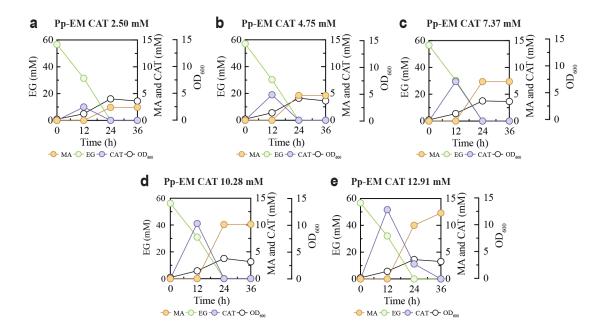
Supplementary Figure 7: Fermentation of PET hydrolysate by various strains. a,b, Temporal fermentation profiles of the T-E consortium (a) and Pp-TE (b) with 31.6 mM of initial PET hydrolysate. c,d, Temporal fermentation profiles of the T-E consortium (c) and Pp-TE (d) with 100 mM of initial PET hydrolysate. The measured TPA and EG concentrations deviate slightly from 100 mM due to the minor TPA precipitation at a high concentration. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.


Supplementary Figure 8: Pure TPA and EG utilization by various mcl-PHA production strains under nitrogen-surplus conditions. a-c, Substrate degradation and cell growth during TPA fermentation by the strains Pp-TS (a), Pp-TP (b) and Pp \triangle -TP (c), respectively. The initial TPA concentration was 56.2 mM. d-f, Substrate utilization and cell growth during EG fermentation by the strains Pp-ES (d), Pp-EP (e) and Pp \triangle -EP (f), respectively. The initial EG concentration was 56.2

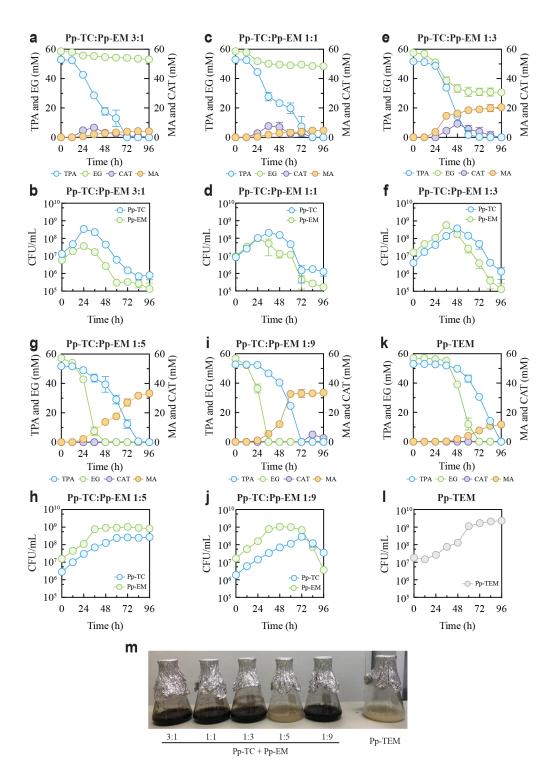
mM. **g-i**, Substrate degradations and cell growth during mixed TPA and EG fermentation by the strains Pp-TES (**g**), Pp-TEP (**h**) and Pp \triangle -TEP (**i**), respectively. **j**, The mcl-PHA yields in terms of dry cell or substrate weight of various production strains. The initial concentrations of TPA and EG were both 56.2 mM. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.



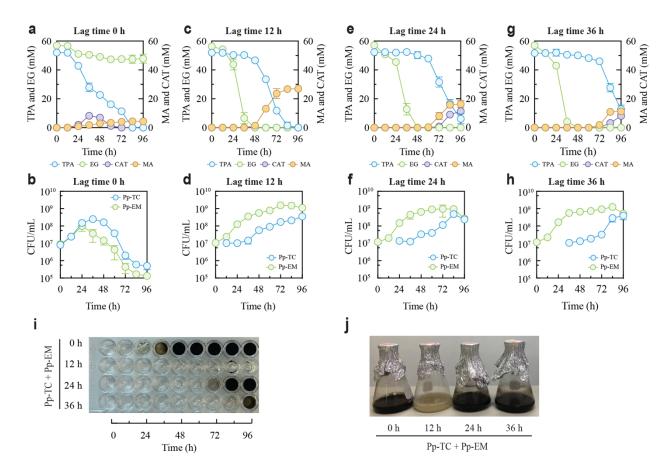
Supplementary Figure 9: Hydrolyzed PET fermentation for mcl-PHA production under nitrogen-surplus conditions. a,b, Temporal profiles of direct PET hydrolysate fermentations under nitrogen-surplus condition by the TP-EP consortium (a) and the single-strain counterpart Pp-TEP (b). An initial 1:3 inoculation ratio was used for Pp-TP and Pp-EP. c, The titer and monomer composition of mcl-PHA produced by the TP-EP consortium and Pp-TEP in batch fermentation under nitrogen-surplus conditions. d, The mcl-PHA yields from dry cell biomass through the fermentations by the TP-EP consortium and Pp-TEP in various settings. In panels c,d, mcl-productions were calculated at the time point when TPA and/or EG were fully degraded. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.


M9 medium with 5 mM CAT

Supplementary Figure 10: Images of M9 medium containing CAT over time.



Supplementary Figure 11: CAT-to-MA conversion by Pp-EM using EG as the substrate. a-d, Temporal fermentation and CAT-to-MA conversion profiles of Pp-EM for 56.2 mM EG mixed with 0 mM (a), 2.5 mM (b), 5.0 mM (c) and 7.5 mM (d) of CAT. e,f, Temporal fermentation and CAT-to-MA conversion profiles of Pp-ES with 56.2 mM EG and 0 mM (e) or 2.5 mM (f) of CAT. g, Color change of the Pp-EM or Pp-ES culture throughout the fermentations in panels a-f. In panels b-d, the measured OD₆₀₀ was not accurate due to the precipitation of brown carbon. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.


Supplementary Figure 12: MA production by Pp-EM with CAT added after 12 h of fermentation.

The fermentations started with 56.2 mM EG at 0 h but were supplemented at 12 h with various levels of CAT, including 2.5 mM ($\bf a$), 5.0 mM ($\bf b$), 7.5 mM ($\bf c$), 10.0 mM ($\bf d$) and 12.5 mM ($\bf e$). The temporal profiles of EG, CAT, MA and OD₆₀₀ during the fermentations are shown. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 13: MA production from PET hydrolysate by the TC-EM consortium by altering the initial population ratio. a-j, Temporal profiles of TPA, EG, CAT, MA, and Pp-TC and Pp-EM populations during the PET hydrolysate fermentation by the TC-EM consortium. Different initial Pp-TC:Pp-EM ratios were tested, including 3:1 (a,b), 1:1 (c,d), 1:3 (e,f), 1:5 (g,h), and 1:9

(i,j). k,l, Temporal profiles of TPA, EG, CAT and MA (k), and Pp-TEM population (l) during the PET hydrolysate fermentation by the single strain Pp-TEM. m, Images of the fermentation broths at 96 h for the experiments in panels a-l and Fig. 5g. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 14: MA production from PET hydrolysate by the TC-EM consortium by varying the inoculation lag time. a-h, Temporal profiles of TPA, EG, CAT, MA, and Pp-TC and Pp-EM populations during the PET hydrolysate fermentation by the TC-EM consortium with different lag times between Pp-TC and Pp-EM inoculations. Here, Pp-TC was inoculated after Pp-EM upon different time delays, including 0 h (a,b), 12 h (c,d), 24 h (e,f) and 36 h (g,h). i, Color change of the TC-EM consortium culture throughout the fermentations in panels a-h. j, Images of the final fermentation broths at 96 h for the experiments in panels a-h. Experimental data are presented as mean values with standard deviations from three independent experiments. Source data are provided as a Source Data file.

References

- 1. Martínez-García, E., Nikel, P.I., Aparicio, T. & de Lorenzo, V. *Pseudomonas* 2.0: genetic upgrading of *P. putida* KT2440 as an enhanced host for heterologous gene expression. *Microbial cell factories* **13**, 1-15 (2014).
- 2. Cook, T.B. et al. Genetic tools for reliable gene expression and recombineering in *Pseudomonas putida*. *Journal of Industrial Microbiology & Biotechnology* **45**, 517-527 (2018).
- 3. Silva-Rocha, R. et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. *Nucleic Acids Research* **41**, D666-D675 (2013).
- 4. Schafer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* **145**, 69-73 (1994).
- 5. Franden, M.A. et al. Engineering *Pseudomonas putida* KT2440 for efficient ethylene glycol utilization. *Metabolic Engineering* **48**, 197-207 (2018).
- 6. Orellana-Saez, M. et al. In-Depth Genomic and phenotypic characterization of the antarctic psychrotolerant strain *Pseudomonas* sp. MPC6 reveals unique metabolic features, plasticity, and biotechnological potential. *Frontiers in Microbiology* **10**(2019).
- 7. Kenny, S.T. et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. *Applied Microbiology and Biotechnology* **95**, 623-633 (2012).
- 8. Narancic, T. et al. Genome analysis of the metabolically versatile *Pseudomonas umsongensis* GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. *Microbial Biotechnology* **14**, 2463-2480 (2021).
- 9. Kenny, S.T. et al. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic pha (polyhydroxyalkanoate). *Environmental Science & Technology* **42**, 7696-7701 (2008).
- 10. Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. *Metabolic Engineering* **66**, 167-178 (2021).
- 11. Bentley, G.J. et al. Engineering glucose metabolism for enhanced muconic acid production in *Pseudomonas putida* KT2440. *Metabolic Engineering* **59**, 64-75 (2020).
- 12. Kohlstedt, M. et al. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered *Pseudomonas putida*. *Metabolic Engineering* **47**, 279-293 (2018).
- 13. Liu, P. et al. Valorization of polyethylene terephthalate to muconic acid by engineering *Pseudomonas putida*. *International Journal of Molecular Sciences* **23**(2022).
- 14. Kohlstedt, M. et al. Biobased PET from lignin using an engineered cis, cis-muconate-producing *Pseudomonas putida* strain with superior robustness, energy and redox properties. *Metabolic Engineering* **72**, 337-352 (2022).
- 15. Kim, H.T. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. *Acs Sustainable Chemistry & Engineering* **7**, 19396-19406 (2019).