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MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding
mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single
nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential
characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including
inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in
disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases
and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in
which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation
and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs
in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role.
Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists,
antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.

1. Introduction

The small microRNAs (miRNAs), 19-24 nucleotides, are
noncoding, endogenous, single stranded, and evolutionarily
conserved sequences. miRNAs downregulate gene expression
at transcriptional or posttranscriptional level by binding to
messenger RNAs (mRNAs) and preventing them from being
translated into proteins [1]. They have an important role in
biological processes, such as cellular development, differ-
entiation, proliferation, and apoptosis. With the discovery
of first miRNA lin-4 in 1993 [2] and later let-7 in 2000
within Caenorhabditis elegans during its developmental stage
transitions [3, 4], as research advances, the information on
miRNAs has grown exponentially and suggested them as
one of the central players of gene expression regulation. For
nomenclature purpose, they are numbered as per the order of
their discovery. As each miRNA is able to target hundreds of

transcripts, it has been estimated that miRNAs may regulate
up to 30% of the protein-coding genes accounting for 1-5%
of all predicted human genes [5]. For humans, to date, over
1,872 precursors hairpin sequences and 2,578 mature miRNAs
have been reported (Sanger miRBase version 20; assembly
count-GRCh37.p5) which can regulate important physiologi-
cal processes and pathogenesis of several diseases. This review
aims to summarize the current understanding of miRNAs in
lung diseases and cardiac remodeling events implicated in
inflammation and their potential role as biomarkers.

1.1. MicroRNA Biogenesis, Mechanism of Action, and Regu-
lation. miRNAs are transcribed by RNA polymerase II as
long precursor (up to several hundred nucleotides) origi-
nating as RNA sequences with hairpin structure of about
70-100 nucleotides in length that constitutes the pri-
mary transcript of the miR/primary miRNAs (pri-miRNAs).
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FIGURE I: Biogenesis and role of micro-RNA (miRNA). The processing (%) step includes conversion of pri-miRNA to pre-miRNA through
Drosha and DGCRS and pre-miRNA to mature miRNA in the presence of dicer, PACT, and TRBP. In the mature miRNA, either of its strands
is involved in RISC formation along with Ago-2. The complex is involved in transcriptional regulation (a) by binding to site for transcription
factors in the 5'-UTR, while it functions (¥) for mRNA degradation (by perfect pairing of its seed region) or transcriptional repression (by
imperfect binding) of the target mRNA region. The mature circulatory miRNAs are also transported with microparticles such as membrane
derived vesicles (exosomes and microvesicles), lipoproteins (HDL), or RNA binding proteins (RBPs) and remains protected from enzymatic

degradation.

These are further processed in the nucleus by microprocessor
complex consisting of RNase III enzyme Drosha and double-
stranded RNA binding protein, Pasha (also called DiGeorge
syndrome Critical Region 8; DGCR8) to precursor-miRNAs
(pre-miRNAs) of approximately 65 nucleotides. These pre-
miRNAs are then exported to cytoplasm by exportin-5. This
exportin-5 mediated transport to the cytoplasm is energy-
dependent, which utilizes GTP bound to the Ran protein as
cofactor [6].

In cytoplasm, the hairpin loop is removed and subse-
quently processed by the RNase III enzyme Dicer along with
two double-stranded RNA (dsRNA) binding proteins, pro-
tein activator of PKR (PACT) and transactivation response
RNA-binding protein (TRBP), leaving mature miRNA duplex
(miRNA-miRNA™) of about 22 nucleotides in length with
mismatch base [7] (Figure 1). Further, one of the two strands
of the mature miRNA is loaded into the RNA-induced silenc-
ing complex (RISC) containing enzymes of Argonaute (Ago)
family and is commonly guided to the 3'-untranslated region
(UTR) of target mRNA. miRNAs anneal with sequences via
Watson-Crick base pairing, although there are some exam-
ples of miRNA interactions within mRNA coding regions,

intron-exon junctions and 5'-UTR. With the activity of Ago-2
where it blocks translation and promotes deadenylation
(degradation of poly-A tail) resulting in mRNA degradation,
the two mechanisms result in gene silencing [8]. The expres-
sion level and involvement of the ribonucleases Drosha,
Dicer, and Argonaute-2 (Ago2) in processing and activity of
miRNAs demonstrate a relationship with the phenomenon of
RNA interference.

Regarding miRNA regulation, in addition to the major
stages of control during miRNA biogenesis and its subcellular
localization suggested by O’Connell et al. [9] and Yue [10],
single nucleotide polymorphisms (SNPs) in the binding
domain (seed region) could alter miRNA function. For exam-
ple, a SNP in the 3'-UTR of asthma susceptibility gene HLA-G
influences the targeting of miR-148a, miR-148b, and miR-152
[11].

1.2. miRNA Polymorphism in Regulation of Target Gene
Expression. Mutations in miRNA transcripts are common
and SNPs in pre-miRNAs could alter miRNA processing,
expression, and/or binding to target mRNA and thus may
have functional importance. Numerous reports have been
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made for the impact of single nucleotide polymorphism in
miRNAs (mirSNPs) towards disease susceptibility; however,
in this review, focus will be made on inflammatory lung and
cardiovascular diseases.

In a case-control study for risk factor for asthma, SNPs
demonstrated risk variant rs2910164"C allele (C/G) in the
pre-miRNA of miR-146a and rs2292832*T (C/T) miR-149
were significantly associated with lower risk of asthma [12]
(Table 1). Corroborating the finding, Jimenez-Morales et al.
reported rs2910164"C (G/C) miR-146a to be significantly
associated with protection against asthma among Mexican
females [13]. However, the rs2910164 " C miR-146a was associ-
ated with increased risk factor for nasopharyngeal carcinoma
[14]. HLA-G is an asthma-susceptibility gene and within its
3'-UTR 1s1063320*G (+13142 C/G) miR-152 family (miR-
148a, -148b, and -152) with more stable binding to HLA-G
mRNA was shown to conserve the miRNA target site and
to be protective against asthma only in children of asthmatic
mothers. This suggested the allele-specific targeting of HLA-
G transcript [11, 15].

Besides, rs11614913°C (C/T) miR-196a2, a prognostic
biomarker for shortened survival time [16, 17], was associated
with increased risk for several forms of cancers including
lung cancer [18-23] and congenital heart disease [24]. Also,
rs11614913*T (C/T) miR-196a2 and rs3746444*G (A/G)
miR-499 were significantly associated with decreased risk for
COPD [25].

In an interesting report from pulmonary tuberculosis
(PTB) patients, the roles of risk alleles in miRNAs were
reported to vary for disease susceptibility among different
populations. Investigating the association of genetic poly-
morphism with PTB, among the SNPs that regulate the
Toll-like receptor- (TLR-) mediated signal pathway, it was
shown that rs3746444*C (T/C) miR-499 and rs2910164* G
(G/C) miR-146a exhibited different roles in Tibetan and Han
populations [26]. Also, miR-146a is NF-xB-dependent and
regulates cytokine signaling and TLR pathways [27]. Thus,
it is highly involved in pathogenesis of several inflammatory
and autoimmune diseases and its genetic variants are much
studied.

For chronic systemic autoimmune disease, systemic lupus
erythematosus (SLE), SPII overexpression is suggested to
have a role in its pathogenesis. A SNP rs1057233"T (T/C)
in the 3'-UTR of SPII alters a target sequence for miR-
569 that is associated with elevated SPII mRNA level and
with susceptibility to SLE [28]. However, another variant
57095329 G (G/A) in the promoter region of miR-146a
primary transcript was associated with SLE in Chinese [29].
Understanding the pathogenesis of SLE using combina-
torial approach, novel gene-gene/gene-sex interaction was
identified which included rs57095329 (G/A) miR-146a. The
findings by Leng et al., implicated sex/gender, interferon
pathway, and Th17/B cells as important risk contributors to
SLE [30]. In a GWAS, rs2431697"T (C/T) was genetically
associated with SLE in European population [31]. Further, in
a recent study, rs3853839*G (G/C) in 3'-UTR of TLR7 was
reported to affect binding of miR-3148 and was associated
with increased risk for SLE [32].

Among the roles of mirSNPs in pathogenesis of car-
diovascular diseases (CVDs), the mirSNPs rs5186"C (A/C)
in human angiotensin II type 1 receptor (AGTRI) 3'-UTR
affecting miR-155 binding site [35, 36] and rs9818870 (C/T)
in muscle RAS oncogene homolog (MRAS) 3'-UTR modulat-
ing miR-195 and miR-135 were proposed to be potentially
involved in the hypertension (HT) and other related CVDs
[37]. Recently, rs7079 (C/A) in Angiotensinogen (AGT) 3
UTR affecting miR-31 and miR-584 were reported to be
associated with HT [38].

For coronary heart disease, the GG genotype of miR-
149 154846049 (G/T) in the 3'-UTR of 5,10-methylene-
tetrahydrofolate reductase (MTHFR) was significantly associ-
ated with the increased risk [39]. For dilated cardiomyopathy
(DCM), rs11614913"T (C/T) miR-196a2 and rs3746444* G
(A/G) miR-499 were found to be significantly associated with
increased risks [41]. In a genotype-phenotype correlation
analysis for congenital heart disease risk, CC genotype of
1511614913 (T/C) miR-196a2 was associated with a signif-
icantly increased susceptibility (p = 6.81 x 107°) and
increased mature miR-196a expression (P = 0.001) [24]. Few
databases for miRNA-related genetic variants are Patrocles,
dbSMR, PolymiRTS, MicroSNiPer, miRdSNP, and dPORE-
miRNA [42].

These studies suggest the potentiality of genetic variant
in disease susceptibility. In future, the allelic variant with
low disease susceptibility could be explored in therapeutic
mechanism to manage the disease progression.

1.3. miRNA in Epigenetics. miRNAs and antisense RNAs are
able to direct epigenetic changes, such as histone modifica-
tions (e.g., H3K9me2, H3K9me3, and H3K27me3) and DNA
methylation at specific loci, thereby evoking heritable and
stable silencing of some mammalian imprinted genes. His-
tone modification involves Agol of RISC and the chromod-
omain protein Chpl that recognizes H3K9me [43]. For DNA
methylation, methyl groups are transferred to carbon-5 of
cytosines by DNA methyltransferases (DNMT1 or DNMT3A
and DNMT3B). Other enzymatic effectors of the epige-
netic machinery include histone deacetylases (HDACs) and
polycomb repressor complexes (PRCI or PRC2). In general,
CpG sites flanking the promoter region are hypomethylated
in transcriptionally active genes and hypermethylated in
inactive genes.

The downregulation of epigenetically controlled miRNAs
as well as epi-miRNAs that target elements of the epigenetic
machinery [10, 44] has most notably been reported in cancer
cells [45]. The first evidence of epi-miRNAs was reported in
lung cancer, where miR-29 (a-c) family was shown to directly
target the de novo enzymes DNMT3A and DNMT3B [46]. In
this model system, few examples of epigenetic regulation of
miRNAs with oncogenic properties include hypomethylation
of miR-21 [44, 47] and let-7a-3 [48] and hypermethylation
of miR-34b/c [49, 50]. However, hypermethylation of CpG
island of miR-34a has been proposed with tumor suppressor
role [44, 51].

For the pathogenesis of autoimmune disease, such as
systemic lupus erythematosus (SLE), the first report on role of



Mediators of Inflammation

667 Jru-esy ;
(17] J[SLI 9SEASIP PaseadU] 10 SUOIE1 Y IW-01 (D/V) D, FrPopLEsT 667w
(1] J[SLI 3SBASIP PaseaIou]  Ze96I-YIW Jo uoIdar yNJIw-a1d  (L/D) L,EI6FI9TIsT Teo6I-YI
(WD Q) Ayzedofworpres pajerrq
sisordode ut SI J081n231d gHT-Yruwx
[0¥] urajo1d ewng saje[n3a1 pue UOIBINJRW GH[-YIW SIOPY (O/V) D.6£78Tv1L ov!
UOT)OTRJUT [RIPIRDOAIA
l6€] Y[SLI 9SBISIP Paseaiou] MLO- SYIHIN  (1/D) D,670978F51 6YI-Iw
2SeASTp 1189Y AI1RU0IO))
[8¢€] LH 10§ 1010€] STy ALN-£.ILOV (V/D) 6L0Ls1 78S- pue gy
[£€] SAAD 12130 pue T H 10J 10108] STy dLN- € SVIW (1/D) 0£8818681 GET- pue gp[-yrux
[9¢ “c¢] SAAD 13430 pue L H 10§ 10308] 3sTyY A1 £ IOV (O/V) D,981681 geI-gru
(1LH) uvorsuayrodAl
[¥2] JSLI PaseaIou]  ZRYGI-YIW JO UOISI YNJIW-a1d  (L/D) O, EI6VIONIS Zeo6I-yIw
aseasTp 11eay [e3ruaduon)
[e€] 'S 10§ Y[S11 paseadu] VLN € Z4TL  (D/D)D,6£8€58¢sT 8FIE-~Tw
. ROR[-IW pue [DL,Id )
[1¢] sueadoIny ur FTS YIIM PaIeIOSse A[[ednauan UsaMI5q U0I851 JruBIAIu] (1/D) L.,L69Te¥TsT BRI
0 ¢ IM PIJRIOOSS 1duosuen s1 BOp[-YIW
[¥€ ‘0¢ ‘67] TS WM PABROSSY 4o i1d egp -y J0 I9j0WOIg (V/D) D,67€560LS 91!
(87] q71S 03 Arqudassns Y3y MLO-€1dS  (D/L) 1,E€TLSOTST 6951w
(A'1S) snsoyewayi£1o sndnp orwua)sAg
skemyyed -
[£zsT] Y'LL pue Surfeusdis sunjoldd sajensas ssuonendod 10 2>usnbos yapIw dosiosrg (/D) D FOI016TSH eOpT-gIu
Juazay1p Suoure satrea Aiqridaosns aseasiq
suorjerndod 667 JruI-esy ]
[st] Juazayrp Suoure sarrea Liqrdaosns aseasi(q Jo suordar YN Iw-214q (O/1) 0. ¥¥yovLEst 667-dIt
(4.1.d) stso[noraqny Areuowrng
D Jo stsauadoyjed ) o) - Ao O16- DUE Ceb Il
(g€l U1 9[01 € 2ABY ABW PUE UONEINW Y [0 PIIA ML~ € VLD D/V) 6TEVET0T €-605- PUe €ep-y!1
(:ID) s1so1qy onsAD
667 -gru-esy i
[s7] J010B] YSLI pasealdag J0 SUOISa1 YNYIW-21q (D/V) D, F¥yIvLEST 667 yru
[s7] 10308} YSL1 PISLIIOIP (9qX0f] J98IR], TRYGI-YIW JO UOISAI YNJIW-a1d  (L/D) O, EI6FIONISE 7eo6I- W
(@doD) aseastp Lreuownd 2A13ONIISGO JTUOIYD)
¢ Stotot (uonsod s1 - pue ‘qQgp1- ‘BQHI-YIw) A[Turey gG[-yru
[sTT1] SIRUIYSE JO UBPIIY UT A[UO PUIYISe JSUreSe JA139301d THIE + 1) WIN- € O-VIH (5/0) D.,0T€€901 (TST- pue ‘q8¥I- ‘egpI-yrur) A[rurey ZG[-yI
[e1] BUITISE JO MSLI IOMO] (HIM PIJRIOOSSY  GHI-YIW jo uoidar yNIw-21d  (L/D) 1,TE8T6TTSI 6YI-Iw
[e121] RUUISE JO YSLI TOMO[/UONIII0I]  BOP[-JIt JO UoI3or YNYIW-21d  (D/D) D,¥91016781 eOp-Yrur
BWISY
CERIIEIEEN 3701 aATIRINg uorjed0T (SI[A[[e) JUBLIBA YSII NS VNYOIA

"SJUQAD SUI[OPOAI JBIPIED PUE ISBISIP ATOJRWIUIRFUT JUn| UT STNSIIW JO 3[0Y ‘[ HTAV],



Mediators of Inflammation

DNA methylation was made during early 1980s with certain
medications, such as hydralazine and procainamide inhibit-
ing DNA methyltransferasel (DNMT1) enzyme activity in
CD4+ T cells [52], and was subsequently demonstrated by
several studies [53, 54]. A variable expression of regulatory
microRNAs in lupus CD4+ T cells due to epigenetics has been
described [55]. Overexpression of several miRNAs, such as
miR-21, -148a [56], -126 [57], and -29b [58], is reported to
affect DNA methylation machinery of lupus CD4+ T cells by
targeting DNMT1 (Table 2). MiR-21 indirectly alters DNMT1
expression by targeting Ras guanyl-nucleotide-releasing pro-
tein 1 (RASGRPI) gene, which mediates the Ras-MAPK path-
way upstream of DNMT1I [56]. However, miR-148a and miR-
126 directly inhibit DNMT1 translation via interaction with its
3'-UTR. Aberrant overexpression of miR-29b [58] and miR-
126 [57] in lupus CD4+ T cells causes hypomethylation and
overexpression of the methylation-sensitive genes CD1la and
CD70, leading to T cell and B cell hyperactivity. Inhibition
of such miRNAs expression in CD4+ T cells in patients with
lupus caused reverse effects. Thus, the peculiar behavior of
miRNAs could be potentially used as a prognostic biomarker
for invasive phenotypes of inflammatory diseases.

Despite progress in the area of epigenetic modifications
in other pathologies, the role of epigenetic factors affecting
miRNA regulation in cardiac inflammatory diseases has
still to be investigated. Possible differences among DNA
methylation in cardiomyopathic and normal heart have been
reported in humans [59] but due to lack of direct evidences
the epigenetic regulation of miRNAs still remains elusive
[60].

2. Role of miRNA in Fibrosis

The hallmark of fibrosis is tissue remodeling with excess
deposition of extracellular matrix components, predomi-
nantly collagens. Recently, downregulation of miR-200 family
(a—c) was reported in the lungs of mice with bleomycin-
induced fibrosis; restoration of miR-200 expression reversed
lung fibrosis via inhibiting TGF-f3, suggesting its antifibrotic
role [61]. Upregulation of another miRNA, miR-21, has been
related to bleomycin-induced fibrosis (Figure 2). In this case,
even the delayed administration of antisense nucleotides
blocking miR-21 was able to attenuate the profibrotic effect
exerted by bleomycin [62-64]. Vettori et al. reviewed several
studies and suggested putative miRNAs as implicated in
fibrosis [65]. Amongst these, miRNAs with antifibrotic role
in lungs include let-7d and miR-15b, -16, -26a/b, and -29; for
heart they include miR-132, -133, and -590; however miR-
17~92 cluster (miR-18a, 19a/b), -29a/b/c, and -30c¢ are shared
by both lung and heart. miRNAs with profibrotic role in lungs
include miR-155, -199a/b, and -23a (clustered with -27a),
in heart miR-208; miR-21 appeared in both lung and heart
[65]. It has been speculated that targeting of deregulated
miRNAs that are implicated in development of IPF, cardiac
hypertrophy, and fibrosis may combat the progression of
fibrosis in lung and heart.

3. Recent Developments in Role of
miRNAs in Respiratory Inflammation
and Cardiovascular Diseases

3.1. Role of miRNAs in Lung Inflammation. An inflam-
mation/injury to lung tissue ignites an innate immune
response. Immune cells including macrophages, monocytes,
and neutrophils migrate into the lungs to protect the dam-
aging cells and activate antimicrobial peptides and T-cell
responses. It further activates proinflammatory response
involving cytokines and chemokines, such as TNF-a, IFN-y,
CCL5/RANTES, IL-8, and IL-2 as well as innate immune
response involving pathogen recognition receptors mediated
activation of TLRs and their adaptor proteins such as TRIF,
MYD88, TIRAP, and TRAM. These inflammatory stimulators
provoke aberrant expression of miRNAs in several chronic
inflammatory diseases; for example, miR-146a that targets
COX2 gene is highly increased in response to the stimulation
of inflammatory cytokines in several cell types from COPD
patients [66], whereas it has reduced levels in CD4+ T-
and CD8+ T-cells in patients with severe asthma [67]. A
panel of miRNAs such as let-7a and miR-21, -155, -133a,
-328, -1291, and -1248 has been shown to differentiate between
healthy and inflamed lung in asthma. Additionally, differ-
ential expression of specific miRNAs (miR-1248 and -1291)
characterized unique miRNA signatures among different
types of chronic inflammation such as asthma and COPD
[68]. Recently, Sessa and Hata in their review have suggested
the role of miRNAs as possible diagnostic and prognostic tool
in lung development and pulmonary diseases such as asthma,
CE COPD, IPE, and PAH. They also discussed the potential
therapeutic targets for miRNAs using different molecular
strategies [8]. Focusing on therapeutic application, Fujita et
al. exclusively reviewed the RNA interference (RNAI) in lung
inflammatory and cancer diseases along with therapeutic
drugs under clinical trials, its route of administration, drug
delivery agents, and target gene [69]. The status of miRNAs
expression mentioned in this review has been reported to be
valid using qRT-PCR or reporter gene assays in majority of
the studies. These abnormal immune responses in response
to environmental stimuli, infections, and aberrant genetic
behavior including miRNA expression may lead to patho-
logical processes and development of various pulmonary
diseases [70]. In this review, focus will be made primarily on
inflammatory pulmonary and cardiovascular diseases.

3.11 Asthma. Asthmaisa chronicinflammatory lung disease
stimulated by aberrant allergen-specific CD4+ T helper-2
(TH2) secreting cytokines, IL-2, -4, -5, -9, and -13 in response
to various stimuli, such as allergens, infections, and air
pollutants. It is characterized by elevated serum IgE, airway
hyperresponsiveness, mucus hypersecretion, and eosinophil
accumulation in the lung [73]. In asthma, upregulated miR-
NAs include let-7b and miR-21, -106a, -126, -145, -146a, -146b,
-155, -181a, and -221, while the downregulated are let-7 family
and miR-20Db, -133a, -146a, -146b, and -28-5p (Table 3).
During the innate host response to allergens, miRNA
expression with elemental regulatory signals has been linked
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TABLE 2: Role of miRNAs in epigenetic regulation of lung inflammatory diseases and cardiac remodeling.

Disease and miRNA Putative role in disease susceptibility References
Idiopathic pulmonary fibrosis (IPF)

Fapemalyiton el DO sreson IR T2
SLE

miR-21 Targets RASGRP1 and alter§ DNMTI activity; DNA hypomethylation [56]

in disease state

miR-29b Targets DNMTL; hypomethylation (58]

miR-126 Inhibits DNMT1 (57]

miR-148a Inhibits DNMT1 (56]
Myocardial infarction

miR-21 Acetylation regulates miR-21 promoter in myocardial infarction [72]

‘ Resident fibroblasts
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» Matrix factors « Collagen
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Epithelial cells
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T miR-21 (LSmad7 and Spry1)
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SE =
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FIGURE 2: Role of miRNAs in mechanism of fibrosis. The downregulation of miR-200 and -192 (inhibits epithelial-mesenchymal transition,
EMT) and miR-29 (prevents the deposition of extracellular matrix, ECM) promotes fibrosis. Further, miR-21 amplifies TGF-f signaling and
promotes myofibroblasts phenotype in fibrosis. This is characterized by increased cellular factors” and expression of alpha-smooth muscle

actin (a-SMA) and EDA-fibronectin.

to TLR signaling leading to activation of inflammatory path-
ways [27]. Notably, miR-21 is among the most overexpressed
miRNAs in the inflamed lung tissue and in human airway
epithelial cells in response to IL-13 treatment. It suppresses
TLR-2 signaling in an animal model of asthma [74]. In a
mouse model, it was shown that miR-126 expression was
regulated by TLR4 or MyD88 deficient pathways and its
antagonism suppressed the effector function of lung TH2 cells
along with the development of allergic airways disease [75].

Also, for the bronchial smooth muscle cells, the reduction
of miR-133a seems to increase bronchial hyperactivity in
an animal model of asthma by increasing the expression of
RhoA [76] (Table 3). Further, aberrant expression of miRNAs
from primary bronchial epithelial cells including miR-152
family (miR-148a, -148b, and -152) that regulates plasma
soluble human leukocyte antigen-G (sHLA-G) is associated
with asthma [11, 15]. Recently, substantial differences were
demonstrated in exosomal miRNAs profile including let-7
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(a—e) and miR-200 (-200b and -141) families between healthy
subjects and patients with unprovoked, mild, and stable
asthma [77].

3.1.2. Chronic Obstructive Pulmonary Disorder (COPD).
Chronic obstructive pulmonary disease (COPD) is character-
ized by both chronic inflammation in the airway and systemic
inflammation. It is due to combination of emphysema and
chronic asthmatic bronchitis leading to impairment of lung
function. However, the molecular mechanism of COPD has
not been fully elucidated [78]. Proper diagnosis at early stages
has remained a major challenge for COPD management.
In this context, role of miRNA in COPD development
and progression has been well illustrated in several studies
(Table 3).

In COPD, miRNAs such as miR-146a and miR-155 have
been demonstrated with a regulatory role in inflammation.
Cytokine-stimulated prostaglandin E, production and miR-
146a expression in cultured fibroblasts correlated with clinical
severity of COPD suggesting a pathogenic role of miR-146a
[66]. A recent study evaluated the expression of 863 human
miRNAs in blood cells of lung cancer and COPD patients
along with healthy controls and identified 14 miRNAs as
significant for comparing lung cancer and COPD patients
[79]. Amongst these, eight miRNAs (hsa-miR-26a, -641,
-383, -940, -662, -92a, -369-5p, and -636) were significant
for differentiating COPD patients and healthy controls. The
differentially expressed hsa-miR-26a acts as regulator of NF-
kB pathway by the regulation of its target gene, activating
signal cointegrator 1 complex subunit 3 (ASCC3) [79]. San-
fiorenzo et al. identified a six-plasma miRNA panel that was
able to discriminate between NSCLC patients and COPD
patients and an eleven-plasma miRNA panel that could
distinguish non-small-cell lung carcinoma (NSCLC) patients
from healthy subjects [80].

3.1.3. Cystic Fibrosis (CF). Cystic fibrosis (CF) is a mono-
genic disease caused by mutations in the CFTR gene and
is characterized by mucus airway obstruction, neutrophil-
dominated airway inflammation, and bacterial infection that
lead to massive proinflammatory phenotype in the lung.
The developmental processes, characterized by bronchial
wall thickening and tissues fibrosis, are mediated by the
production of reactive oxygen species and metalloproteases
(8].

Role of miRNAs in CF has been reported by several
workers; among them, Oglesby et al. firstly described miR-
126 in CFE In particular, miR-126 targets TOMI protein,
a negative regulator of IL-If, TNF-a, and LPS signaling
pathway. The downregulation of miR-126 in CF patients
correlated with upregulation of TOMI and downregulation of
NF-kB-regulated IL-8 secretion [102]. Moreover, in human
airway epithelial cells, three miRNAs, miR-384, -494, and
-1246, were shown to inhibit CFTR and 3'-UTR of Na*-K*-
CI” cotransporter SLCI2A2 which is important in regulating
chloride transport [100]. Similarly, miR-101 and miR-494
were able to suppress CFTR activity by up to 80%, under in
vitro study [101]. A higher level of miR-155 in CF through

hyperexpression of cytokines, such as IL-8 in CF lung
epithelial cells in in vitro [107, 108] and in vivo models [106],
suggests the role for miRNA in CF pathogenesis. Further, to
understand the aberrant expression mechanism of miR-155
in CF, two mRNA-destabilizing inflammatory RNA-binding
proteins, KSRP and TTP, were shown to have an antagonistic
role in miR-155 biogenesis [109]. Regarding the biosynthesis
of CFTR, miR-138 was shown to alter the expression of
several encoding genes associated with CFTR and it also
regulates CFTR expression through its interactions with
the transcriptional regulatory protein SIN3A [103]. Recently,
high expression of miR-101, -144, -145, -215, -223, -509-3p, and
-494 in CF cells was shown to be as dynamic regulators of
CFTR [98, 104, 105, 108, 110].

3.1.4. Idiopathic Pulmonary Fibrosis (IPF). Idiopathic pul-
monary fibrosis (IPF), defined as a specific form of chronic,
progressive fibrosing interstitial pneumonia of unknown
cause which is associated with the histopathologic and/or
radiologic pattern of usual interstitial pneumonia (UIP)
[135], has the largest epidemiological impact and the worst
prognosis among interstitial lung disease. Approximately 10%
of the microRNAs are significantly deregulated in IPF lungs
[111].

In IPE, the regulation of epithelial-mesenchymal transi-
tion (EMT) through inhibition of let-7 family members by
transforming growth factor 1 (TGF-fI) and a high expression
of HMGAZ2 in alveolar epithelial cells were demonstrated both
in vitro and in vivo [111]. Related to progression of fibrosis
through myofibroblast differentiation, a high expression of
miR-21 was shown in the lungs of bleomycin-treated mice as
well as IPF patients and its inhibition reduced the severity of
fibrosis [62]. In addition, miR-29 was shown to be involved
in EMT and target profibrotic genes in human fetal lung
fibroblasts [116] and in bleomycin-induced pulmonary fibro-
sis in mice [117]. Recently, miR-21 and miR-155 expressions
were shown as detectable and stable in serum of patients with
IPF [64]. Interestingly, miR-200 family members were shown
to reverse the fibrogenic activity of pulmonary fibroblasts
in IPF [61]. Comparative analysis of miRNA and gene
expression microarray data in IPF revealed enrichment of
the TGFf31, Wnt, Sonic Hedgehog, p53, and VEGF pathways
and complex regulatory networks [116]. In addition, pathway
analysis indicated that altered microRNA expression may
be associated with HGF signaling, cholecystokinin/gastrin-
mediated signaling, and IGF-I signaling, among others, in
fibrotic lung disease [63].

3.1.5. Other Inflammatory Lung Diseases. Despite the critical
role of miRNA in inflammatory response, limited studies
have focused on its role in inflammation-induced acute lung
injury (ALI)/acute respiratory distress syndrome (ARDS)
[122]. The roles of miRNAs such as Let-7a and miR-21,
-32, -127, -1464a, -155, -181b, -466-5p, and -466-3p have been
suggested to be involved in this severe pathology (Table 3).
However, the knowledge of this condition has remained lim-
ited to establish their role as biomarker for early prevention,
prognosis, and therapeutics role in possible therapy; the roles
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of miRNAs mentioned above are also needed to be validated
and confirmed by more studies.

3.1.6. Pulmonary Artery Hypertension (PAH). Pulmonary
arterial hypertension (PAH) is a disease of the pulmonary
vasculature characteristic by vascular remodeling associated
with obliteration of pulmonary arterioles and formation of
plexiform lesions composed of hyperproliferative endothelial
and vascular smooth-muscle cells [134]. Wei et al. identified a
spectrum of downregulated (miR-451 and -1246) and upreg-
ulated (miR-23b, -130a, and -191) miRNAs in PAH patients,
suggesting these circulating miRNAs as potential biomarker
for early disease detection [128]. Besides, several miRNAs
(miR17/92 cluster, -21, -23b, -130a, and -145) detected in
PAH were reported to be connected with disrupted BMPR2
pathway in PAH (Table 3). Sarkar et al. confirmed the role
of miR-21 in smooth muscle cell proliferation and migration
with increased expression of miR-21 in pulmonary artery
smooth muscle cells (PASMCs) [126]. By contrast, miR-204
expression in PASMCs was downregulated in both human
and rodent PAH model, and delivery of the synthetic miR-
204 significantly reduced disease severity in animal model
[131]. Similarly, in vivo administration of miR-21, -424, and
-503 ameliorated PAH [134, 136]. Collectively, these observa-
tions propose reestablishment of normal miRNA level as a
potential therapeutic approach.

3.2. Role of miRNAs in Cardiac Remodeling. Inflammation
plays a key role in cardiac function and remodeling during
progression of cardiovascular diseases (CVDs). Biological
processes affecting fibroblasts, extracellular matrix proteins,
coronary vasculature, cardiac myocytes, and ionic channels
are involved in this remodeling process [137,138]. The vascu-
lar cell adhesion molecule-1 (VCAM-1) expression is induced
through NF-«B mediated pathway and proinflammatory
cytokines such as IL-13, IL-6, and TNF-a. The VCAM-1
as well as chemokine receptor-2 (CCR2) induces the inter-
action of vascular endothelial cells (ECs) with monocytes
and T lymphocytes which triggers the early atherosclerotic
plaques [139, 140]. At transcriptional level, understanding of
miRNAs biological functions in the cardiovascular system
in physiological and pathological condition is considered to
be potentially crucial for CVD prevention, diagnosis, and
therapy [138, 141]. For miRNA profiling of cardiac remodel-
ing in response to inflammation, serum based extracellular
miRNAs have been extensively utilized as noninvasive and
reliable diagnostic tool (Table 4). The pathological process
of the myocardium is associated with an altered expression
profile of genes that are important for cardiac function. Reg-
ulation of cardiac gene expression is complex, with individual
genes being controlled by multiple enhancers that regulate
specific expression patterns in the heart. Increasing evidences
indicate that miRNAs play important role in myocardial
pathology adding a new point of view of how cardiac gene
expression is regulated.

Recent reviews provide an overview of specific
miRNA signatures with dysregulated level in CVDs [138].

Mediators of Inflammation

These are transported as extracellular microRNAs during
cell-to-cell RNA communication and considered as
important diagnostic markers [179, 193-195]. For example,
Small and Olson explored the role of miRNAs in heart
development and pathological cardiac remodeling along
with their potential therapeutic targets. They also suggested
exciting possibilities for the therapeutic manipulation of
miRNA-regulated processes in several cellular mediated
diseases that are difficult to modulate therapeutically
[196]. Further, extending this approach for therapeutic
inhibition of cardiovascular miRNAs, van Rooij and Olson
summarized the current chemistries (tiny LNA, LNA-
DNA miximer, antagomir, and 2'-F-2'-MOE miximer) for
targeting miRNAs [197]. In a study, significant increase in
serum level of miR-1 and -133 in patients with cardiovascular
diseases such as acute myocardial infarction, unstable angina
pectoris, and cardiomyopathy indicated its implication
in myocardial damage [198]. In particular, specific set of
miRNAs is involved in atherosclerosis, myocardial infarction,
heart failure, myocardial hypertrophy, and fibrosis. Here,
we summarize and highlight some of the most investigated
miRNAs in this field (Table 4), focusing on the main groups
of miRNAs involved in myocardial remodeling.

3.2.1. Atherosclerosis. Atherosclerosis (AS), a chronic inflam-
matory disease affecting major arteries, represents one of
the causes of myocardial infarction, ischemic stroke, and
peripheral artery disease [199]. miRNAs, such as miR-21, -
146a, and -155, are involved in most of the inflammatory
diseases [142] and have been implicated in the development
of AS; for example, miR-21, -34a, -146a, -146b-5p, and -210
were significantly upregulated in vulnerable atherosclerotic
plaques [143] (Table 4). While miR-155 was shown to pro-
mote AS by repressing Bcl6 in macrophages, its inhibition
reduced the expression of CCL2, which recruits monocytes
to atherosclerotic plaques [200]. Mechanistically, miR-155
(proinflammatory) and miR-146 (anti-inflammatory) were
reported to regulate dendritic cell functions in atherosclerotic
inflammation [201]. As far as the functional aspects of this
process, miR-155 is upregulated by macrophage-derived miR-
342-5p through Akt-1 inhibition, which results in stimula-
tion of inflammatory mediators such as Nos2 and IL6 in
macrophages [202]. On adverse, miR-155 was also suggested
to possess protective feature as it prevented development of
AS and its progression by regulating inflammatory response
and MAP3KI0 of MAPK pathway [203]. This contrasting
effect of miR-155 may be context dependent and differ
between early and advanced stages [204]. Other miRNAs
implicated in AS, for example, miR-27 [201] or miR-214, were
shown to possess cardioprotective effects against ischaemic
injury in mouse model by controlling excessive calcium influx
and cell death [205].

Also, suppression of NF-«xB signaling and inhibition
of atherosclerotic lesion by systemic delivery of miR-181b
in apolipoprotein E-deficient mouse model with reduced
expression of miR-181b suggested the protective role for
AS [146]. The two different miRNAs from different sources
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(human or mouse), sharing a common seed sequence essen-
tial for target recognition and binding, have been demon-
strated to exert similar role. Recently, inhibition of miR-712
by anti-miR-712 was reported to rescue TIMP3 expression
and prevented arthrosclerosis in murine model. From com-
parative analysis, human miR-205 was also found to have
the same seed sequence that targets TIMP3 [147]. Further,
they suggested that targeting these mechanosensitive “athero-
miRs” and systemic delivery of miRNAs may serve as novel
therapeutic approach to treat chronic inflammatory diseases
such as atherosclerosis.

3.2.2. Acute Myocardial Infarction. Acute myocardial infarc-
tion (AMI) is complex diseases that result from interplay
between genetic and environmental factors [206]. Cardiac
regulatory proteins, cardiac troponins T (¢Tnl) and I (cTnl),
that control the calcium mediated interaction between actin
and myosin have been currently the preferred markers for
myocardial injury due to their high sensitivity and specificity
for the diagnosis of AMI. However, there is still need for
early clinical diagnostic markers for AMI. Further, circulating
miRNAs are believed to be closely linked to myocardial
injury; moreover, due to the cell-specific physiological func-
tions and miRNAs stability in plasma, serum, and urine, they
are being explored as sensitive biomarkers of AMI [207]. Ai
et al. observed upregulation of muscle-enriched miR-1 and
proposed it to be potential predictor of AMI [149]. Additional
miRNAs that were found to be upregulated in patients with
AMI included miR-133a, -133b, -208b, -499, and -499-5p,
whereas miR-122, -223, and -375 were lower than in controls
(150, 151, 156].

3.2.3. Myocardial Hypertrophy and Fibrosis. Cardiac hyper-
trophy is characterized by an increase in cell size and/or
myofibrils without change in myocyte number. Among miR-
NAs involved in myocardial hypertrophy/fibrosis, miR-133
was suggested to play a fundamental role. Its downregulation
was associated with myocardial hypertrophy in mouse and
humans [167, 168]. A reduced expression of miR-133a was
observed in experimental model of angiotensin II-dependent
hypertension in both myocardial hypertrophy and fibro-
sis. In fact, miR-133a targets collagen lal (CollAl), which
represents the main collagen fibres involved in myocardial
fibrosis observed in angiotensin II-dependent hypertension
[174]. Downregulation of miR-133 could promote fibrosis by
targeting connective tissue growth factor, a potent profibrotic
molecule. A reduced expression of miR-133b was observed
in all patients regardless of heart failure etiology [208] and
during cardiac hypertrophy [209].

Concerning circulatory miRNAs, miR-29a is a common
marker for both cardiac hypertrophy and fibrosis reported to
be upregulated in patients with hypertrophic cardiomyopathy
[165]. MiR-29 family was also related to cardiac fibrosis. Kin et
al. found upregulated miR-29 in abdominal aortic aneurysm
[173] (Table 4), and van Rooij et al. observed dramatically
downregulated miR-29 in the region of fibrotic scar after
acute myocardial infarction [210]. Another miRNA, miR-
30, regulates a key profibrotic protein, connective tissue
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growth factor (CTGF) which contributes to collagen synthe-
sis. It downregulates CTGF level and thus controls struc-
tural changes in the myocardium extracellular matrix [176].
Similarly, another target of miR-30, beclin-1 (an autophagy-
related gene), also exhibited an inverse relationship. The
overexpression of beclin-1 gene promotes Angiotensin II-
induced myocardial hypertrophy by downregulation of miR-
30 in cardiomyocytes through excessive autophagy [166].

3.2.4. Heart Failure. The pathogenesis and clinical mani-
festations of heart failure are complex and involve disrup-
tion of normal mechanisms that regulate cardiomyocyte
gene expression, growth, survival, and function. Cardiac
interstitial cells and vascular cell also actively participate in
disease process, resulting in altered myocyte-nonmyocyte
signalling, cardiac fibrosis, and decreased vascular density.
Currently only B-type natriuretic peptide (BNP) and pro-
brain natriuretic peptide (NT-proBNP) are clinically estab-
lished diagnostic biomarkers for heart failure. However,
evaluation of HF progression along with the appropriate
timing for therapeutic interventions in the HF patient is
important from the perspective of clinical management [185]
and new markers are therefore needed.

In this context, signature expression patterns of specific
miRNAs that are consistently aberrantly expressed in heart
failure patients were described: miR-1, -29, -30, -126, and -
133 are found to be downregulated in heart failure patients,
whereas miR-21, -23a, -125, -210, -195, -199, and -423-5p are
among the upregulated [182-184]. Further, circulating levels
of plasma miR-16, -20b, -93, -106b, -223, and -423-5p were
significantly increased during hypertension-induced heart
failure in mouse model [185]. Plasma concentration of miR-
423-5p was significantly elevated in heart failure patients due
to dilated cardiomyopathy (DCM) and positively correlated
with NT-proBNP level [190]. In a recent study, biopsy of
the right atrial myocardium tissue from 83 patients revealed
enrichment of miR-1 and miR-133 within cardiac muscle and
the decreased level of miR-133a was associated with signs of
heart failure [187].

Among several miRNAs, miR-21 was implicated in sev-
eral cardiac remodelling issues (Table 4). It is expressed in
all characteristic cardiovascular cell types, including vascular
smooth muscle cells, endothelial cells, cardiomyocytes, and
cardiac fibroblasts, and target genes such as programmed
cell death 4 (PDCD4), phosphatase and tensin homology
deleted from chromosome 10 (PTEN), sproutyl (SPRYI), and
sprouty2 (SPRY2) involved in proliferative vascular disease
[211]. Reports indicate miR-21 to be involved in pathogenesis
of in vitro cardiomyocyte hypertrophy and indirectly in vivo
via fibroblasts. In contrast, some studies report an antihy-
pertrophic effect of miR-21 in isolated cardiomyocytes, a
reduction in infarct size by miR-21, or an inhibition of H,0O,-
induced apoptosis of isolated cardiomyocytes [212]. Also,
miR-21 exhibits a protective role by reducing myocyte apop-
tosis and ischemic heart failure/reperfusion injury through
suppression of phosphatase and tensin homolog (PTEN), a
negative regulator of the AKT pathway [171, 172]. Thus, owing
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to its role in both pro- and antihypertrophic, the role of miR-
21 in cardiac disease remains controversial. The reasons for
the discrepancy between these studies are unclear; however,
miR-21 is expressed predominantly in cardiac fibroblasts, not
cardiomyocytes [170, 212], primarily due to comparatively
increase in the number of cardiac fibroblast cells. Overall, it
is indicated that miR-21 inhibits endothelial cell proliferation
and migration, whereas it promotes cardiomyocyte and
fibroblast survival upon myocardial ischaemia/reperfusion.
The potential role of miR-21 in cardiac fibrosis and hypertro-
phy is still debated and measures such as global knockdown
or overexpression of miR-21 in the reperfused myocardium
are suggestive to provide an insight on postinfarct remodeling
[212].

4. miRNA as Biomarker

Aberrant miRNA expression has been associated with vari-
ous human diseases and its determination can differentiate
between normal and diseased tissue [213]. Besides can-
cer, altered miRNA expression has been reported in lung
inflammatory diseases such as asthma, chronic obstructive
pulmonary disorder (COPD), cystic fibrosis (CF), idiopathic
pulmonary fibrosis (IPF), pulmonary artery hypertension
(PAH), and cardiovascular diseases such as atherosclerosis,
myocardial infarction (MI), cardiac fibrosis, and coronary
artery disease [8, 213]. Banerjee and Luettich reviewed the
miRNAs as potential biomarkers for the major smoking-
related diseases including cancer, COPD, PAH, and cardio-
vascular diseases [213]. Also, based on observations from
human and mouse model they suggested miRNAs as regu-
lators of biological responses, such as inflammation innate
immune response, including TLR signaling. Identification of
particular miRNAs within cells, tissues, or cellular free body
fluids, with altered expression correlated with disease and/or
its clinical development, could thus be exploited as potential
biomarker for diagnosis and management. The potential of
miRNAs to serve as biomarkers is further supported by their
innate characteristics, such as high conservation between
species, presence of highly stable cell-free form in the circu-
lation, and omnipresence—being isolated from most of the
cells, tissues, and body fluids including serum, plasma, urine,
saliva, breast milk, tears, semen, exhaled breath condensate,
and bronchoalveolar lavage fluid (BALF); importantly they
can be detected in small sample volumes using quantitative
real-time PCR (qRT-PCR) [5]. The observed stability, that
is, resistance to enzymatic RNase A digestion and other
conditions such as boiling, extreme pH, extended storage,
and several cycles of freeze-thaw in serum [214] as well in
plasma, is also relevant in this context [215].

4.1. Circulating miRNAs. Circulating miRNAs, also known as
extracellular miRNAs, are cellular free in nature. The origin of
circulating miRNAs, stable existence in extracellular environ-
ment, and their distinct roles, has remained elusive [193, 216].
They could be divided into two major groups, micropar-
ticles associated and microparticles nonassociated miRNAs
[217, 218]. Circulating miRNAs are exported from cells and
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are transported with microparticles such as membrane-
derived vesicles (exosomes and microvesicles), lipoproteins
(HDL), and other ribonucleoprotein complexes such as
Nucleophosmin-1 (NPM-1) and Ago2-miRNA (Figure 1) that
protect them against enzymatic degradation [193, 219].
Arroyo et al. characterized circulating miRNA complexes
in human plasma and serum. For miRNA profiling, they
quantified 88 plasma and 66 serum miRNAs by RT-qPCR and
revealed that the vesicle-associated plasma miRNAs represent
the minor fraction, whereas up to 90% of circulatory miRNAs
were present in a nonmembrane-bound form with ribonucle-
oprotein complex [217].

Importantly, there are differences in miRNAs expression
and abundance between the source, that is, serum and plasma
and/or body fluids/other components [220-222]. For exam-
ple, in the same individuals, higher miRNA concentrations
were obtained from serum samples compared to the corre-
sponding plasma samples. This difference was suggested due
to release of additional miRNAs from blood cells into serum
during the coagulation process. Plasma was suggested as
sample of choice, representing true repertoire for circulatory
miRNAs [221]. Still, concentration of circulating miRNAs in
plasma may be affected by multiple factors such as sample
processing, release by specific cells into the circulation,
and also miRNA stability [223]. Recently, miRNAs from
exosomes [77] and platelets [224] have also been explored
and have distinct expression profile [218]. For research, one
should consider in which components (body fluid types and
microparticles) circulating miRNAs are investigated.

The differential expression of tissue-specific miRNAs
in circulation has been explored as potential circulating
biomarkers for specific organ pathologies involved in lung
or heart disease, for example, skeletal muscle specific miR-
1, -499, -133, and -206 in plasma of COPD patients [94] and
cardiac specific miR-133a, -208a, and -499 in MI [154, 159,
160, 223]. Most of the miRNAs are significantly detectable in
the diseased serum or plasma samples and this thus supports
the possibility of using the expression levels of these organ-
specific circulatory miRNAs as biomarkers for site-specific
pathologies [221].

However, there are limitations and factors to be addressed
prior to application of miRNAs in diagnostic purpose. These
include optimal standardization in the approaches for obtain-
ing sample (invasive/noninvasive), source (local/systemic),
and nature (extra-cellular/cellular/tissue-based) of biological
material and minimal variability in sample collection and
its processing. Moreover, lack of data on miRNA speci-
ficity/sensitivity among different reports and its overlapping
role in different diseases also hampers its applicability.

4.2. Current Developments in miRNA Based Approaches.
The preliminary step includes quality estimation of miRNA.
Among the few possibilities, 2100 Bioanalyzer, a lab on-chip
technology from Agilent Technologies, offers both qualitative
and quantitative estimation of miRNAs. For miRNA dis-
covery, high-throughput deep sequencing (next-generation
sequencing) platforms such as HiSeq 2000/Genome Ana-
lyzer IIX/Solexa (Illumina), SOLiD (ABI), GS FLX+, or
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454 sequencing (Roche) are available [225]. Amongst these,
HiSeq 2000 solid phase technology supports massively par-
allel sequencing using a reversible terminator based method
with least error rate and is most successful and widely
adopted [226]. In the process of identification of miR-
NAs, several computational approaches have been developed
that complement the experimental analysis. These in silico
resources include MiRscam, miRSeeker, Phylogenetic shad-
owing, miRank, miRDeep, MiRanalyzer, proMiR II, mir-
abela, triplet-SVM, Vmir, RNA micro, BayesMiRNAFind,
One-ClassMirnaFind, miPred, Srnaloop, and findMiRNA
[226]. Additionally, miRandola, an extracellular circulating
miRNA database, allows users to deduce their potential
biological functions and their relation with phenotypes [227].

Most commonly used techniques for establishing miRNA
signatures in body fluids include high throughput determi-
nation of differential miRNA gene expression using miRNA
microarrays [228] and their further validation using quanti-
tative real-time PCR (qRT-PCR). However, the best approach
for absolute quantification is qRT-PCR and its two variations,
that is, stem-loop (TagMan probe based) RT-PCR [229]
and poly(A)-tailed (SYBR green based) RT-PCR [230], with
improved specificity and sensitivity for miRNA expression
analysis. Nonetheless, most published studies present con-
flicting data and have limitations in their cross-comparison
of miRNA-expression profiles due to technical variations that
include various reference genes being used to normalize the
miRNA levels measured in body fluids and differences in
blood collection (e.g., heparin contains an inhibitor of Tagq
polymerase) [231].

The optimal quantification of the target miRNAs involves
data normalization using either stable reference genes under
the study or accumulative values of the large scale miRNA-
profiling data under study. However, as reference miRNAs
(RNUS6B, 58 rRNA) are reported to vary with the sample
source and study type, former approach is suggested as
preferred due to usage of global measure [232]. The addition
of synthetic miRNAs from an unrelated organism such as
C. elegans (cel-miR-39, cel-miR-54, and cel-miR-238) during
miRNA isolation has also been proven useful for normalizing
the data obtained by qRT-PCR [215]. Cheng et al. report
plasma/serum volume as the best factor with which to
standardize the amount of input miRNA [152]. However,
studies are necessary for the identification of an accurate
normalization protocol and empirical validation of stable
endogenous control miRNAs for each type of body fluid.

For studying epigenetic modification, preliminary anal-
ysis involves methylated-DNA immunoprecipitation-chip
(MeDIP-chip), validated differential methylation loci by
bisulfate (BS) PCR and high throughput sequencing (BS-
seq). The miRNA promoters in different cell types have
been identified by genome-wide profiling of promoter asso-
ciated chromatin marks through Dnase I hypersensitivity
(DHS) mapping, chromatin immunoprecipitation (ChIP)
followed by large-scale microarray analysis (DHS/ChIP-
chip) or next-generation sequencing (DHS/ChIP-seq). DHS
mapping identifies sites of open chromatin that are accessible
to factors that influence gene expression. Active promoters
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are characterized by open chromatin regions enriched for
both the H3K4me3 and H3K79me?2 [42].

The use of miRNA as target for therapeutic tool has
remained as challenge due to its redundancy that involves
nonspecific targets. Antisense oligonucleotides primarily
work as competitive inhibitors of miRNAs by binding to the
mature miRNA strand and inducing degradation or stable
duplex formation and making it unavailable for RISC forma-
tion. The microRNA-based therapeutic approaches have been
recently summarized in several reviews [8, 197, 233]. To min-
imize the miRNA dysregulation, the low expressed miRNAs
could be restored through molecular strategies such as mimic
miRNA or adenovirus associated vectors (AAV) carrying
miRNA encoding gene. Conversely, the upregulated miRNAs
could be optimally managed through usage of antagomirs,
locked nucleic acid (LNA) anti-miR, miRNA sponge, and
miR-masks. However, the major problems complicating the
use of in vivo miRNA therapeutics appear in the phase
of tissue-specific delivery or the cellular uptake of suffi-
cient amounts of synthetic oligo to achieve sustained target
inhibition [233]. Application of antagomirs/anti-miRs in the
animal model has shown few significant promising results
(84, 130, 184, 188]. For example, Thum et al. demonstrated
inhibition of interstitial fibrosis and attenuation of cardiac
dysfunction by in vivo silencing of miR-21 through specific
antagomir in a mouse pressure-overload-induced disease
model with reduced cardiac ERK-MAP (extracellular signal-
regulated kinase-mitogen-activated protein) kinase activity
[184]. In another study, therapeutic inhibition of miR-208a
by systemic subcutaneous delivery of LNA-modified oligonu-
cleotide (anti-miR-208a) during hypertension-induced heart
failure in rat model demonstrated the potent and sustained
silencing of miR-208 in the heart with improved cardiac
function and survival [188]. Besides, later on it was demon-
strated that treatment with anti-miR-208a can result in
significant increase of another miRNA, miR-19b (8.8-fold,
P < 0.05) in the diseased group [185]. Therefore, more studies
are warranted to analyze the impact of anti-miR treatment
on the complex miRNA interaction network. Besides the
therapeutic demonstration for such molecular approaches
in animal models, challenges still remain for its application
in humans. Towards this approach, human trials have been
ongoing using locked nucleic acid approach and AAV owing
to their efficiency and minimal toxicity related to off-target
effects [233].

5. Conclusion

miRNAs play crucial role in immune system development,
maintenance, and function. miRNA dysregulation is impli-
cated in inflammatory pulmonary diseases and cardiac
remodeling. Studies of miRNAs role in disease pathomech-
anisms have been undergoing translation to diagnostic area.
In this context, two approaches to exploitation of miRNAs
as biomarkers have been emerging: (1) characterization of
the miRNA pattern typical for a given disease/condition
(i.e., expression profiling) and (2) determination of miRNAs
present in body fluids (circulating miRNA), which relative
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stability may add advantage to their potential use as biomark-
ers.

Regarding potential therapeutic applications of miRNAs,
several approaches may be used to control pathological
miRNA dysregulation. These range from the inhibition of
pathologically upregulated miRNAs by anti-miRNA oligonu-
cleotides/anatagomirs or miRNA mimics to potential deliv-
ery of a miRNA to maintain its physiological level in case
of its downregulation in a disease. However, development
of targeted therapies has remained challenging due to their
possibilities of nonspecific targets or alteration in the gene-
miRNAs and miRNA-miRNA interacting network. Addition-
ally, the epigenetic modifications along with environmental
factors as well as mutation within the seed region of miRNA
are among the major issues affecting the miRNA based
transcriptional control. Therefore, it would be imperative
to evaluate the complex regulatory circuit between miRNA,
mirSNPs, and epigenetic modifications that modulate the
expression of numerous genes in the genome. Additional
strategies, such as understanding of genes and the mechanism
regulating the miRNAs, are still needed for early detection of
disease progression for improving patient outcomes in lung
and heart diseases. Taken together, measurement of altered
miRNA expression serves as useful noninvasive approach for
the diagnosis and prognosis of respiratory and cardiovascular
disease. Further, the unique role of miRNAs should be
explored for better clinical practices towards disease manage-
ment.
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