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Abstract: The output model of a rotating accelerometer gravity gradiometer (RAGG) established by
the inertial dynamics method cannot reflect the change of signal frequency, and calibration sensitivity
and self-gradient compensation effect for the RAGG is a very important stage in the development
process that cannot be omitted. In this study, a model based on the outputs of accelerometers on
the disc of RGAA is established to calculate the gravity gradient corresponding to the distance,
through the study of the RAGG output influenced by a surrounding mass in the frequency domain.
Taking particle, sphere, and cuboid as examples, the input-output models of gravity gradiometer are
established based on the center gradient and four accelerometers, respectively. Simulation results
show that, if the scale factors of the four accelerometers on the disk are the same, the output signal of
the RAGG only contains (4k + 2)ω ( ω is the spin frequency of disc for RAGG) harmonic components,
and its amplitude is related to the orientation of the surrounding mass. Based on the results of
numerical simulation of the three models, if the surrounding mass is close to the RAGG, the input-
output models of gravity gradiometer are more accurate based on the four accelerometers. Finally,
some advantages and disadvantages of cuboid and sphere are compared and some suggestions
related to calibration and self-gradient compensation are given.

Keywords: frequency domain; gravity gradiometry; rotating accelerometer; output model

1. Introduction

Gravity gradiometry is a well-established geophysical technique that is often used
in the search for hydrocarbons. The technology measures small differences in the earth’s
gravity field associated with changes in subsurface geology. It also plays a key role in
inertial navigation, topographic map matching, and geoscience research [1–3]. The father
of the pratical gravity gradiometer was Baron Lorand von Eötvös, a Hungarian nobleman
and a physicist and engineer, who succeeded in building and deploying a working torsion
balance in the late 1890s. His device was used four independent quantities to measure the
horizontal derivatives of the vertical component of the gravity acceleration vector, and was
widely used in regional mapping for gas and oil in the early 1900s. The physics unit the
‘eotvos’ or Eu (where 1 Eu = 0.1 mGal/km = 10−9 s−2) is now standard for characterising
how sensitive different gravity gradiometers are [4,5]. However, the torsion balance was
capable of operating on land only, and it was cumbersome, slow in operation and soon
was completely abandoned to the favour of compact and fast-operation gravimeters.

Lockheed Martin Corporation (formerly Bell Aerospace) has pioneered practical
gravity gradiometry since 50 years ago, and it is the only company to provide commercial
moving-base gravity gradiometers, and until recently, broadly offered two types of gravity
gradiometer to the exploration industry: the full-tensor gravity gradiometer (FTGG) system,
which was deployed in both airborne and marine modes, and the partial-tensor gravity
gradiometer (PTGG) system, typically deployed in airborne mode only. The first-generation
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FTGG system designed in the 1980s by Ernest Metzger of Bell Aerospace during the 1970s
and 1980s for the US Navy [6,7], it is sensed by an umbrella configuration of three rotating
discs. Each disc, called a gravity gradient instrument unit (GGI), is mounted on a gyro-
stabilized platform, and four accelerometers are equally spaced and mounted around the
circumference of a rotating disc. It can measure five independent gravity derivatives and
can retrieve the whole gravity gradient tensor, the assembly of GGIs is rotated at constant
speed about a vertical axis. Brett gives a more detailed account on the workings of the
system [8,9]. The PTGG (FALCONrAGG , with 8 Bell model VII-G accelerometers) was
jointly developted by Lockheed Martin and BHP Billiton in the late 1990s, with a noise
density is 13Eu/

√
Hz, and it came into service after a two-year flight test [10,11]. Its

basic design consists of eletronically matched pairs of accelerometers, and its outputs
are differenced to produce a gravity gradient. Recently, the next-generation instrument
FALCON plus provides the highest sensitivity and best spatial resolution data, it provides
20 times better spatial resolution (150 m vs. 3000 m) and up to 10 times higher accuracy
(0.1 mGal vs. 1.0 mGal) than conventional airborne gravity.

Lockheed Martin Corporation has made several advances with respect to its gravity
gradiometer technology since 2010 [12]. A recent significant advance in technology means
that the existing generation of gravity gradiometers has been surpassed by Lockheed
Martin’s next-generation instrument called the enhanced FTG (eFTG). The eFTG is the
world’s most advanced moving-base gravity gradiometer, possessing a noise floor about
three times lower than the FTG and providing data with higher bandwidth. The eFTG
system combines the best design elements of both gradiometers, essentially comprising
three digital partial tensor discs or GGIs mounted in an FTG configuration. This means
the eFTG GGIs have eight accelerometers per GGI with a measurement baseline roughly
double that of the FTG accelerometer sepration. This also means the eFTG system has a
threefold improvement in signal-to-noise ratio (SNR) over the entire bandwidth. The initial
performance of the eFTG is 2.5–4 Eu/

√
Hz, with follow-on improvements expected over

time as the system is fielded. At the same time, a digital version of FTGG (dFTG) has been
designed, which represents a 41% volume reduction and a 32% weight reduction from
earlier analogue versions. The Lockheed Martin’s gravity gradiometry team has developed
the next generation of the full-tensor gravity gradiometer (FTG plus), its performance
goal is 0.5 Eu/

√
Hz over a pass band from 0.1 mHz to 5 Hz, representing a 20-times

improvement over FALCON plus [13].
Gravity gradiometry is an important tool for mineral and hydrocarbon exploration. Ad-

vances in technology that enable even better spatial resolution, sensitives, accuracy and noise
characteristics will make the gravity gradiometry technique even more important [14–17].
GGI is a high precision measuring instrument, which is extremely sensitive to its operat-
ing environment, so the calibration of gravity gradient is needed before airborne gravity
gradiometry can be carried out [18,19]. In the process of airborne gravity gradiometry for
the full-tensor airborne gravity gradiometer (FTAGG), the attitude of the carrier and the
fuel mass will seriously affect the accuracy of gravity gradiometry. In order to improve the
accuracy of airborne gravity gradiometry, a self-gradient compensation model has been
proposed for FTAGG [20].

However, the methods mentioned above must be based on accurate mathematical
model. A good and accurate mathematical model can achieve twice the result with half the
effort. Through the previous analysis, it can be concluded that the output model of gravity
gradiometer established by the inertial dynamics method cannot reflect the change of signal
frequency. In this paper, we set up an accurate input-output mathematical model of RAGG
using frequency domain methods. Taking particle, sphere, and cuboid as examples, the
input-output models of gravity gradiometer are established respectively. Simulation results
show that the output signal of the accelerometer contains higher harmonics components
which are the times of the rotating frequency of the disk. The amplitude of the higher
harmonic component in the output signal of the gravity gradiometer is related to the
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consistency of the scale factor of the accelerometer. These conclusions can provide a
theoretical basis for the measurement and improvement of the gravity gradiometer.

2. Basic Working Principle of RAGG

Four high precision accelerometers (A1 to A4) are symmetrically mounted around
the circumference of a slow rotating disk. The directions of the sensitive axes of the
accelerometers are indicated by a small black arrows, and the sensitive axes of the two
adjacent accelerometers are orthogonal to each other, which can eliminate the effect of the
host vehicle acceleration. The disc is driven by a high precision motor, which is rotated
at constant speed (angular rate ω) about a vertical axis. The working principle schematic
diagram for RAGG is shown as Figure 1. We choose the Earth-Centered-Inertial coordinate
system and Navigation frame (East-North-Up) coordinate system as the intertial frame
(i-frame) and RAGG frame (g-frame), respectively. According to the principle of inertial
dynamics, the sensed specific force measured by an accelerometer on the RAGG is:
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Figure 1. Working principle schematic diagram for the rotating accelerometer gravity gradiometer
(RAGG).

ag = r̈g
ig − gg

o + 2Ωg
ig ṙg + (Ωg

igΩg
ig + Ω̇g

ig − Γ) · rg ; (1)

where rg
ig is the position vector from the origin of the intertial frame to the center of the

RAGG, r̈g
ig is the kinematic acceleration, rg is the position from the origin of the RAGG

center to a accelerometer, gg
o is the gravity acceleration vector at the center of the RAGG,

Ωg
ig is the skew symmetric matrix of the angular velocity ω

g
ig = (ωx, ωy, ωz)T from the

g-frame to the i-frame, and the Ω̇g
ig is the corresponding angular acceleration, all with

coordinates in the g-frame, Γ is the gravitational gradient tensor at the center of the RAGG.
For the sake of analysis, assuming that the accelerometers on the disc are rigidly fixed at a
specified baseline so that ṙg = 0. The r̈g

ig, gg
o and ω̇

g
ig are given by


r̈g

ig = ag
o = (aox, aoy, aoz)T

gg
o = (gox, goy, goz)T

ω̇
g
ig = (ω̇x, ω̇y, ω̇z)T

. (2)

We can calculate the signal of the jth accelerometer(j = 1,2,3,4) at the direction of the
sensitive axis of the corresponding accelerometer by:
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aj = K j
I

[
ag

o − gg
o + (Ωg

igΩg
ig + Ω̇g

ig − Γ) · rg
j )

]T

· τj ; (3)

where K j
I is the scale factor of the jth accelerometer, its unit is mA/g (g is the gravity

acceleration), τj is the uint vector at the direction of the sensitive axis of the jth accelerometer
Aj on the disc. For the RAGG is mounted on a threegimbal stabilized platform, the
ωx ≈ 0, ωy ≈ 0, so that (Ωg

igΩg
ig · r

g
j )

T · τj ≈ 0, the output signal expression of the
accelerometer on the rotating disc can be derived [21]. The output signal of the jth
accelerometer could be expressed as follows:

aj = K j
I

[
R
2
(Γyy − Γxx)sin2(ωt +

(j− 1)π
2

) + ω̇R + RΓxycos2(ωt +
(j− 1)π

2
)+

(aoy − goy)cos(ωt +
(j− 1)π

2
)− (aox − gox)sin(ωt +

(j− 1)π
2

)

] ; (4)

where R and ω̇ are the radius, the rotation angular acceleration (ω̇z) of the disc,
respectively. Assuming that the gain of the summing amplifier is 1, then the two summed
output signal expressions of the opposing pairs of accelerometers (A1 and A3, A2 and A4)
are as follows:


V13 = ∆K13

I

[
(aoy − goy)cosωt− (aox − gox)sinωt

]
+ ΣK13

I R
[

1
2 (Γyy − Γxx)sin2ωt + Γxycos2ωt + ω̇

]
V24 = −∆K24

I

[
(goy − aoy)sinωt + (aox − gox)cosωt

]
− ΣK24

I R
[

1
2 (Γyy − Γxx)sin2ωt + Γxycos2ωt− ω̇

] ; (5)

where ∆Kmn
I and ΣKmn

I , respectively, demote Km
I − Kn

I and Km
I + Kn

I . Assuming the
gain of the subtraction amplifier is 1, then the output signal expression of the RAGG is
as follows:

Eout = V13 −V24

=

[
∆K13

I (aoy − goy) + ∆K24
I (aox − gox)

]
cosωt−

[
∆K13

I (aox − gox) + ∆K24
I (aoy − goy)

]
sinωt+

ΣK1234
I R

[
1
2
(Γyy − Γxx)sin2ωt + Γxycos2ωt

]
+ (ΣK13

I − ΣK24
I )ω̇

; (6)

where ΣK1234
I denotes K1

I + K2
I + K3

I + K4
I . From Equation (6), the inline gravity

gradient component ( Γyy − Γxx) and the cross gravity gradient component Γxy are coupled
to the accelerometer scale factor ( ΣK1234

I ). We should note that on the one hand, if ΣK13
I 6=

ΣK24
I , and the angular acceleration ω̇ contains 2ω signal component. On the other hand,

if ∆K13
I 6= 0 or ∆K24

I 6= 0, and the kinematic acceleration aox or aoy contains fundamental
frequency ω then both of the above-mentioned conditions will affect the accuracy of gravity
gradient measurement. In order to eliminate the influence of kinematic acceleration and
angular acceleration on gravity gradient measurement, the most effective way is to keep
the four accelerometer scale factors consistent [22]. Assuming that the four accelerometers
have the same scale factor ( K1

I = K2
I = K3

I = K4
I = KI), the output signal expression of the

RAGG can be expressed by:

Eout = 4KI R
[

1
2
(Γyy − Γxx)sin2ωt + Γxycos2ωt]

]
. (7)
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From Equation (7), the inline gravity gradient component (Γyy − Γxx) and the cross
gravity gradient component Γxy can be modulated at the sin2ωt and cos2ωt indivdually.
Equation (7) seems to give the principle of gravity gradient measurement very well, but
only the first term of Taylor expansion of the acceleration component is used to calculate
the gravity of accelerometer. Thus, Equation (7) is the approximate output expression
of RAGG. If the four accelerometer scale factors are inconsistent, does the output signal
for RAGG only contain frequency ω and 2ω? Does the output signal for RAGG have an
explicit expression? These questions will be answered below.

3. Frequency Domain Analysis for RAGG
3.1. Output Signal of Accelerometer for RAGG

In order to facilitate the analysis, it is assumed that there exists a particle P with
mass M outside the RAGG, as shown in Figure 2. According to the law of the universal
gravitation, the particle with mass M distorts the gravitational field around it, and the
change of gravity field will be sensitized by the accelerometer on the RAGG. By combining
the output signals of four accelerometers and analyzing the combined signals, the output
signal model of the RAGG is obtained.

ω

1


1r


( , , )P x y z

A1

A2

A4

A3
tO

Figure 2. Schematic diagram for the particle act on the RAGG.

According to the Newton’s Laws of Motion and the universal gravitation, the output
signals at the direction of the sensitive axis of the four accelerometers can be calculated as
follows:

ap
j = −

GMK j
I

g
∣∣∣−→PAj

∣∣∣3
−→
PAj · τj . (8)

where G is the gravitational constant, M is the particle mass, g is the gravity acceleration,
−→
PAj is the position vertor from the particle mass to the accelerometer Aj. According to
vector theory, we get

−→
PAj =

−−→
OAj −

−→
OP

=

Rcos(ωt + (j−1)π
2 )

Rsin(ωt + (j−1)π
2 )

0


T

−

x
y
z

T

=

Rcosωjt− x
Rsinωjt− y
−z

T
. (9)

where ωjt denotes ωt + (j−1)π
2 , substituting Equation (9) into Equation (8) yields
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ap
j = −

GMK j
I

g
∣∣∣−→PAj

∣∣∣3
−→
PAj · τj = −

GMK j
I

Rcosωjt− x
Rsinωjt− y
−z

T-sinωjt
cosωjt

0


g
[
R2 + x2 + y2 + z2 − 2R(xcosωjt + ysinωjt)

]3/2

= −
GMK j

I(xsinωjt− ycosωjt)

g
[
R2 + x2 + y2 + z2 − 2R(xcosωjt + ysinωjt)

]3/2

. (10)

Assuming that the R = 0.1 m, ω = 0.5π rad/s, M = 486 kg, K1
I = K2

I = K3
I = K4

I =
KI = 10 mA/g, the position of the point P is (0.8, 0.1, 0)m, substituting these parameters
into Equation (10) yields the output signals of four accelerometers, and the spectrum
analysis of the output signal is carried out. Time-domain waveform and spectrum of
accelerometer A1 are shown in Figure 3a,b, respectively. As shown in Figure 3b, the output
signal of accelerometer will include not only fundamental frequency ω, but also the higher-
order harmonic components of the spin frequency ω, and the harmonic frequency is an
integral multiple of the spin frequency ω, whose amplitude varies in a linear logarithmic.
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Figure 3. Output signal of accelerometer A1. (a) Time-domain waveform of accelerometer A1.
(b) Spectrum of accelerometer A1.

3.2. Output Signal Frequency Domain Expansion of Accelerometer for RAGG

In order to facilitate the analysis, simplifying Equation (10) yields
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ap
j = −

GMK j
I/g
√

x2 + y2 sin(ωjt− θ)[
R2 + x2 + y2 + z2 − 2R

√
x2 + y2 cos(ωjt− θ)

]3/2 ; (11)

where θ is the azimuth of the particle. Let

Ac =
GM

√
x2 + y2

(R2 + x2 + y2 + z2)3/2 , Bc =
2R
√

x2 + y2

R2 + x2 + y2 + z2 .

Substituting Ac and Bc into Equation (11), we get

ap
j = −K j

I/gAc sin(ωjt− θ)
[
1− Bc cos(ωjt− θ)

]−3/2 . (12)

It should be noted that the detection object is usually outside the gravity gradiometer,
so the distance from the particle to the center of RAGG must be larger than the radius of
the disc of RAGG, that is, x2 + y2 + z2 > R2; therefore, we obtain the following:

2R
√

x2 + y2

R2 + x2 + y2 + z2 <

√
x2 + y2

R
< 1. (13)

From Equation (13), we get 0 < Bc < 1, so, used the power series expanding formula
to the Equation (12), we obtain the following:

ap
j = −K j

I/gAc sin(ωjt− θ)P(t) ; (14)

where P(t) = 1 +
∞
∑

n=1

2n+1
22n Cn

2nBncosn(ωjt − θ), used the power multiplier formula of

trigonometric function cos2n(ωt) = 1
22n−1

[
n−1
∑

i=0
Cj

2nBncos[(2n− 2j)ωt] + Cn
2n
2

]
, simplifying

Equation (14) yields

ap
j = −K j

I/gAc

∞

∑
k=0

{
So(k)sin[(2k + 1)(ωjt− θ)] + Se(k)sin[(2k + 2)(ωjt− θ)]

}
; (15)

where So(k) and Se(k) are the odd and even order frequency coefficients, respectively. They
are given by



So(k) =
∞

∑
m=k

(4m + 1)(2k + 1)C2m
4mCm−k

2m B2m
c

26m(m + k + 1)

Se(k) =
∞

∑
m=k

(4m + 1)(4m + 3)(k + 1)C2m
4mCm−k

2m B2m+1
c

26m+1(m + k + 2)(m + k + 1)

; (16)

where the k = 0,1,2,. . . , the Equation (15) is the output signal frequency domain expansion
of accelerometer for RAGG. From Equation (15), we can easily get that the accelerometer
output signal contains integer multiple of spin frequency ω. The results are consistent with
the frequency distribution of the Figure 3. The value of the frequency coefficients So(k) and
Se(k) is directly related to the distance from the particle to the center of the RAGG.
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3.3. Output Signal Frequency Domain Expression of RAGG

The two summed output signal expressions of the opposing pairs of accelerometers
(A1 and A3, A2 and A4) are as follows:

Vp
13 = ∆K13

I /gAc
∞
∑

k=0
So(k)sin[(2k + 1)(ωt− θ)]− ΣK13

I /gAc
∞
∑

k=0
Se(k)sin[(2k + 2)(ωt− θ)]

Vp
24 = −∆K24

I /gAc(−1)k
∞
∑

k=0
So(k)cos[(2k + 1)(ωt− θ)] + ΣK24

I /gAc(−1)k
∞
∑

k=0
Se(k)sin[(2k + 2)(ωt− θ)]

. (17)

We calculate the difference of Vp
13 and Vp

24 by the following:

Ep
out = Vp

13 −Vp
24

= ∆K13
I /gAc

∞

∑
k=0

So(k)sin[(2k + 1)(ωt− θ)] + ∆K24
I /gAc(−1)k

∞

∑
k=0

So(k)cos[(2k + 1)(ωt− θ)]−

Ac/gΣK1234
Ik

∞

∑
k=0

Se(k)sin[(2k + 2)(ωt− θ)]

. (18)

where ΣK1234
Ik demotes ΣK13

I + (−1)kΣK24
I , the Equation (18) is the output signal

frequency domain expansion of the RAGG. Let k = 0, the output signal of the RAGG
will include only the frequency ω and 2ω, then, we get the Equation (18) is simlar to the
Equation (6). Amplitude of the odd order frequency coefficients is in inverse proportion
to the consistency of the accelerometer scale factors. If ∆K13

I = 0 and ∆K24
I = 0, then the

odd order harmonic signals can be eliminated, leaving only even harmonic components,
and the frequency components of the output signal for the RAGG is (2k + 2)ω, (k =
0, 1, 2, . . . ). Assuming am is the general term of frequency coefficient So(k), that is, am =
(4m+1)(2k+1)C2m

4m Cm−k
2m B2m

c
26m(m+k+1) , and calculating lim

m→∞
am+1

am
, we get

lim
m→∞

am+1

am
= lim

m→∞

(4(m+1)+1)(2k+1)C2(m+1)
4(m+1)C(m+1)−k

2(m+1) B2(m+1)
c

26(m+1)((m+1)+k+1)

(4m+1)(2k+1)C2m
4m Cm−k

2m B2m
c

26m(m+k+1)

= B2
c < 1 . (19)

From Equation (19), based on the theory of the Infinite series convergence, we get
the limit of the frequency component So(k) exists, which is a constant value. From
Equation (18), let k is even, and ∆K13

I = 0 , ∆K24
I = 0, then ΣK1234

Ik = 4KI , the frequency
components of the output signal for the RAGG is (4k + 2)ω, frequency domain expression
of the output signal for RAGG is as follows:

Ep
out = −4AcKI/g

∞

∑
k=0

Se(k)sin
[
(4k + 2)(ωt− θ)

]
. (20)

From Equation (20), the output signal of the RAGG will include only the even-order
harmonic components of the spin frequency ω, that is (4k + 2)ω, especially when k = 0,
the magnitude of Equation (20) reflects the magnitude of gravity gradient. The inline
gravity gradient component (Γyy − Γxx) and the cross gravity gradient component Γxy can
be extracted by demodulation, with reference signals of sin2ωt and cos2ωt, respectively.

4. Gravity Gradient Signal Model of the RAGG

An accurate gravity gradient signal model is needed to verify the performance index
or calibrate the gravity gradient for the RAGG. In this section, the signal models of the
RAGG are established by taking particle and cuboid as examples.
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4.1. Particle as Surrounding Mass

As shown in Figure 2, according to the Newton’s Laws of Motion and the universal
gravitation, the expressions of the gravity gradient component of the particle P to the center
of the RAGG are as follows:

Γxx
∣∣
PC =

3GMx2

(x2 + y2 + z2)5/2 −
GM

(x2 + y2 + z2)3/2

Γyy
∣∣
PC =

3GMy2

(x2 + y2 + z2)5/2 −
GM

(x2 + y2 + z2)3/2

Γxy
∣∣
PC =

3GMxy
(x2 + y2 + z2)5/2

. (21)

For the partial tensor Gravity-Gradiometer, it can only measure gravity gradient
information (Γyy − Γxx) and Γxy, respectively. The combined gravity gradient components
can be represented as 

(Γyy − Γxx)
∣∣
PC =

3GM(y2 − x2)

(x2 + y2 + z2)5/2

Γxy
∣∣
PC =

3GMxy
(x2 + y2 + z2)5/2

. (22)

The Equation (22) is the gravity gradient input-output signal model of the RAGG based
on the center of the disc for the particle. According to Equation (20), if k = 0, simplifying
Equation (20) yields

Ep
out
∣∣
k=0 = −4AcKI/gSe(0)cos2θsin2ωt + 4AcKI/gSe(0)sin2θcos2ωt . (23)

By demodulating at the sin2ω and cos2ω individually to the Equation (23), gravity-
gradient components based on the accelerometer of the RAGG can be calculated as

(Γyy − Γxx)
∣∣
PA = −2AcSe(0)cos2θ

gR

Γxy
∣∣
PA =

AcSe(0)sin2θ

gR

. (24)

where (Γyy− Γxx)
∣∣
PA and Γxy

∣∣
PA denote the actual gravity-gradient components (Γyy− Γxx)

and Γxy for the RAGG, respectively. The Equation (24) should be rewritten as

(Γyy − Γxx)
∣∣
PA = −GMPc

[
3 + 4

∞

∑
m=1

Qc(m)
]
cos2θ

Γxy
∣∣
PA = GMPc

[3
2
+ 2

∞

∑
m=1

Qc(m)
]
sin2θ

. (25)

where Pc, Qc(m) are given:
Pc = −

(x2 + y2)

(R2 + x2 + y2 + z2)5/2

Qc(m) =
(4m + 1)(4m + 3)C2m

4mCm
2mR2m(x2 + y2)m

24m−1(m + 2)(m + 1)(R2 + x2 + y2 + z2)2m

. (26)

The Equation (26) is the gravity gradient signal model of the RAGG based on the
accelerometers for the particle. According to the relationship between the azimuth angle of
the particle P and its coordinates, there exists the following triangular relation
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sin2θ =
2xy

x2 + y2 , cos2θ =
x2 − y2

x2 + y2 . (27)

Substituting Equation (27) into Equation (22), the Equation (22) can be rewritten as
(Γyy − Γxx)

∣∣
PC = −3GMFccos2θ

Γxy
∣∣
PC =

3GMFc

2
sin2θ

. (28)

where Fc is given:

Fc =
(x2 + y2)

(x2 + y2 + z2)5/2
. (29)

Comparing Equation (25) and Equation (28), when the distance from the particle
to the center of the RAGG is much larger than the radius of the RAGG, that is, when
x2 + y2 + z2 � R2 is satisfied, Equation (25) can be written as

(Γyy − Γxx)
∣∣
PA ≈ −

3GM(x2 + y2)cos2θ

(R2 + x2 + y2 + z2)5/2 ≈ (Γyy − Γxx)
∣∣
PC

Γxy
∣∣
PA ≈

3GM(x2 + y2)sin2θ

2(R2 + x2 + y2 + z2)5/2 ≈ Γxy
∣∣
PC

. (30)

From Equation (25), Equation (28), we can get that the gravity gradient calculated by
Equation (25) is more accurate than Equation (28) when the center of environmental mass is
close to the center of the RAGG. In order to compare the difference between the two models
intuitively, we simulate the two models. The simulation parameters refer to Section 3.1.
The simulation results are shown in Figure 4. The blue solid line and the red dashed line
in Figure 4a indicates the real gravity-gradient of RAGG calculated by Equation (25) and
center gravity-gradient calculated by Equation (28), respectively. The results calculated by
the two models are not equal, mainly because of the distance from the accelerometer to
the center of the RAGG. Figure 4b indicates the calculation error between the two models.
From Figure 4b, as the distance between the particle and the center of the GGI decreases,
the error between the two models becomes larger and larger. When the distance is 0.3 m,
the calculation error between the two models exceeds 100 Eu. Considering the installation
of accelerometer, the distance cannot be zero. Moreover, reducing the radius of the GGI
will reduce the SNR of gravity gradient signal. For example, the radius of the RAGG used
in FTG system by Lockheed Martin Company was 0.1 m in the early stage. Later, the
radius of the GGI on FALCONrAGG system of partial tensor airborne gravity gradiometer
developed in cooperation with BHP was changed to 0.2 m. After testing, it was found that
the noise of FALCONrAGG system was greatly reduced, and the exploration precision of
FALCONrAGG system was better than that of FTG system. The selection of disk radius
should be based on the actual application. In summary, when the surrounding masses are
close to the center of RAGG, Equation (28) will lead to large calculation errors; it cannot
accurately describe the input-output relationship of the RAGG. Thus, the gravity gradient
calculated by Equation (25) is more accurate.
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Figure 4. Gravity-gradient of the two models based on the particle. (a) The relationship between the
calculated results of the two models and the distance. (b) The relationship between the calculated
results error of the two models and the distance.

4.2. Cuboid as Surrounding Mass

The width, depth, and height of the cuboid are denoted by w, d and h, respectively, the
density of the cuboid is denoted by ρ, the centroid coordinate of the cuboid is Q(W, D, H),
and the coordinate of any point in the cuboid is P(x, y, z), as shown in Figure 5.

ω

x

yz

O

1


A1

A2

A4

A3

t

P(x,y,z)

Q(W,D,H)

w
d

h

Figure 5. Schematic diagram for the cuboid act on the RAGG.
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According to the expressions of the triangular relation of position and azimuth
Equation (27), the expressions of the gravity gradient component of the cuboid to the
center of the RAGG are as follows:

(Γyy − Γxx)
∣∣
CC = −3Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

Fccos2θdz

Γxy
∣∣
CC = 3Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

Fcsin2θ

2
dz

. (31)

From the gravity gradient signal model Equation (25) of the RAGG for the particle, it
is easy to obtain the result that the gravity gradient component Γyy − Γxx and Γxy under
the influence of the cuboid yields:

(Γyy − Γxx)
∣∣
CA = −Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

Pc
[
3 + 4

∞

∑
m=1

Qc(m)
]
cos2θdz

Γxy
∣∣
CA = Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

Pc
[3

2
+ 2

∞

∑
m=1

Qc(m)
]
sin2θdz

. (32)

The Equation (32) is the gravity gradient signal model of the RAGG based on the
accelerometers for the cuboid. Comparing Equation (31) and Equation (32), when the
distance from the cuboid to the center of the RAGG is much larger than the radius of the
RAGG. That is, when x2 + y2 + z2 � R2 is satisfied, Equation (32) can be written as

(Γyy − Γxx)
∣∣
CA ≈ −3Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

(x2 + y2)cos2θ

(R2 + x2 + y2 + z2)5/2 dz ≈ (Γyy − Γxx)
∣∣
PC

Γxy
∣∣
CA = 3Gρ

∫ W+ w
2

W− w
2

dx
∫ D+ d

2

D− d
2

dy
∫ H+ h

2

H− h
2

(x2 + y2)sin2θ

2(R2 + x2 + y2 + z2)5/2 dz ≈ Γxy
∣∣
PC

. (33)

From Equation (31), Equation (32), we can get that the gravity gradient calculated
by Equation (32) is more accurate than Equation (31) when the center of environmental
mass is close to the center of the RAGG. In order to compare the difference between the
two models intuitively, we simulate the two models. Assuming that w = d = h = 0.3 m,
D = 0.1 m, H = 0 m, R = 0.1 m, ω = 0.5π rad/s, ρ = 18, 000 kg/m3. When the cuboid
moves along the x-axis, the simulation results of the two models are shown in Figure 6. The
blue solid line and the red dashed line in Figure 6a indicates the real gravity-gradient of
RAGG calculated by Equation (32) and center gravity-gradient calculated by Equation (31),
respectively. The results calculated by the two models are not equal, mainly because of
the distance from the accelerometer to the center of the RAGG. Figure 6b indicates the
calculation error between the two models. From Figure 6b, as the distance between the
cuboid and the center of the RAGG decreases, the error between the two models becomes
larger and larger. When the distance is 0.3 m, the calculation error between the two models
exceeds 60 Eu.
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Figure 6. Gravity-gradient of the two models based on the cuboid. (a) The relationship between the
calculated results of the two models and the distance. (b) The relationship between the calculated
results error of the two models and the distance.

4.3. Sphere as Surrounding Mass

To avoid confusion with the disc radius R, assuming that the radius of sphere is R0,
the density of the cuboid is denoted by ρ, the centroid location of the cuboid is Q(x0, y0, z0),
and the location of any point in the cuboid is P(x, y, z), as shown in Figure 7. According to
the calculation formula of sphere volume, and the expressions of the triangular relation of
position and azimuth Equation (27), the expressions of the gravity gradient component of
the sphere to the center of the RAGG are as follows:

(Γyy − Γxx)
∣∣
SC = −3Gρ

∫ R0

0
r2dr

∫ π

0
sinϕdϕ

∫ 2π

0
Fccos2θdφ

Γxy
∣∣
SC = 3Gρ

∫ R0

0
r2dr

∫ π

0
sinϕdϕ

∫ 2π

0

Fcsin2θ

2
dφ

. (34)

The location for the point P(x, y, z) can be expressed by the spherical coordinate
position P(r, ϕ, φ) as follows: 

x = rsinϕcosφ + x0

y = rsinϕsinφ + y0

z = rcosϕ + z0

. (35)

Using the previous method, the gravity gradient component Γyy − Γxx and Γxy under
the influence of the sphere can be expressed as:
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
(Γyy − Γxx)

∣∣
SA = −Gρ

∫ R0

0
r2dr

∫ π

0
sinϕdϕ

∫ 2π

0
Pc
[
3 + 4

∞

∑
m=1

Qc(m)
]
cos2θdφ

Γxy
∣∣
SA = Gρ

∫ R0

0
r2dr

∫ π

0
sinϕdϕ

∫ 2π

0
Pc
[3

2
+ 2

∞

∑
m=1

Qc(m)
]
sin2θdφ

. (36)

The Equation (36) is the gravity gradient signal model of the RAGG based on the
accelerometers for the sphere. Comparing Equation (34) and Equation (36), when the
distance from the sphere to the center of the RAGG is much larger than the radius of the
RAGG, that is, when x2 + y2 + z2 � R2 is satisfied, Equation (36) can be written as{

(Γyy − Γxx)
∣∣
SA ≈ (Γyy − Γxx)

∣∣
SC ≈ (Γyy − Γxx)

∣∣
PC

Γxy
∣∣
SA ≈ Γxy

∣∣
SC ≈ Γxy

∣∣
PC

. (37)

ω

x

yz

O A1

A3

A4

A2

t

1




0 0 0( , , )Q x y z r

P(x,y,z)

Figure 7. Schematic diagram for the sphere act on the RAGG.

From Equation (34), Equation (36), we can get that the gravity gradient calculated
by Equation (36) is more accurate than Equation (34) when the center of environmental
mass is close to the center of the RAGG. In order to compare the difference between the
two models intuitively, we simulate the two models. Assuming that y0 = 0.1 m, z0 = 0 m,
R = 0.1 m, ω = 0.5π rad/s, ρ = 18, 000 kg/m3, M = 486 kg (the wight of the sphere),
R0 =

3√3M/(4ρπ). When the sphere moves along the x-axis, the simulation results of
the two models are shown in Figure 8. The blue solid line and the red dashed line in
Figure 8a indicates the real gravity-gradient of RAGG calculated by Equation (36) and
center gravity-gradient calculated by Equation (34), respectively. The results calculated by
the two models are not equal, mainly because of the distance from the accelerometer to the
center of the RAGG. Figure 8b indicates that the calculation error between the two models.
From Figure 8b, as the distance between the sphere and the center of the RAGG decreases,
the error between the two models becomes larger and larger. When the distance is close to
0.3 m, the calculation error between the two models exceeds 60 Eu.
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Figure 8. Gravity-gradient of the two models based on the sphere. (a) The relationship between the
calculated results of the two models and the distance. (b) The relationship between the calculated
results error of the two models and the distance.

Finally, we examine the real-gravity gradient for the RAGG caused by the particle,
cuboid, and sphere which are the same mass. The simulation parameters of the mod-
els (Equations (25), (32) and (36) of the particle, cuboid and sphere can be refer to the
Sections 3.1, 4.2 and 4.3, respectively. The simulation results of the three models are shown
in Figure 9. The blue solid line, red dashed line and black dash-dotted line in Figure 9a in-
dicates the real gravity-gradient of RAGG calculated by Equation (32) based on the cuboid,
Equation (25) based on the particle and Equation (36) based on the sphere, respectively.
The results calculated by the three models are not equal, mainly because of the shape of
the surrounding masses. Figure 9b indicates that the calculation error between the cuboid
and the particle. From Figure 9b, as the distance between the surrounding masses and the
center of the RAGG decreases, the error between the two models becomes larger and larger.
When the distance is 0.3 m, the calculation error between the two models exceeds 100 Eu.
The model’s calculation error between the sphere and the particle is smaller than that
between the cuboid and the particle. Figure 9c indicates that the calculation error between
the sphere and the particle. From Figure 9c, as the distance between the surrounding
masses and the center of the RAGG decreases, the error between the two models does not
change much. When the distance is greater than 0.32 m, the calculation error between the
two models is within 1 Eu. From the above analysis, it can be concluded that the calculation
accuracy of the model is related to the shape of the detected object. Compared with the
cuboid, the calculation error caused by the sphere is smaller. In addition, under the same
quality, the larger the volume, the greater the calculation error, the stronger the nonlinearity
between the center of the detected object and the gravity gradient.
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Figure 9. Real-gravity gradient for the RAGG caused by the particle and the cuboid which are the
same mass. (a) The relationship between the real-gravity gradient for the RAGG caused by the
particle and the cuboid and the distance. (b) The relationship between the Real-gravity gradient error
for the RAGG caused by the particle and the cuboid and the distance. (c) The relationship between
the Real-gravity gradient error for the RAGG caused by the particle and the sphere and the distance.

5. Conclusions

The output signal frequency domain expression of the single accelerometer and the
summed output signal domain expression of the opposing pairs of accelerometers were
analyzed, the laws and the frequency domatin components of the total output signal for
the RAGG were studied, and the output signal of the RAGG included only the even-order
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harmonic components (4k + 2)ω. Prior to the gravity gradiometer testing or commercial
use, gravity gradient instrument calibration is required, and accurate input and output
models are required for calibration. Therefore, in this paper, in order to facilitate future
engineering tests, we present a gravity gradient input and output model based on the
particle and cuboid for the RAGG, respectively. The simulation results show that the error
between the two models gradually increases with the decrease of the distance from the
surrounding masses to the center of the RAGG. At the same distance, the error between
the two models is related to the shape of the surrounding masses, material, and other
parameters. When the mass of the surrounding masses are the same, the smaller the
distance from the center of the RAGG, the larger the gradient error caused. At this time, the
influence of the radius of the RAGG cannot be ignored. Therefore, when the surrounding
masses are close to GGI, the input-output model of the RAGG center is inaccurate.

Because the cuboid is easy to process and place, the cuboid is often used as a gravity
gradient effect detection device. In the gravity gradient effect test or gravity gradient
calibration experiment, first of all, it is necessary to select the appropriate shape of the
object to be detected, and then choose the appropriate size and material according to the
output range and calibration accuracy of the gradiometer. Finally, the relationship between
the distance and the output of a specific detection object can be accurately calculated by
the input-output model of the RAGG based on the accelerometers.
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