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Abstract

Motivation: In recent years, the massively parallel cDNA sequencing (RNA-Seq) technologies have

become a powerful tool to provide high resolution measurement of expression and high sensitivity

in detecting low abundance transcripts. However, RNA-seq data requires a huge amount of compu-

tational efforts. The very fundamental and critical step is to align each sequence fragment against

the reference genome. Various de novo spliced RNA aligners have been developed in recent years.

Though these aligners can handle spliced alignment and detect splice junctions, some challenges

still remain to be solved. With the advances in sequencing technologies and the ongoing collection

of sequencing data in the ENCODE project, more efficient alignment algorithms are highly de-

manded. Most read mappers follow the conventional seed-and-extend strategy to deal with inexact

matches for sequence alignment. However, the extension is much more time consuming than the

seeding step.

Results: We proposed a novel RNA-seq de novo mapping algorithm, call DART, which adopts a

partitioning strategy to avoid the extension step. The experiment results on synthetic datasets and

real NGS datasets showed that DART is a highly efficient aligner that yields the highest or compar-

able sensitivity and accuracy compared to most state-of-the-art aligners, and more importantly, it

spends the least amount of time among the selected aligners.

Availability and implementation: https://github.com/hsinnan75/DART

Contact: hsu@iis.sinica.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptome analysis is the genome-wide study of gene structures

and activities. It involves the identification of novel transcripts and

the quantification of gene expression. DNA microarray technique is

a very popular approach to study gene expression levels. However,

the probe-target hybridization limits the accuracy of expression

measurements, and it also limits to study only those genes for which

probes are designed (Zhao et al., 2014). With the emergence of the

next generation sequencing (NGS) platforms in recent years, the

massively parallel cDNA sequencing (RNA-Seq) technologies have

become another powerful tool to provide high resolution measure-

ment of expression and high sensitivity in detecting low abundance

transcripts. RNA-Seq does not require prior gene annotation and

therefore is able to study unknown transcripts. Recent studies have

showed that RNA-Seq demonstrates superior benefits over micro-

array in transcriptome profiling, though DNA microarrays are irre-

placeable and they are still widely used when conducting

transcriptional profiling experiments (Fu et al., 2009; Sirbu et al.,

2012; Zhao et al., 2014). One of the major reasons is that RNA-Seq

data analysis is much more complicated. It requires a huge amount

of computational efforts. A typical human RNA-Sequencing experi-

ment can generate up to billions of short sequence fragments. The

very fundamental and critical step in the RNA-Seq analysis is to

align each sequence fragment (or read) against a reference genome,

followed by quantification of genes and identification of differen-

tially expressed genes (Garber et al., 2011).
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The alignment of a short read for DNA-resequencing or RNA-

Seq against a reference genome is to identify the coordinate where

the read originates. However, the task of RNA-Seq alignment is

more challenging than that of conventional DNA-sequencing align-

ment. Although both types of alignments contain mismatches, inser-

tions and deletions due to genomic variations and sequencing errors,

the mature mRNA transcripts in eukaryotes are modified and they

do not include intragenic regions (or introns) in the gene sequences.

Thus a spliced RNA spans one or more introns and concatenate ad-

jacent or distant exons, which may result in the alignment not con-

tiguous and separated by large gaps. Though some RNA-Seq

mappers, such as Erange (Mortazavi et al., 2008), OSA (Hu et al.,

2012), SpliceSeq (Ryan et al., 2012), etc.) align reads against a tran-

scriptome to avoid introns in the reference, the gene annotation is

incomplete for most of the studied organisms. Alignments based on

the transcriptome would be biased toward known transcripts.

Therefore, de novo spliced RNA aligners are more preferable to ana-

lyze RNA-Seq reads for detecting novel splice junctions.

Various de novo spliced RNA aligners have been developed in re-

cent years, which include QPALMA (De Bona et al., 2008), TopHat

(Trapnell et al., 2009), GSNAP (Wu and Nacu, 2010) (and

GSTRUCT is its successive version), PALMapper (Jean et al., 2010),

MapSplice (Wang et al., 2010), RUM(Grant et al., 2011), GEM

(Marco-Sola et al., 2012), STAR(Dobin et al., 2013), TopHat2

(Kim et al., 2013), HISAT (Kim et al., 2015) and Subread (Liao

et al., 2013). In summary, most of the short read aligners basically

adopt the seed-and-extend strategy (Li and Homer, 2010), which is

sequential in nature and takes much longer time on the extension

step for dealing with mismatches. In the seeding step, aligners use ei-

ther a hash table or a suffix array (SA)/Burrows Wheeler Transform

(BWT) index (Wheeler, 1994) to perform seed exploration. A hash

table based aligner uses all the subsequences of k-mers to obtain oc-

currence locations. In contrast, a SA/BWT based aligner finds the

maximal exact matches (MEM) between the read sequence and the

reference genome. An MEM is the maximal exact match between

two sequences, which cannot be extended further without allowing

mismatches. MEMs have been widely used as seeds for whole gen-

ome alignment and NGS read alignment (Choi et al., 2005; Li and

Durbin, 2009; Liu and Schmidt, 2012). In the extension step, a dy-

namic programming algorithm or combined with a heuristic algo-

rithm are often used to deal with mismatches or indels in the read

alignments.

An exonic read is a read that can be aligned completely within

the corresponding exon and its alignment against the reference gen-

ome is relatively straightforward. In contrast, the more challenging

task in RNA-Seq alignment is to deal with the reads that span one or

more introns. They are referred to as spanned reads in this article.

Many above-mentioned RNA-Seq aligners adopt similar strategy to

handle spanned reads. A spanned read is split into appropriate frag-

ments and each fragment can be aligned contiguously to a reference

genome, and all the desirable sub-alignments within appropriate in-

tron sizes are merged to form the complete alignment. However,

these aligners differ in how they handle splice junction alignment.

QPALMA used Support Vector Machines (SVMs) to learn splice

junctions from a transcriptome dataset. It then infers spliced align-

ments from seed regions based on the trained scoring functions.

TopHat finds junctions in two phases. It uses Bowtie/Bowtie2 to

map all reads to the reference and then assembles the mapped reads

to generate contiguous consensus sequences (called islands). It then

constructs all candidate splice junctions from neighboring islands

that could form canonical (GT-AG) introns. GSNAP identifies splice

junctions with probabilistic models which are derived from the

frequencies of nucleotides neighboring splice sites. MapSplice parti-

tions a read sequence into some consecutive segment and identifies

exonic alignment for each segment. If a segment contains spliced

alignment, the splice junction can be easily discovered using the

double-anchored search method between the neighboring segments

with exonic alignment. STAR finds the Maximal Mappable Prefix

(MMP, similar to MEM) for exonic alignment. It repeatedly finds

the MMPs for the unmapped portion of the read, therefore, the

splice junctions can be discovered naturally. HISAT is the first

aligner that employs a hierarchical indexing strategy (global and

local FM indexing) for spliced alignment. It applies different strat-

egies to handle different exonic and spliced alignment types.

Subread detects splice junctions with a two-scan procedure. It identi-

fies junction sites between the best two mapping locations for each

read (first scan), and then validates junctions by examining all map-

ping possibilities (second scan).

Most of the above-mentioned aligners require considerable com-

puting time to increase alignment sensitivity and accuracy. With the

advances in sequencing technologies and the ongoing collection of

sequencing data in the ENCODE project, more efficient algorithms

are highly demanded to handle the huge amount of short reads as

well as the associated sequence variations (Engstrom et al., 2013).

Furthermore, some aligners might fail to detect splice junctions if

sequencing errors happen at their neighboring locations. In this

study, we proposed a novel RNA-Seq mapping algorithm, call

DART (Division based Alignment for RNA-Seq Transcripts) to han-

dle spliced alignment without any annotation guidance. It is derived

from our DNA read mapper, Kart (Lin and Hsu, 2017). DART

adopts a partitioning strategy to handle RNA-Seq transcript align-

ments. Unlike most of read aligners that try to extend a seed in both

directions with a dynamic programming step, DART divides a read

sequence into one or more segments to replace the seed extension

step. The experiment results on synthetic datasets and real datasets

show that DART is a highly efficient aligner that yields the highest

sensitivity and accuracy and spends the least amount of time among

the selected aligners.

We describe the details of the alignment algorithm of DART in

the Methods section. Then we analyze and compare its perform-

ance with some selected state-of-the-art aligners in the Results

section. DART can be freely downloaded from https://github.com/

hsinnan75/DART.

2 Materials and methods

2.1 Overview of algorithms
A unique feature of DART is that we adopt a partitioning strategy

to handle the matches and mismatches separately between read se-

quences and the reference genome. DART divides a read alignment

into two groups: simple region pairs (abbreviated as simple pairs)

and normal region pairs (normal pairs), where all simple pairs have

perfect alignment (exact match) and normal pairs require un-gapped

or gapped alignment (due to mismatches or indels). Both simple

pairs and normal pairs are referred to as fragment pairs. Once the

fragment pairs are identified, they can be processed and aligned sep-

arately and the final mapping result is simply the concatenation of

the alignment of each fragment pair.

The mapping algorithm of DART consists of two main steps:

seed exploration and candidate alignment processing. Figure 1 illus-

trates the idea of the algorithm. Given a read sequence R, DART

identifies all simple pairs with a BWT search algorithm in the seed

exploration step. In the candidate alignment step, adjacent simple
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pairs are clustered according to their coordinates. For example, the

four simple pairs SPA, SPB, SPC and SPD in Figure 1 are clustered to-

gether because they are aligned in the neighboring regions. Then

DART fills the gaps between simple pairs if they are in the same

exonic region. The gap between SPA and SPB appears because a dele-

tion happens in the read sequence and that between SPC and SPD ap-

pears because a sequencing error occurs in the read sequence. Thus,

DART will generate the corresponding normal pairs for the two

intra-exonic gaps. Adjacent simple pairs and the supplementary nor-

mal pairs form a complete alignment for the given read sequence. It

is noteworthy that the gap between SPB and SPC is due to the splice

junction and it is referred to as an intragenic gap. There is no need

to add a normal pair for such gaps. DART discovers splice junctions

according to the intragenic gaps between adjacent fragment pairs.

The detailed implementation of the two main steps are described

below.

2.2 Seed exploration
Consider a read sequence R, the reference genome G, and the BWT

array constructed from G and its reverse sequence G’. For simplicity

and without losing generality, we assume G is the concatenation of

G and G’ in the following description. Let R[i1] be the i1th nucleo-

tide of R, and R[i1, i2] be the subsequence between R[i1] and R[i2].

Similarly, let G[j1] be the j1th nucleotide of G, and G[j1, j2] be the

subsequence between G[j1] and G[j2]. A locally maximal exact

matches (LMEMs) on the BWT array of length l is defined as a com-

mon substring between R[i1, i2] and G[j1, j2] (i.e. R[i1, i2]¼G[j1, j2])

and it cannot be extended in either direction of R[i1, i2] and G[j1, j2]

without allowing for a mismatch. This LMEM is denoted by a 4-

tuple (i1, i2, j1, j2) where i2 – i1¼ j2—j1 ¼ l—1.We use DPos¼ (j1- i1)

to represent the position difference of an LMEM.

Dart finds all LMEMs by traversing a BWT array. The traversal

algorithm is identical to that described in (Li and Durbin, 2009).

Readers who are interested in the search algorithm are referred to

the article. The traversal starts from R[i1] and stops at R[i2] if the

exact matching meets a mismatch at R[i2þ1], i.e. R[i1, i2] is a sub-

string of the reference sequence, whereas R[i1, i2þ1] is not. The next

LMEM exploration will start from R[i2þ1] until it reaches the end

of the read sequence. DART only keeps those LMEMs whose sizes

are no less than a predefined threshold k and whose occurrences are

less than 50. The value k is determined based on the size of the refer-

ence genome. Each qualified LMEM is then converted into one or

more simple pairs according to the occurrences. If R[i1, i2] has mul-

tiple copies in G, then each copy is denoted by a 4-tuple respectively.

For example, R[1, 20] is the longest substring that matches two sub-

strings of G, say G[501, 520] and G[1001, 1020], thus the LMEM

will be converted into two simple pairs, which are (1, 20, 501, 520)

and (1, 20, 1001, 1020), respectively. The simple pairs SPA, SPB, SPC

and SPD in Figure 1 are examples of LMEMs found by the array tra-

versal. In the toy example, the array traversal breaks due to an indel

error, a splice junction and a mismatch, respectively, and finally it

reaches the end of the read sequence.

2.3 Candidate alignment processing
All the simple pairs identified by the seed exploration step are sorted

by their genomic locations. Adjacent simple pairs are clustered to-

gether if their genomic locations are within a user-defined distance

threshold. This threshold can be defined as the maximal intron size.

Simple pairs that are within the maximal intron size are considered

in the same transcript and therefore should be put in the same clus-

ter. The clustering procedure starts from the first simple pair on the

list and checks if the next simple pair is within the distance threshold

with the previous one. If they are truly neighboring, we put them in

the same cluster and check the next simple pair with the newly

added one. Otherwise, the current cluster is no longer expanded and

a new cluster is created for the simple pair. The clustering procedure

continues until all the simple pairs are clustered. Each cluster is then

evaluated by the total length of its simple pairs. To avoid delay in

processing clusters that are unlikely to be true alignment, DART

only keeps clusters which produce the longest length (denoted as L)

or above L-20. However, if the input data consists of paired-end

reads, DART will first compare the clusters of two paired-end reads

and keep all the clusters that meet the paired-end conditions.

A read alignment will be built from a simple pair cluster. Two

simple pairs in the same cluster could overlap due to tandem repeats

or sequence variations. In such cases, the overlapped portion in the

genome and read portion will be chopped off from the shorter sim-

ple pair to ensure that all simple pairs are non-overlapping.

Sometimes simple pairs could intersect to each other. In such cases,

we remove the simple pairs that cause this dislocation. If the simple

pairs in a cluster exhibit gaps either in the read sequence or genome

sequence, DART will identify the corresponding normal pairs to fill

all the gaps. Note that the intragenic gaps are ignored since their

presence is due to splice junctions. The gaps of the read sequence

could be either aligned with the same exonic region of the respective

simple pairs, or split into two segments to form a spliced alignment

if the adjacent simple pairs are mapped to different exons.

Figure 2 gives examples to illustrate the two cases. In Figure 2A,

there are some uncovered nucleotides between SPA and SPB, three in

the read portion and two in the genome portion. Since the DPos of

SPA and SPB are 310 (¼311 - 1) and 309 (¼333 - 24), respectively,

it suggests that SPA and SPB are in the same exon. In such cases,

DART simply inserts a normal pair (21, 23, 331, 332) in between

SPA and SPB to fill the gaps. It can be also observed that gaps could

span one or more introns. As shown in Figure 2B, there are five un-

covered nucleotides in the read sequence and simple pairs SPC and

SPD are in different exons since their DPos difference (100 vs. 487) is

above the predefined minimal intron size (the default value is 5). In

such cases, the gaps could be split into two parts if they cover two

Fig. 1. The mapping idea of DART. The mapping can be divided into simple

and normal pairs to deal with exact matches and mismatches separately

Fig. 2. (A) Gaps between simple pairs in an exonic read. (B) Gaps between

simple pairs in a spanned read
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exonic regions. Let two adjacent simple pairs be (i1, i2, j1, j2) and

(i3, i4, j3, j4), respectively, and suppose i3 – i2¼k>1. Thus, R[i2þ1,

i3 – 1] represents the uncovered nucleotides of length k in the read

portion, and G[j2þ1, j3 – 1] represents the uncovered nucleotides in

the genome portion. DART aligns the fragments R[i2þ1, i3–1] and

G[j2þ1, j2þk] with the Needleman-Wunsch algorithm, and it also

aligns the fragments R[i2þ1, i3 – 1] and G[j3 – k, j3 – 1]. Then

DART find the cut point p to maximize the identical pairs of the

two alignments, so that the alignment of R[i2þ1, i2þp] and

G[j2þ1, j2þp], and that of R[i2þpþ1, i3 – 1] and G[j3 – kþp,

j3 – 1] produce the highest alignment score. In the example of

Figure 2B, the best choice of p is 2, so that the two fragment pairs

(19, 20, 119, 120) and (21, 23, 508, 510) produce the highest align-

ment score. Thus the two fragment pairs are inserted as normal pairs

between SPC and SPD to cover the entire read sequence. Though the

Needleman-Wunsch algorithm is used to identify the cut point, the

gap sizes are normally very small and it does not take much time on

the alignments.

It is also noteworthy that a fragment pair might cover intronic

region accidentally. A canonical splice junction starts with the di-

nucleotide GT (donor site) and ends with the dinucleotide AG

(acceptor site). If another dinucleotide GT is closely adjacent the ac-

ceptor site, it would be mapped to the donor site by accident. Figure

3 gives an example of such cases. It can be seen that the dinucleotide

GT at R[19, 20] is mistakenly mapped to G[757, 758] which is the

donor site of the corresponding splice junction. R[19, 20] should be

mapped to G[811, 812] which is closely adjacent with the acceptor

site. Though the alignment score stays the same whether R[19, 20] is

mapped either to G[757, 758] or to G[811, 812], the incorrect map-

ping can result in wrong splice junction detection.

To avoid mapping to intronic regions, DART refines the splice

junction sites by checking two adjacent fragment pairs if they are

mapped to different exons (like SPA and SPB in Fig. 3). Given two

adjacent fragment pairs, denoted as (i1, i2, j1, j2) and (i3, i4, j3, j4), re-

spectively, DART checks if G[j2þ1þ shift, j2þ2þ shift] is a donor

site and G[j3–2þ shift, j3 –1þ shift] is an acceptor site where shift

goes with 0, 61, 62, . . . and 69 sequentially until the splice site pair

are checked. If the splice junction is found with shift 6¼0, the sizes of

the corresponding fragment pairs are modified accordingly. DART

checks the most four common splice sites: ‘GT/AG’, ‘CT/AC’, ‘GC/

AG’ and ‘CT/GC’. For example, the simple pairs SPA and SPB in

Figure 3 will be modified as (1, 18, 739, 756) and (19, 42, 811,

834), respectively with shift¼ –2.

Finally, DART generates all sub-alignments based on the frag-

ment pairs in the cluster. The sub-alignment for a simple pair is a

perfect alignment without any mismatches, whereas the sub-

alignment for a normal pair can be un-gapped alignment (with only

mismatches) or gapped alignment (with indels). If the read portion

and genome portion of a normal pair have equal size, then it is very

likely the normal pair only contains substitution errors and the un-

gapped alignment makes the best alignment; however, if a normal

pair contains indel errors, the un-gapped alignment will result in

low sequence identity. So, by checking the percentage of mismatches

with a linear scan, we can determine whether a normal pair requires

gapped alignment or not. DART performs the Needleman-Wunsch

algorithm to generate gapped alignments. All the sub-alignments are

concatenated together to form the final alignment. If there are more

clusters to be considered for the same read, DART repeats the candi-

date alignment processing step to generate alternative alignments.

2.4 Mapping quality score
MAQ (Li et al., 2008) introduced the idea of mapping quality to es-

timate the reliability of a read alignment. It can be converted into

the probability of a query sequence being aligned incorrectly. The

mapping quality is estimated based on the uniqueness of optimal

alignment. An alignment generated by Dart is assigned with a

MAPQ based on the following rules:

50¼unique mapping;

3¼maps to 2 locations;

2¼maps to 3 locations;

1¼maps to 4–9 locations;

0¼maps to 10 or more locations.

3 Results

3.1 Implementation and experiment design
DART was developed under Linux environment and implemented

with standard C/Cþþ. It supports multi-thread to take advantage

of multi-core computers. DART reads a BWT-based index file and

takes a read library (single-end or paired-end reads) in FASTA/

FASTQ format as input. DART reports read alignments in the SAM

(Sequence Alignment/Map) format(Li et al., 2009).It is difficult to

estimate the correctness of read alignments using real datasets since

the true coordinate of each read sequence is unknown. Therefore,

we created simulated read libraries to estimate the performance of

read aligners. Here, we simulated read libraries of the human gen-

ome (Hg38, size: 3 G bp) using the Flux simulator (Griebel et al.,

2012), a popular software to simulate RNA-Seq experiments in sil-

ico. Flux simulates the RNA sequencing protocols and produces the

read distributions observed in practice fairly well. Simulated RNA-

seq reads were generated from the known transcripts (GENCODE

release 25) (Harrow et al., 2012) on the entire human genome using

the 76 bp error model by Flux simulator. To test the capabilities of

RNA-seq aligners, we generated four Illumina-like paired-end read

datasets with different read lengths: 76, 101, 151 and 251 bp. They

are labeled as SimRead_76, SimRead_101, SimRead_151 and

SimRead_251, respectively. Each dataset contains around 40 million

paired-end reads.

Most of RNA-Seq aligners are evaluated by the alignment sensi-

tivity, mapping accuracy, true-/false-positive rates of splice junction

detection, and mapping speed (Conesa et al., 2016; Dobin et al.,

2013; Engstrom et al., 2013; Li and Homer, 2010). We follow the

same benchmarking metrics to evaluate performance of DART and

compare it with other RNA-Seq aligners. Since Flux simulator only

provides the transcript level coordinate, we estimate the average se-

quence identity (called SeqIdy) of read alignments to reveal the ac-

curacy of base-to-base alignment. A read alignment is considered a

true one if its mapping coordinate is within the original transcript. A

predicted splice junction is considered as a true one if it meets the

boundary of a true splice junction with a maximal difference of 5 bp

(due to the consideration of genome alteration); otherwise it is con-

sidered as a false splice junction. Suppose an RNA-Seq aligner han-

dles a library of N reads and reports at least one alignment for N’

Fig. 3. Identification of the splice junction between two simple pairs A and B.

The simple pair A should be shrunk by two nucleotides to match the splice

site ‘GT/AG’ in the splice junction
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reads and it predicts M distinct splice junctions. The resulting align-

ments are then compared with the original transcript level coordin-

ate of the simulated reads, and the predicted splice junctions are

verified with the gene annotation (GENCODE release 25). The

alignment accuracy is estimated only on the read alignment with

MAPQ>0. Suppose there are n reads with MAPQ>0 and n’ reads

are mapped to the correct transcript and m splice junctions agree

with the gene annotations. Thus the benchmarking metrics are

defined as follows:

sensitivity¼N’ / N;

accuracy¼ n’ / n;

recall¼ n’ / N;

SeqIdy¼ identical base pairs / alignment length;

splice junction accuracy¼m / M.

Note that TopHat2 and Subread do not output the splice junctions

directly, we used bed_to_juncs (a program in the TopHat2 package)

to generate the predicted splice junctions from the output file of

junctions.bed.

We also downloaded four recently released read libraries to

measure the performance in practice on the SRA database (Leinonen

et al., 2011). They are SRR3351428, ERR1518881, SRR3439468

and SRR3439488. These data comprise 278, 706, 960 paired-end

reads. The read length ranges from 100 to 151 bp. Since the true

genomic origins of the real datasets are unknown, we estimate the

performance of aligners with the following objective criteria: sensi-

tivity, SeqIdy, reported splice junctions, true splice junctions, splice

junction accuracy and runtime. To avoid estimation bias due to mul-

tiple hits (i.e. ambiguous mapping), we only evaluated the first align-

ment for each read.

All reads in the test data were processed on a Linux 64-bit sys-

tem with 4 Intel Xeon E7-4830 2.13 GHz CPUs and 2TB physical

memory. DART was compared with the following existing RNA-

seq read aligners: STAR, TopHat2, Subread, MapSplice2 and

HISAT2. The comparison was conducted with the default param-

eters of each aligner since the above-mentioned aligners were de-

veloped and optimized for human genomes and recent RNA-seq

data. It is a reasonable and commonly accepted practice (Dobin

et al., 2013). Each aligner was asked to only report the best align-

ment or a random best if there were multiple hits. All aligners were

run in the de novo mode (i.e. without using transcript annotations)

with 16 threads to speed up the whole procedure. The mapping pro-

cess is forced to terminate if the whole dataset cannot be finished

within 24 h. We mark NA in the measurement for such cases. The

arguments as well as version number of each aligner are summarized

in the Supplementary data (Supplementary Table S1).

3.2 Evaluation on simulated datasets
Table 1 summarizes the performance evaluation of selected RNA-

Seq aligner on the simulated datasets. It is observed that DART pro-

duced the highest or comparable sensitivity, accuracy, recall and

SeqIdy. Its performance exhibited consistency among datasets with

various read lengths. It is also noteworthy that DART spent 576 s

on the whole simulated datasets. STAR also produced the high ac-

curacy and SeqIdy, but its sensitivity and recall decreased when read

length became 251 bp long. The sensitivity and recall of STAR on

the SimRead_251 were 0.939 and 0.921, respectively, which were

much lower than those of DART (0.997 and 0.971). STAR also

spent much more time on theSimRead_251. STAR spent 850 s on

the whole simulated datasets. HISAT2 ran faster than Tophat2,

Subread and MapSplice2; however, its sensitivity and recall were

much lower than those of DART and STAR. It left many reads un-

aligned. Subread produced better alignments than Tophat2 and

HISAT2. Its sensitivity and recall were higher than the two aligners.

However, its alignment speed was not fast enough. MapSplice2 pro-

duced comparable alignments. Its sensitivity, recall and SeqIdy were

comparable to those of DART and STAR, but it spent much more

time to yield good quality alignments. Tophat2 was the slowest

aligner among the selected methods. It spent 63 107 s on the whole

simulated datasets. Moreover, Tophat2 produced the worst sensitiv-

ity and recall. It is also observed that all the selected aligners except

DART and MapSplice2 produced relatively low sensitivity when the

read length became longer.

For the identification of splice junctions, Table 1 also shows that

DART, Subread, MapSplice2 and HISAT2 produced similar accur-

acy on the splice junction detection. Their splice junction accuracies

were around 0.95–0.96.The number of true splice junctions of each

aligner increased when the read length became longer. It suggests

that longer reads provide better splice junction detection for RNA-

Seq data analysis. For example, the numbers of true splice junctions

identified by DART on the four simulated datasets were 96 700,

102 162, 108 771 and 111 487, respectively. Among all the selected

aligners, TopHat2 produced less accurate and fewer numbers of

splice junctions. With the simulated RNA-Seq datasets, we demon-

strated that DART is a highly accurate and fast aligner. It is not only

the fastest RNA-Seq aligner, but it also produces the most accurate

or comparable alignments among the state-of-the-art aligners.

DART is also less sensitive to the read length. It yields consistent

alignment sensitivities on reads with different read lengths.

3.3 Evaluation on real datasets
Table 2 summarizes the performance of the selected aligners on the

real datasets. In this benchmark, it can be observed that DART pro-

duced the highest or comparable sensitivity and SeqIdy on all the

datasets and it was also the fastest. DART and MapSplice2 yielded

similar sensitivity; however, DART produced higher SeqIdy than

MapSplice2, and MapSplice2 spent much more time to generate

similar alignments. STAR was also the second fastest aligner on real

datasets, however, its sensitivity and SeqIdy were not as good as

those of DART and MapSplice2. We also noticed that MapSplice2

spent much more time on the dataset of SRR3351428. It seemed like

MapSplice2 had difficulty in dealing with some particular reads in

that dataset. HISAT2 yielded lower sensitivity though it run faster

than MapSplice2. Subread was faster than MapSplice2 on the data-

sets of SRR3351428 and ERR1518881, but it produced less sensitiv-

ity. Moreover, it could not finish the mapping process on the

remaining two real datasets within 24 h. TopHat2 did not perform

very well on the real datasets. Its sensitivity was the lowest among

the tested methods and it also failed to finish the alignments on the

last two real datasets within the time limit.

For the splice junction detection on real datasets (shown in Table

2), DART, Tophat2, Subread and MapSplice2 produced similar re-

sults. It suggests that the splice junction detections of those methods

were very consistent on the real datasets. Though HISAT2 achieved

higher accuracy on the splice junction detection, it produced less

number of true splice junctions. STAR produced lower splice junc-

tion accuracy on the real datasets, though the numbers of observed

splice junctions were similar to other methods.

We also compared the memory usage of each aligner. Though

some aligners allow users to set the maximal memory usage, we did

not give any limitations and let each aligner take as much memory

as it needs. In Table 3, we found that TopHat2, HISAT2 and
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MapSplice2 required less physical memory, followed by Subread

and DART which required 10 and 12 GB, respectively. STAR

required around 30 GB of physical memory. Note that the memory

requirement was measured on the simulated and real datasets run-

ning with 16 threads.

All the selected aligners were evaluated with 16 threads, we fur-

ther analyzed the efficiency of DART with different number of

threads. Table 4 shows the runtime of DART on the dataset of

SimRead_76. It can be observed that DART is highly efficient to

utilize multi-threads. The runtime is nearly half as the number of

threads doubles. However, the efficiency still degenerates as the

number of threads increase due to the disk overhead. Since all the

threads need to access the same files for input and output, they

must wait to gain the exclusive file accesses. Thus, not all

Table 1. Performance comparison of DART and other selected aligners on the simulated datasets

Synthetic datasets Aligner Sensitivity Accuracy Recall SeqIdy Reported SJ True SJ SJ accuracy Runtime

SimRead_76 DART 0.991 0.989 0.957 0.999 99761 96700 0.969 71

STAR 0.978 0.981 0.958 0.996 108202 101163 0.935 129

TopHat2 0.852 0.961 0.853 0.998 102230 93850 0.918 6172

Subread 0.965 0.988 0.929 0.998 99033 95469 0.964 2610

MapSplice2 0.962 0.976 0.940 0.997 101230 97895 0.967 3602

HISAT2 0.911 0.977 0.889 0.999 100589 96922 0.964 353

SimRead_101 DART 0.992 0.988 0.965 0.997 105584 102162 0.968 95

STAR 0.977 0.982 0.958 0.996 112674 105459 0.936 154

TopHat2 0.809 0.967 0.809 0.999 109153 99501 0.912 10357

Subread 0.955 0.987 0.925 0.998 105269 101136 0.961 2346

MapSplice2 0.979 0.980 0.960 0.998 110219 104434 0.948 4736

HISAT2 0.898 0.979 0.879 0.998 104309 100633 0.965 384

SimRead_151 DART 0.996 0.989 0.971 0.994 112614 108771 0.966 146

STAR 0.969 0.984 0.953 0.995 117793 110832 0.941 208

TopHat2 0.720 0.974 0.718 0.999 114134 104970 0.920 20055

Subread 0.928 0.987 0.901 0.998 111156 106542 0.958 2394

MapSplice2 0.994 0.979 0.973 0.997 110676 106594 0.963 6032

HISAT2 0.871 0.981 0.854 0.997 107932 104315 0.966 464

SimRead_251 DART 0.997 0.988 0.971 0.989 115680 111487 0.964 264

STAR 0.939 0.982 0.921 0.995 118922 112132 0.943 359

TopHat2 0.606 0.973 0.601 0.999 117547 107358 0.913 26523

Subread 0.893 0.983 0.863 0.997 114634 109503 0.955 4170

MapSplice2 0.998 0.967 0.964 0.997 111967 107395 0.959 7920

HISAT2 0.829 0.978 0.811 0.995 108670 105086 0.967 635

Note: Each dataset contains around 40 million reads with different lengths. The simulation was based on known transcripts from the entire human genome.

Table 2. Performance comparison of DART and other selected aligners on the real datasets

Real datasets Aligner Sensitivity SeqIdy Reported SJ True SJ SJ accuracy Runtime

SRR3351428 (100bp) DART 0.975 0.999 236920 150260 0.634 244

STAR 0.922 0.996 270788 152192 0.562 270

TopHat2 0.844 0.998 217011 146077 0.673 22464

Subread 0.858 0.998 221700 146518 0.661 3312

MapSplice2 0.966 0.996 240918 149255 0.620 67446

HISAT2 0.883 0.998 149592 129379 0.865 404

ERR1518881 (101bp) DART 0.874 0.997 243515 154851 0.636 369

STAR 0.841 0.987 259194 157026 0.606 371

TopHat2 0.640 0.995 220662 150126 0.680 21185

Subread 0.759 0.992 229369 151325 0.660 4008

MapSplice2 0.893 0.988 221275 150496 0.680 15021

HISAT2 0.756 0.993 162639 135460 0.833 480

SRR3439468 (151bp) DART 0.930 0.996 197235 129148 0.655 481

STAR 0.841 0.992 206157 129008 0.626 594

TopHat2 NA NA NA NA NA NA

Subread NA NA NA NA NA NA

MapSplice2 0.930 0.990 158581 113879 0.718 49320

HISAT2 0.482 0.994 131892 105180 0.797 1306

SRR3439488 (151bp) DART 0.899 0.995 142410 112562 0.790 427

STAR 0.775 0.990 148672 113102 0.761 813

TopHat2 NA NA NA NA NA NA

Subread NA NA NA NA NA NA

MapSplice2 0.851 0.989 151771 107025 0.705 36240

HISAT2 0.657 0.994 120311 100198 0.833 703
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the threads are fully utilized all the time during the mapping

process.

4 Conclusions

In this article, we present DART, a new de novo RNA-seq aligner

for sensitive, rapid and accurate mapping to reference sequences.

DART is a BWT-based aligner and it adopts a partitioning strategy

to divide a read into simple and normal pairs. Each simple pair is a

perfect alignment and each normal pair is a gapped/un-gapped

alignment.

By benchmarking on the simulated and real datasets, we demon-

strate that the proposed partitioning mapping strategy can replace

the extension step in the conventional seed-and-extend strategy and

reduce the time of alignment. We show that DART was able to align

160 million simulated paired-end reads with various lengths in

576 s, while the second fastest aligner, i.e. STAR took 850 s. For the

real datasets, DART aligned around 278 million paired-end reads in

1521 s, whereas STAR took 2048 s on the same datasets. Though

DART is faster, it can still generate accurate alignments and yield

high sensitivity regardless of read length. It also produces high se-

quence identity of alignments. In addition, it detects comparable or

larger number of splice junctions than other aligners. The accuracy

of predicted splice junctions on the simulated datasets is between

0.96 and 0.97, and that on the real datasets is between 0.63 and

0.79. Both of which are comparable to or better than the selected

aligners.

The sensitivity of read mapping is one of the important factors

for further analysis, such as gene expression level measurement or

structural variants detection. Specifically, orphan reads and one-end

anchored (OEA) are often used to identify sequence variants.

Orphan reads refer to those paired-end reads where neither read se-

quences can be aligned with high sequence identity to the reference

genome, and OEA refer to those paired-end reads in which one of

the paired reads is aligned to the reference genome. Thus, mapping

sensitivity and the number of paired alignments are crucial for fur-

ther read analysis. We have shown that DART is capable of produc-

ing high sensitivity mapping and generating more paired alignments

with the least amount of time. With the advances in sequencing tech-

nologies and the ongoing collection of sequencing data in the

ENCODE project, we believe DART is a better aligner to handle the

huge amount of short reads as well as the associated sequence vari-

ants detection.
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