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A tenet of contemporary obstetrics is that events that compromise placentation increase the risk of complications of pregnancy
and contribute to poor pregnancy outcome. In particular, conditions that affect the invasion of placental cells and remodeling of
uterine spiral arteries compromise placental function and the subsequent development of the fetus. Extravillous trophoblast cells
(EVTs) proliferate and migrate from the cytotrophoblast in the anchoring villi of the placenta and invade the maternal decidua and
myometrium. These cells are localised with uterine uterine spiral arteries and are thought to induce vascular remodeling. A newly
identified pathway by which EVTs may regulate vascular remodeling within the uterus is via the release of exosomes. Trophoblast
cells release exosomes that mediate aspects of cell-to-cell communication. The aim of this brief commentary is to review the putative
role of exosomes released from extravillous trophoblast cells in uterine spiral artery remodeling and, in particular, their role in the
aetiology of preeclampsia. Placental exosomes may engage in local cell-to-cell communication between the cell constituents of the
placenta and contiguous maternal tissues and/or distal interactions, involving the release of placental exosomes into biological

fluids and their transport to a remote site of action.

1. Introduction

A successful outcome to pregnancy is critically dependent
upon events that affect implantation and early development
of the placenta [1]. After implantation, trophoblast cells
(CTs) that arise from blastocyst proliferate and differentiate
into syncytiotrophoblasts (STs) and EVTs [2]. During first
trimester, the placenta develops under low oxygen tension
(~3% O,) that, in part, is maintained by intravascular EVTs
occluding uterine spiral arteries and preventing maternal
blood from perfusing the placenta intervillous space. Remod-
eling of the uterine spiral arteries (SpA) into low resistance,
high capacity vessels begins as EVTs invade the decidua
during first trimester [3]. When EVTs “plugs” are lost between
9 and 11 weeks of gestation, maternal blood flows through
the modified vessels to deliver nutrients and oxygen to
support fetal growth and development [4]. EVTs continue
to invade into the myometrium and remodel the SpA until

mid-second trimester [5-8]. While the mechanisms by which
EVTs remodel SpA remain to be fully elucidated, available
data are consistent with the hypothesis that EVTs directly
interact with vascular smooth muscle cells of uterine spiral
arteries and affect their loss.

Over the past five years, our understanding of how
cells communicate with each other, in health and disease,
has undergone a paradigm shift with the recognition of
the role of exosomes in intercellular signalling [9, 10].
Exosomes are small (40-100 nm), very stable [11], and lipid
bilayer nanovesicles that are formed by the inward budding
of multivesicular bodies. Although we know little about
the mechanism by which exosomal packaging occurs, they
contain a diverse array of signalling molecules and are
released from the parent cell following the exocytotic fusion
of multivesicular bodies with the cell membrane [12]. In
this brief commentary, we develop the working hypothesis
that exosomal signalling plays a critical role in normal
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placentation and that disruption of exosomal pathways (and
in particular the release of exosomes from EVTs) plays a
key role in the pathogenesis of complications of pregnancy,
including preeclampsia.

2. EVTs and Uterine Spiral Artery Remodeling

Remodeling of uterine spiral arteries by EVTs is fundamental
for effective placentation and perfusion of the intervillous
space. Approximately 100-150 uterine spiral arteries are
transformed during placental development [13]. The main
role of these vessels is to transport maternal blood to the
placenta to support the growth and development of the fetus.
This is achieved by converting arteries from high resistance
low flow to high flow low resistance arteries [14]. The diameter
of uterine spiral arteries during early pregnancy is 200 ym
[8]. After remodeling, arteries have an average luminal size
of 2mm [15]. Dysfunctional remodeling of uterine spiral
arteries is associated with complications of pregnancy, such
as preeclampsia.

The principal placental cell type involved in uterine
spiral artery remodeling is the EVT. EVTs invasion occurs
through the interstitial pathway and endovascular pathway
[16]. Interstitial EV'Ts migrate through the uterine stroma and
endovascular EVTs through the distal end of the uterine spi-
ral arteries [17]. By the eighth week of pregnancy, interstitial
EVTs invade the decidua [18].

After week 10, endovascular EVTs cells invade decidua
segment of uterine spiral arteries from the cytotrophoblastic
shell [19]. Invasion by EV'Ts causes temporary artery plugging
which decreases maternal blood flow that protects the fetus
from oxidative stress [20]. When the plug disintegrates,
endovascular EVT will further invade into the myometrium
from week 14. These trophoblast cells will interact with the
endothelium of the vessel and deposit fibrinoid material [5].

The initial steps of uterine spiral artery remodeling con-
sist of vessel dilatation, vascular smooth muscle cell separa-
tion, endothelial cell swelling, EV'Ts infiltration, and fibrinoid
deposition [17]. Vascular smooth muscle cells migrate or
undergo apoptosis and are replaced by fibrinoid material, in
which EVTs cells embed. The precise cellular mechanisms
by which vascular smooth muscle cells are lost from the
uterine spiral arteries are not known. Possible mechanisms
include migration, apoptosis, and inhibition of proliferation
and dedifferentiation [16]. Apoptosis of vascular smooth
muscle cell is a process that occurs in normal pregnancy to
maintain vessel homeostasis [21]. Vascular smooth muscle
cell migration into decidual stroma and into the lumen of
vessels is associated with several cytokines, growth factors,
and breaking down of extracellular matrix [21].

3. Microenvironmental Factors

The functions of EVTs are affected by intrauterine microenvi-
ronmental factors, including oxygen tension and inflamma-
tory mediators.
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3.1. Oxygen Tension. Placentation is an oxygen sensitive
process. The events that occur from the time of implantation
to maternal perfusion of the placenta are influenced and
directed by site-specific oxygen tensions [22]. An oxygen gra-
dient exists between the placenta and endometrium during
the first trimester. At the time of embryo implantation, the
intrauterine oxygen tension is 3% [23] while the decidua and
myometrium oxygen tension is 8-12% [24]. This standing
oxygen gradient is thought to promote and direct the invasion
of EVTs into the decidua and myometrium where they
remodel maternal uterine spiral arteries [25]. Intraluminal
EVTs occlude uterine spiral arterioles to maintain a low
oxygen tension environment that is requisite for normal
early placental and fetal development. Towards the end
of the first trimester, low resistance, high capacity flow is
achieved by the loss of intraluminal trophoblast plugs and
the placental intravillous space is perfused with maternal
blood, thus establishing effective maternofetal exchange.
Dysfunctional placentation is associated with a failure to
remodel uterine spiral arteries, abnormal placental perfusion,
and oxygenation (similar to ischemia-reperfusion injury).
After vascular remodeling of the SpA, the oxygen tension
increase in the placenta [26]. These developmental changes
in oxygen tension are thought to be an obligate regulator of
cell function and phenotype. When perturbed, placentation
and the subsequent perfusion of the placenta may be com-
promised. Activation of HIF-1a and inflammatory signalling
pathways have been implicated in this process.

3.2. Inflammatory Mediators. Inflammation has a main role
in supporting tissue homeostasis; indeed normal healthy
pregnancy is characterised as a controlled, mild proinflam-
matory state [27]. The expression of inflammatory mediators
is required to achieve a successful pregnancy that involves
a series of intercellular interactions, particularly, at the site
of implantation and placentation [28]. The inflammatory
microenvironment is regulated by a balance between release
of proinflammatory and anti-inflammatory cytokines [29].
These molecules have a critical and essential role in the
maternal adaptation to the requirement of the different stages
of gestation [30]. Complications of pregnancies such as fetal
growth restriction and preeclampsia are frequently related to
irregular maternal inflammation.

Tumor necrosis factor-a (TNF-«) is a proinflammatory
cytokine produced by different cells, such as fibroblast,
macrophages, vascular cells, uterine NK cells, and placental
cells that can promote trophoblasts growth and invasion
[31-34]. It has been demonstrated that TNF-« have a key
role in trophoblast migration into maternal decidua and
spiral arterial remodeling [35, 36]; however, the mechanisms
involving the transformation of uterine spiral arteries by
EVTs cells have not been fully understood. TNF-« is a
pleiotropic cytokine that has been found to be involved in
many activities in preeclampsia [30]. In this instance, we
believe that placental hypoxia is a consequence of arterial
remodeling failure influenced by proinflammatory condi-
tions in preeclampsia.

TNF-a was first detected in placental supernatants and
amniotic fluid [37, 38]. Expression of TNF-« in placenta
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changes during pregnancy and is responsive to changes in
the extracellular milieu [39] suggesting that TNF-« has a
specific function in developmental processes [40]. Expression
of TNF-a mRNA in the first trimester of pregnancy has been
found in all cell types belonging to the trophoblastic lineage.
TNF-« expression, however, decreases in invasive cells at
later stages of pregnancy [41]. TNF-« activates proapoptotic
factors as well as antiapoptotic factors to maintain a microen-
vironment for successful arterial remodeling. It has been
reported that trophoblast differentiation could be regulated
by TNF-« [42].

The aetiological antecedents of preeclampsia are thought
to be aberrant maternal-fetal immune tolerance that reduced
trophoblast invasion. Recent studies have shown that
immune maladaptation and overt activation of maternal
immune system may be responsible in the pathogenesis
of preeclampsia [43]. In the past decades, serum levels of
TNF-a had elevated and increased expressions of TNF-«
and TNF receptors were found in leukocytes and placenta
of women with preeclampsia [40]. This rise can occur
as early as 11-13 weeks of pregnancy, much earlier than
detectable clinical manifestations [44]. TNF-« may inhibit
EVT migration in first trimester placenta via activated
macrophages. In early onset of preeclampsia, findings on
TNF-« and interleukin-2 (an anti-inflammatory cytokine)
suggested that there is an imbalance of proinflammatory and
anti-inflammatory cytokines ratio [45]. Toll-like receptor
which is the main danger signalling pathway involved in the
pathophysiology of preeclampsia increases the production
of TNF-« [46]. Another study performed by Hamai et al.,
[47] has shown an increase of TNF-« in early pregnancy of
preeclampsia. In asymptomatic patients (patients who later
developed preeclampsia in the second trimester), the level of
TNF-« in the first trimester was 2-fold higher compared to
healthy controls [47]. On the other hand, other authors have
demonstrated that level of TNF-« increased significantly in
women diagnosed with preeclampsia compared with healthy
control [48-50].

Preeclampsia is characterised with reduced uteroplacen-
tal perfusion and incomplete uterine spiral arterial remod-
eling. Moreover, a high level of TNF-« has been found in
plasma from patients with preeclampsia; however, the role
of TNF-« in the failure of spiral artery remodeling and the
mechanisms involved in this phenomenon still are not fully
elucidated. In this regard, it has been established recently
that small vesicles released by many cell types including
human placental cells contain a membrane bound form of
TNF-« [51]. Recent studies highlight the putative utility of
tissue-specific nanovesicles (e.g., exosomes) in the diagnosis
of disease onset and treatment monitoring [9, 52-56]. To date,
there is a paucity of data defining changes in the release,
role, and diagnostic utility of placenta-derived exosomes in
pregnancies complicated by preeclampsia.

4. Exosomes: Definition and Characteristics

Exosomes are small (40-100 nm) and very stable membrane
vesicles that are released when late endosomal bodies fuse
with the cell membrane [57, 58]. Exosomes found in cell

cultures and body fluids indicate that they can be released
from different types of cells [59]. Exosomes are characterised
by a buoyant density of 1.13-1.19 g/mL, an endosomal ori-
gin, and enrichment of late endosomal membrane markers
(including Tsgl01, CD63, CD9, and CD81), are released into
extracellular compartments [60], and are identified in most
biological fluids examined [61, 62]. Exosomes are generated
by the inward budding of late endosomal structures, the
multivesicular bodies (MVB). Moreover, the participation
of Rab GTPases in the secretion of exosomes has been
proposed [63]. Although we know little about the mechanism
by which packaging occurs, exosomes contain a diverse
array of signalling molecules and are released from the
parent cell following the exocytosis fusion of multivesicular
bodies with the cell membrane [12]. Signalling molecules,
including miRNA; mRNA; and cytoplasmic proteins, are
packaged into exosomes. Exosomal signalling occurs when
released exosomes fuse with target cells and deploy their
contents to alter cell function. In pathological pregnancies,
exosomes secreted from the placenta may be involved in
adaptive responses and different biological processes such
as metabolism, development, cellular adhesion, and immune
response of the mother and fetus. We have isolated and
characterised exosomes released from placental cells and
have demonstrated that trophoblast cells release exosomes
that are bioactive and can regulate the biological function
on cell target [58, 64, 65]. A representative standard size
distribution graph and electron microscope image of the
exosome samples isolated from placental cells are shown in
Figure 1.

4.1. Exosomes and Cell-to-Cell Communication. Exosomes
interact with target cells via multiple pathways, by directly
activating target cell membrane receptors; by modifying the
extracellular milieu of the target cell; and by fusing with the
cell membrane and releasing their molecular cargo into the
target cell [66]. Recently, it has been demonstrated that cells
internalise exosomes through lipid raft-mediated endocytosis
involving caveolin-1 protein and ERK1/2-heat shock protein
27 signaling in this process [67]. Their molecular cargo is
cell specific [68], regulated by tissue physiology and cellular
function, and fundamental to their bioactivity.

Exosomes may be assembled and secreted in response to
instructions received from neighbouring cells, from distant
tissues, or in response to local environmental factors (e.g.,
oxygen tension). Their molecular cargos, including mRNA
[69], miRNA [68, 69], proteins [65], lipids [70], and mem-
brane receptors, are transferred to adjacent cells and/or distal
cells via biofluid transport (e.g., in blood, lymph, saliva, or
ascites).

Currently, we have only a limited understanding of the
role that exosomal signaling plays in normal physiology and
pathophysiology and, in particular, in reproductive biology.
This provides us with exciting opportunities to establish
the role of exosomes in disease pathology and to advance
diagnosis and treatment of clinically significant conditions.

Placental cells release exosomes in vitro and in vivo and
have been identified in maternal blood [64, 71, 72]. They
contain placenta-specific protein and miRNA and, as such,
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FIGURE 1: Placental exosomes characterisation. Exosomes vesicles were isolated from placental cells by differential and buoyant density
centrifugation and purified using a sucrose continuous gradient as previously described [65]. (a) Representative graph size distribution of the
exosome samples using a nanoparticle tracking analysis (NanoSight NS500). (b) Representative electron micrograph of enriched exosomes

population. In (b), scale bar is 200 nm.

may be differentiated from maternally derived exosomes [53,
73]. The concentration of exosomes has been reported to
increase in association with some complications of pregnancy
(e.g., preeclampsia [72]). In this regard, complications of
pregnancy are associated with a proinflammatory state (e.g.,
high TNF-« concentrations) and also with failure in the SpA
remodeling where EVTs have been demonstrated to have
an important role. Our group has isolated and characterised
exosomes released from placental cells and has demonstrated
that (i) first trimester cytotrophoblast (CT) cells release
exosomes O3 HEDINCDLLPLAPY 4y i 165]; (i1) CT-exosome
release and protein content are regulated by oxygen tension;
and (iii) CT exosomes induce extravillous cytotrophoblast
cell invasion and proliferation in a time- and dose-dependent
manner [65]. In addition to direct effects on target cells,
exosomes from nongestational tissues have been reported
to remodel the extracellular matrix (ECM) surrounding
target cells (i.e., cell fusion-independent effects). We have
identified serine proteases (e.g., HtrA 4, which is expressed
by CTs and syncytiotrophoblast (ST); present in maternal
plasma; and increased in association with PE [74]) as well as
metalloproteases (e.g., MMP 2, MMP 9, and MMP 12) in CT
exosomes [65].

Recently, it has been proposed that MMP 12 secreted
by trophoblast cells induces disruption of uterine vascu-
lar smooth muscle cell architecture favouring extravillous
trophoblast invasion [75, 76]. The activity and capacity of
trophoblast-derived exosomes to directly bind and remodel
ECM in a cell fusion-independent manner have yet to be
established. Exosomal remodeling of ECM may participate
not only in cytotrophoblasts-extravillous trophoblasts inter-
actions but also in the extravillous trophoblast-endothelial

cells and extravillous trophoblast-vascular smooth mus-
cle cell interactions. As we know that exosomes protect
their content, we hypothesised that EVT-derived exosomes
interact with vascular cells (i.e., smooth muscle and endothe-
lial cells), delivering their specific cargo (e.g., MMPs) and
contributing to the SpA remodeling.

4.2. Oxygen Tension Can Regulate the Effect of Placental
Exosomes. Recently, we reported that changes in oxygen
tension also regulate placental exosome release, content, and
bioactivity [58, 65]. Hypoxia (1% O,) increases the release
of exosomes from CTs incubated in vitro when compared
to CTs incubated under 3% or 8% O,. The protein content
of these “hypoxic” exosomes is also altered with increased
enrichment of HIF-1« and IL-8 signalling molecules. In addi-
tion, the ability of these exosomes to induce cell migration
is significantly enhanced. Oxygen tension also regulates the
responsiveness of target cells to exosomes. This phenomenon
has been demonstrated in other cell types (e.g., cancer cells),
where exosomes content reflects the oxygenation status of
cells [84]. These data provide new insights and understanding
into how oxygen tension regulates cell function and, in
particular, the role of oxygen tension in regulating exosomal
signalling in the placenta. Our preliminary studies identify
oxygen-dependent changes in the protein content of CT
exosomes; however, effects on miRNA mediators remain
to be established. Using nongestational tissue cell lines
(epithelial ovarian cancer cells), we have also identified cell-
specific packaging of miRNA into exosomes [68]. We will
use this approach to identify cell- and treatment-specific
effects on miRNA packaging into trophoblast exosomes.
Human placenta and placental-derived exosomes express the
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TaBLE 1: Effects of exosomes vesicles on cell target.
Vesicles source Isolation methods Cell target Blologlcal Effect References
function
. . EVT Invasion and

UT + t dient 65
Cytotrophoblast cells sucrose continuous gradien (HTR-8/Svneo) proliferation Promote [65]
pMSC UT + 30% sucrose cushion hPMEC Migr.ation ‘and Promote (58]

proliferation
Maternal plasma UT + sucrose continuous gradient HUVEC Migration Promote [64]
Trophoblast (Swan 71) UT Monocytes Migration Promote [54]
Chorionic villi explant UT + sucrose continuous gradient ﬁ;l:iaggl\c/fgs Apoptosis Promote [77]
Trophoblast cells UT + 30% sucrose cushion HUVEC Viral infection Resistance (78]
Human macrophages UT + sucrose continuous gradient ~ Endothelial cell Migration Decrease [79]
CML cells UT + 30% sucrose cushion HUVEC Migration Promote (80]
Dendritic cells UT + 30% sucrose cushion PBMC Migration Promote (81]
Pancreatic UT + sucrose continuous gradient  Endothelial cells Migration Promote (82]
adenocarcinoma cells
HUVEC UT SMCs mlRNJ_\s Tr.ansfer (83]
expression miRNAs

UT: ultracentrifugation (>100,000 xg); EVT: extravillous trophoblast; pMSC: placental mesenchymal stem cells; hPMEC: human placental microvascular
endothelial cells; HUVEC: human umbilical vein endothelial cells; PBMC: peripheral blood mononuclear cells; CML: chronic myelogenous leukemia; SMCs:

smooth muscle cells.

chromosome 19 miRNA cluster (C1I9MC), which is regulated
selectively by hypoxic stress [85]. Moreover, it has also been
demonstrated that trophoblast cells utilise exosomes for the
transfer of specific and unique miRNA (from cluster CI9MC)
to other cells (e.g., maternal and fetal cells) and confer them
with viral resistance against infections [78]. Placental-derived
exosomes under both normal and pathological conditions
could perform a main role in the maternal adaptation to
pregnancy (e.g., uterine vascular adaptation to pregnancy).

4.3. Exosomes Regulate Cell Migration on Cell Target. Exo-
somes mediate cell-to-cell communication and induce dif-
ferent effects on target cells depending on the cell ori-
gin and exosome content (e.g., miRNA and proteins). The
function of placental-derived exosomes during normal or
pathological pregnancy remains to be established. Several
studies support the hypothesis that placental exosomes (i.e.,
release from cytotrophoblast, extravillous trophoblasts, and
syncytiotrophoblast) are capable of promoting cell migration
(Table 1). In addition, this phenomenon not only is restrictive
to placental exosomes but also has been demonstrated in
nonplacental exosomes [82]. We have previously reported
that exosomes released from cytotrophoblast cells primary
culture contain biologically active proteins [65] that can
interact with the maternal endothelium and regulate their
function (e.g., migration and angiogenesis). Furthermore, the
release of exosome from placental mesenchymal stem cells
and cytotrophoblast cells is regulated by the oxygen tension
[58, 65]. Exosomes isolated from Swan 71 cells (trophoblastic
cell lines) promote monocytes migration and increased the
production of proinflammatory cytokines from these cells
[86]. Primary human trophoblast cells are resistant to viral
infection (e.g., human cytomegalovirus) and can transfer
their viral resistance to nonplacental cells (i.e., endothelial

cells) through exosomes, an effect completely abolished by
sonication [78], highlighting that the exosome integrity is
critical to mediate their effects on cell target.

We have recently demonstrated that exosomes isolated
from peripheral plasma were biologically active, as assessed
by their ability to increase endothelial cell migration in vitro.
Moreover, the bioactivity of exosomes was greatest during
the first trimester and gradually declined with advancing
gestational age. These results suggest that, in normal preg-
nancy, exosomes isolated from plasma of pregnant healthy
women in the first trimester may play a role in regulating the
endothelium response to maternal adaptation to pregnancy.
Exosomes are sensitive to environmental milieu (e.g., oxygen
tension), changing their bioactivity and content; we propose
that, under physiological conditions (e.g., normal preg-
nancy), placental exosomes promote vascular cell migration
from the uterine spiral arteries; however, under pathological
conditions (e.g., proinflammatory state and preeclampsia),
the bioactivity of placental exosomes is reduced.

4.4. Preeclampsia Is Associated with Increased Release of
Placenta-Derived Vesicles. Preeclampsia (PE) is a leading
cause of maternal and fetal morbidity and mortality with
an incidence rate of 3-5% of all pregnancies [88, 89].
One of the first events associated with development of PE
is the failure in remodeling the uterine maternal arteries
completely and consequently the inadequate placental blood
flow. While the precise etiology of PE remains largely
unknown, physiological, environmental, and immunological
risk factors have been identified [89]. The hypothesis that
trophoblast-derived vesicles and debris shed into maternal
circulation promotes an inflammatory vascular response
and causes endothelial damage that is correlated with the
pathophysiology of PE that has been proposed by Redman
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FIGURE 2: A hypothesis on the effect of EVTs-derived exosomes on SpA remodeling. Complications of pregnancy are thought to be clinical
manifestations of a common developmental lesion inadequate invasion by extravillous trophoblast cells with a consequent failure to remodel
the maternal uterine spiral arteries. EV'Ts migrate from the cytotrophoblast-anchoring villi ((a) [1]) of the placenta and invade the maternal
decidua and myometrium. These cells are localised with uterine spiral arteries (b) and are thought to induce vascular remodeling (i.e.,
extracellular matrix remodeling [2]); the loss of vascular endothelial [3]; and smooth muscle [4] cells by apoptosis or migration out of the
vessel wall. We propose that EVTs-derived exosome has participation on the SpA remodeling, specificity affecting process as migration,
proliferation, and apoptosis of VSMC (c). In (b), cartoon is modified from Cartwright et al., 2010 [87].

et al’s group [90]. The placental syncytiotrophoblast secretes
a wide range of vesicles, including micro- and nanovesicles
into the maternal circulation during normal pregnancy [64].
Using a flow cytometry approach and syncytiotrophoblast-
specific antiplacental alkaline phosphatase (PLAP), signifi-
cantly greater levels of placental-derived vesicles were found
in both peripheral and uterine venous plasma from women
with preeclampsia compared to normal pregnant women
[91]. Moreover, similar results were observed using a dual
placental perfusion system in placentae from preeclampsia
pregnancy [92]. In contrast, a recent study using nanoparti-
cles tracking analysis reported high level of placental-derived
vesicles in pregnant women compared with nonpregnant
women, without difference in the number of syncytiotro-
phoblast extracellular vesicles between normal pregnant
women and plasma from patients with preeclampsia [93].
To our knowledge, wide variation between results can be
attributed to methodological differences, while flow cytome-
ter is still inadequate to detect single vesicles with size
less 300 nm (without polystyrene beads) and the expression
of PLAP is reduced in syncytiotrophoblast-derived vesicles
(including micro- and nanovesicles) obtained from perfused
placental from preeclamptic pregnancies [92].

The concentration of placenta-derived exosomes vesicles
is also increased with the advancing gestational age [64].
The molecular composition and biological effects of these
nanovesicles are determined by their cellular origin. Thus,
events that impact on early trophoblast cell invasion and their
interaction with maternal cells (including oxygen tension
and glucose and fatty acid concentrations) may contribute
to or predispose to complication of pregnancies [64]. It
has been demonstrated that exosomal protein content is
different in women with preeclampsia [94]. Moreover, the
specific syncytiotrophoblast protein, syncytin-2, is markedly
downregulated in exosomes derived from placenta of preg-
nant women with preeclampsia compared to healthy control
(normal pregnancies) [95].

In contrast, high levels of syncytiotrophoblast-derived
vesicles were found in plasma from women with early-onset
preeclampsia [96]. Since trophoblast invasion and insufficient
uterine vascular remodeling occur in early-onset preeclamp-
sia, we, therefore, propose that the release and composition
(i.e., exosomal proteins) of placenta-derived exosomes are
altered in pregnancies that subsequently develop complica-
tions (e.g., preeclampsia) and that placental cell exosomes
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derived from abnormal pregnancies differentially affect vas-
cular smooth muscle cell function.

5. Summary

Uterine spiral arterial remodeling is an important physiologi-
cal change during early pregnancy. EVTs migrate into mater-
nal decidua and myometrium and interact with endothelial
and vascular smooth muscle cells in uterine spiral arteries.
Conversion of these arteries is associated with the loss of both
endothelial cells and vascular smooth muscle cells from the
vessel wall by apoptosis and/or migration out of the vessel.
In this regard, communication between EVTs and vascular
smooth muscle cells appears to be essential for successful
arterial remodeling. The effect of exosomes released from
EVTs on endothelial cells and vascular smooth muscle cells
has not been established. We propose that in complicated
pregnancies (e.g., preeclampsia), proinflammatory microen-
vironment regulates the release and bioactivity of EVT-
derived exosomes. In normal pregnancy, EVT-derived exo-
somes may promote vascular smooth muscle cell migration
favoring the spiral uterine arterial remodeling; however, high
concentration of proinflammatory cytokines (e.g., TNF-a)
may inhibit the effect of exosomes on vascular smooth muscle
cell migration, triggering failure in arterial remodeling and
stimulating the emergence of preeclampsia (Figure 2).
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