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Abstract: Acetylcholinesterase (AChE) is one of the classical targets in the treatment of Alzheimer’s
disease (AD). Inhibition of AChE slows down the hydrolysis of acetycholine and increases choline
levels, improving the cognitive function. The achieved success of plant-based natural drugs acting as
AChE inhibitors, such as galantamine (GAL) from Galanthus genus and huperzine A from Huperzia
serrate (approved drug in China), in the treatment of AD, and the fact that natural compounds (NCs)
are considered as safer and less toxic compared to synthetic drugs, led us to screen the available
NCs (almost 150,000) in the ZINC12 database for AChE inhibitory activity. The compounds were
screened virtually by molecular docking, filtered for suitable ADME properties, and 32 ligands from
23 structural groups were selected. The stability of the complexes was estimated via 1 µs molecular
dynamics simulation. Ten compounds formed stable complexes with the enzyme and had a vendor
and a reasonable price per mg. They were tested for AChE inhibitory and antioxidant activity. Five
compounds showed weak AChE inhibition and three of them exhibited high antioxidant activity.

Keywords: acetylcholinesterase (AChE); natural compounds; virtual screening; molecular docking;
molecular dynamins; Alzheimer’s disease (AD)

1. Introduction

Neurodegenerative diseases are characterized by the progressive and irreversible loss
of neurons from specific regions in the brain. Alzheimer’s disease (AD) is associated with a
degeneration of hippocampal and cortical neurons due to the overproduction of cytotoxic
β-amyloid (Aβ) peptides followed by an extracellular formation of plaques and intracel-
lular deposition of hyperphosphorylated tau (τ) protein-forming neurofibrillary tangles
(NFTs) [1,2]. Neuronal death leads to a reduction in acetylcholine (ACh) levels in synaptic
clefts expressed by short-term memory loss and impairment in thinking, speaking, learning,
orientation, judgment, and communication [1,3,4]. Cognitive dysfunction is related to two
biochemical factors—continuous loss of neurotransmitter ACh due to hyperactivity of the
enzyme acetylcholinesterase (AChE) responsible for breaking down ACh into choline, and
hyperactive N-methyl-D-aspartate (NMDA) glutamate receptors [5]. One of the therapeutic
approaches to AD is the inhibition of AChE, leading to an increase in ACh levels and
amelioration of the cognitive function.

The binding site (BS) of AChE is well studied. It is a deep and narrow gorge consisting
of several domains: catalytic, anionic, acyl, oxyanion, and peripheral anionic [6–11]. The
most important among them are catalytic anionic site (CAS) at the bottom of the BS and the
peripheral anionic site (PAS) at the entrance and the gorge. PAS is responsible for the initial
recognition of the positively charged substrate by Tyr72, Asp74, Tyr124, Trp286, and Tyr341.
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PAS also is capable of allosterically modulating the activity of the catalytic surface [12].
Additionally, PAS is involved in non-cholinergic functions such as amyloidosis [13], neurite
outgrowth, and cell adhesion [14,15]. The substrate trapped by PAS is guided by the other
domains to reach CAS. The selective binding to ACh is determined by the acyl subsite
consisting of the bulky residues Phe295 and Phe297. The quaternary trimethylammonium
choline moiety of ACh forms cation–π interactions with the aromatic residues of the anionic
domain—Trp86, Tyr133, Tyr337, and Phe338. In the oxyanion part, constructed by Gly121,
Gly122, and Ala204, the substrate tetrahedral transition state is stabilized by a hydrogen-
bond network formed between the adopted structural water molecule and the enzyme.
The catalytic triad—Ser203, Glu334, and His447 of CAS performs the hydrolysis of ACh by
the double-displacement mechanism [16,17].

The AChE inhibitors (AChEIs) marketed currently include donepezil (trade name
Aricept), rivastigmine (trade name Exelon), galantamine (GAL) (trade name Reminyl and
Nivalin), and tacrine [18]. The first approved drugs for AD treatment tacrine and donepezil
have synthetic origin. Tacrine is rarely prescribed due to its hepatotoxicity [19–21] and
contentious efficacy [22]. Rivastigmine, approved by the FDA in 2000, is designed from
physostigmine—a plant alkaloid isolated from Physostigma venenosum [23]. In 2001, GAL,
an alkaloid from Galanthus genus, was approved for AD treatment [24]. Huperzine A,
an alkaloid from Huperzia serrate, is used as a dietary supplement for memory function
improvement in the USA and has been approved for AD treatment in China [25,26].

Natural compounds (NCs) are often assumed to have better tolerance and safety
than synthetic molecules, although side effects including allergic reactions, toxicity, and
interactions with drugs have been reported for many products [27,28]. Two of the five
currently approved drugs for AD treatment have natural origin. Additionally, there are
several extensive reviews on natural AChEIs originating from plants, marine organisms,
and fungi [29–34]. The major groups of compounds with AChE inhibitory activity are
alkaloids, coumarines, flavonoids, stilbenes, and terpenoids [29–36].

Computer-aided drug design is a powerful technique for the design of new drugs.
Structure-based design, including molecular docking (MD), virtual screening (VS) and
molecular dynamics simulations (MDS), is widely used for deep understanding of the inti-
mate mechanisms of ligand–protein interactions, discovering hits and leads from massive
databases and design of new ligands. Docking studies of small group plant-based alkaloids
on AChE revealed pleiocarpine as the most promising and potent AChE antagonist [37].
Similarly, 100 terpenoids collected from different sources were analyzed for their inhibitory
activity on AChE and amyloid beta peptide via docking and MDS [38]. The powerful
effect of VS by MD of NCs databases on different targets, including DNA, was reviewed
by Ma et al. [39]. Ambure et al. [40] performed a pharmacophore-based VS followed by
MD analyses on InterBioScreen’s Natural Compound database in order to discover novel
AChEIs [40]. The initial dataset of 47,868 NCs (available in 2012) was screened by multiple
filters and a final set of 12 molecules was selected as potential AChEIs on the basis of their
interaction patterns and docking scores.

To the best of our knowledge, there is no comprehensive study on all available data-
bases of NCs for potential AChE inhibitory activity via molecular docking. Here, we
report an MD-based VS of 11 ZINC12 databases of NCs (~150,000 compounds) for AChE
affinity. The compounds were subsequently screened for blood brain barrier (BBB) per-
meability, gastrointestinal (GI) absorption, drug-likeness, lead-likeness, and PAINS (Pan
Assay INterference Structures) by SwissADME online server tool [41]. Next, the eligible
compounds were visually inspected according to their size and position within the binding
pocket. MDSs were performed on the hit compounds in order to evaluate the stability of
the complexes. The final set of 10 selected hits was tested experimentally.
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2. Results
2.1. Virtual Screening by Molecular Docking

Almost 150,000 NCs were subject to VS based on the crystallographic structure of
human-recombinant AChE (rhAChE, pdb id: 4EY6, R = 2.40 Å) [6]. The NCs were col-
lected from 11 databases freely available on the ZINC12 platform: AfroDb_NP, Ana-
lytiCon_DB, HerbalIngredients_DB, HIT_DB, IBScreen_NP, Indofine_NP, NPACT_DB,
Nubbe_NP, Specs_NP, TCM_DB_Taiwan, and UEFS_NP. The docking protocol is described
in Materials and Methods. The pose with the highest ChemPLP score out of 100 runs was
considered for each ligand. Only compounds with docking score equal to or higher than 70
were considered as AChE binders. This cutoff value was chosen to be close to that derived
for GAL (72.11) with an RMSD of 0.215 Å.

2.2. ADME Filtering and Visual Inspection

A three-step filtering was applied for hit selection (Figure 1). The first filter was
blood—brain barrier (BBB) permeability, a necessary requirement for activity in the brain.
It was assessed by the SwissADME server [41]. The number of ligands that passed this
step was 40,613. In the next step, eight additional SwissADME filters were applied: five for
drug-likeness (rules of Lipinski, Ghose, Veber, Egan and Muegge), one for gastrointestinal
(GI) absorption, one for PAINS allerts, and one for lead likeness. Only 8315 of NCs fulfilled
all eight criteria. At the last step, a visual inspection of the binding poses within the
protein binding site was performed along with measuring the size of the aromatic moiety
occupying the CAS. Only ligands bound near the PAS or deeply in the CAS with aromatic
rings sized at least 5 Å in diameter between two terminal heavy atoms were selected. Thus,
at the end of this three-step filtering, only 215 molecules remained. The compounds were
checked for available vendors, and 32 non-GAL type molecules from 23 structural groups
were selected for further analysis (Table S1). They were numbered from 1 to 34, including
two GAL derivatives (10 and 11).

Figure 1. Hit selection by docking-based VS and ADME filtering.

2.3. Molecular Dynamics Simulatioins and Trajectory Analyses

The stability of the complexes formed between the 32 hits and the AChE was tested by
1 µs molecular dynamics simulation. Initially, the stability of the complexes was inspected
visually. In 11 complexes, the ligands almost exited the BS (3, 4, 6, 24, 27, and 30) or
occupied an allosteric site, and CAS remained accessible (8, 12–15). In the rest of the
21 complexes, the ligands remained in the BS during the whole simulation with ligand
RMSD < 1.5 Å and protein RMSD < 2.5 Å. Five of the ligands had RMSD up to 0.5 Å (16,
31–34), for 10 of them the RMSDs varied between 0.5 and 1 Å (1, 7, 18, 19, 20, 22, 25, 26,
28, 29), and 6 molecules had RMSDs between 1 and 1.5 Å (2, 5, 9, 17, 21, 23). The protein
Cα RMSDs remained below 2.5 Å, confirming the stability of the systems (Figure S1). The
protein Cα RMSFs (root-mean-square fluctuations) showed that the most dynamic residues
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belong to the unstructured regions on the surface between the 76th and 84th and 384th and
388th positions, around the capped chain breaks at 255th and 491th positions, and to both
termini (Figure S1).

The convergence of MM-GBSA energies (∆H) was assessed over the production phase
(Figure S2). In the absence of bridging solvent molecules [42], the enthalpies converged
within 100 ns and ranged between −25 and −55 kcal/mol (Figure S2). In the presence
of solvent molecules, the convergence of ∆Hsolv took longer than 100 ns and had values
ranging between −30 and −66 kcal/mol (Figure S2).

Three criteria were applied in the final selection of hits for experimental testing among
the 21 NCs: sum of ChemPLP score and the module of ∆Hsolv, single vendor, and price for
1 mg (Table S2). The final set of 10 NCs selected for anti-AChE testing is given in Table 1.

Table 1. ChemPLP score, ∆Hsolv,avg, sum of their modules, and anti-AChE and antioxidant activities
of the selected NCs are presented. GAL is the reference AChE inhibitor and butylhydroxytoluene
(BHT) is the reference antioxidant. The IC50 and ABTS values were measured in triplicate, and the
results are presented as means ± SD.

Compund ChemPLP ∆Hsolv, avrg,
kcal/mol

ChemPLP +
|∆Hsolv, avrg|

IC50,
mM

ABTS
(%)

5 85.0500 −30.8296 115.8796 >10 na

9 85.9159 −65.8063 151.7222 1.8 ± 0.75 6.43 ± 0.85

16 76.7413 −45.8669 122.6082 na 95.82 ± 0.21

17 82.7631 −34.3182 117.0813 >10 na

18 79.0189 −41.3130 120.3319 na na

21 82.7599 −59.1422 141.9021 1.2 ± 0.19 34.68 ± 1.27

22 84.6421 −44.4386 129.0807 0.39 ± 0.16 na

25 77.6389 −42.3505 119.9894 Na na

28 73.5909 −55.8388 129.4297 0.62 ± 0.14 70.55 ± 0.85

29 77.5505 −60.2032 137.7537 5.7 ± 3.50 80.94 ± 0.94

GAL 72.1100 −45.5914 117.7014 0.002 ±
0.0003

BHT 92.38 ± 0.21
na—not active.

2.4. AChE Inhibitory Activity

The AChE activity of the selected 10 NCs was measured by Ellman’s method as
described in Materials and Methods. The IC50 values are given in Table 1. Five compounds
showed IC50 < 10 mM. Their structures are given in Figure 2. Two of them, 22 and 28, have
activity in the micromolar range, another two, 9 and 21, have activities between 1 and
2 mM, and the fifth, 29, has an activity above 5 mM. All of them are less active than GAL
with IC50 = 2 µM.
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Figure 2. Structures of the novel AChE inhibitors, discovered in the present study: 9 (N-{[(1S,9aR)-
octahydro-1H-quinolizin-1-yl]methyl}-2-(6-fluoro-1H-indol-1-yl)acetamide), 21 (N-(4-methylphenyl)-
2-{5-oxo-1H,2H,3H,4H,5H,6H-azepino [4,5-b]indol-4-yl} acetamide), 29 (6′-methyl-1-(prop-2-en-1-
yl)-1,2,2′,3′,4′,9′-hexahydrospiro[indole-3,1′-pyrido [3,4-b]indol]-2-one), 28 (3-methyl-1′,2′,3,4,5,10-
hexahydro-2H-spiro[azepino [3,4-b] indole-1,3′-indol]-2′-one), 22 ((1S,9R)-11-[(2E)-3-phenylprop-2-
enoyl]-7,11-diazatricyc lotrideca-2,4-dien-6-one), 16 ((R)-N-(4-((4-methyl-3-oxo-3,4-dihydro-1H-furo
[3,4-b] indol-1-yl) amino)phenyl)acetamide), and the two positive controls —galantamine (GAL) and
butylhydroxytoluene (BHT).

2.5. Antioxidant Activity. ABTS Radical Scavenging Activity

As the anti-AChE activity in vivo is associated with increased oxidative stress [43,44],
the antioxidant potential of the selected hits was tested as well as described in Materials
and Methods. It is given in Table 1 as % ABTS radical scavenging with BHT as a positive
control. Two of the hits—9 and 21—showed weak ABTS activity of 6.43% and 34.68%,
respectively. Compounds 28 and 29 showed high antioxidant activity (80.94% and 70.55%,
resp.), while compound 16 showed significant activity of 95.82% comparable to and even
higher than the positive control BHT (92.38%).
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3. Discussion

About 150,000 NCs available in 11 databases at ZINC12 were subject to virtual screen-
ing via molecular docking against AChE. The applied docking protocol was previously op-
timized and used to predict new AChE inhibitors that were experimentally proven [45–51].
The compounds were screened for BBB permeability, drug-likeness filters, GI absobtion,
PAINS, and lead-likeness. Visual inspection of ligand positions within the binding site of
AChE followed by size measurement of the condensed ring moiety located at CAS led to a
selection of 215 eligible compounds. From them, 32 non-galanthamine type molecules with
the highest ChemPLP docking score and available vendor were selected. The stability of
their complexes with AChE was estimated via 1 µs molecular dynamics simulation. Twenty
one molecules formed stable complexes, and the ∆H values with and without solvent
molecules were calculated. Ten molecules from the same vendor with prices up to USD 100
per 1 mg were selected for experimental testing. Five of them showed anti-AChE activity
in the micro- to low millimolar range. They are 9, 21, 22, 28, and 29.

In MM-PBSA and MM-GBSA calculations, the magnitude of the resultant ∆H values
is sensitive to the choice of atomic radii and nonpolar decomposition scheme [52], whereas
the relative energies (relative to each other) are not [42,52]. Thus, while the absolute
∆H values would be different using, for example, bondi and mbondi2 radii, the relative
ranking of the compounds by ∆H would be nearly unaffected because all compounds
would experience an almost identical amount of error during the calculations. Because
the parameters for enthalpy calculations are the same for all complexes, all ∆H values are
overestimated by a similar amount, which cancels out in the relative rankings. For example,
if compound A scores significantly better than B using bondi radii, it will score better using
any other set of atomic radii or decomposition scheme, as long as the same calculation
scheme is applied to both compounds. It is precisely this property of relative free energy
calculations that enables virtual high-throughput screening. As we aim to screen a large
library of compounds, we require a rapidly computable, cheap descriptor of the affinity of
the different ligands for the target protein rather than a detailed analysis of the different
protein—ligand complexes [53–56]. The efficacy of our protocol is demonstrated by the
high success rate (5 actives out of 10 experimentally tested molecules or 50%), which is
orders of magnitude higher than the hit rate of randomly selecting compounds (usually
around 0.1–1%) [57]. In Figure 3 and Table 2, we present the energetic components for the
studied protein–ligand complexes and briefly discuss them below.

Figure 3. Total energy components of each ligand complexed with AChE. The positive control
is GAL. The van der Waals and electrostatic interaction energies are denoted as VDWAALS and
EEL, respectively. The polar and non-polar solvation energies are denoted as EGB and ESURF,
correspondingly. The total energy of binding is denoted as TOTAL.
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Table 2. Energy components (EVDW—van der Waals and EEL—electrostatic interaction energies;
EGB—polar and ESURF—non-polar solvation energies solvation energies; TOTAL—total energy of
binding) of the ligands complexed with the enzyme. The reference AChE inhibitor is GAL.

Compound EVDW
Kcal/Mol

EEL
Kcal/Mol

EGB
Kcal/Mol

ESURF
Kcal/Mol

TOTAL
Kcal/Mol

EEL + EGB,
Kcal/Mol

22 −47.15 −31.53 40.20 −5.96 −44.44 8.67

28 −47.40 −274.18 271.14 −5.39 −55.84 −3.05

21 −48.46 −324.22 320.09 −6.55 −59.14 −4.13

9 −54.68 −289.90 284.96 −6.18 −65.81 −4.95

29 −52.21 −259.20 257.11 −5.91 −60.20 −2.08

GAL −39.18 −278.77 277.42 −5.06 −45.59 −1.35

The most active compound 22 is the only one that is not charged at physiological pH.
Therefore, its van der Waals (EVDW), electrostatic (EEL), and polar (EGB) solvation values
are in a similar range. All other tested compounds, including GAL, have a charge +1 at
physiological pH. As expected, their electrostatic and polar solvation contributions are
dominant. It is evident, however, that for each compound, these values are very close and
almost cancel each other out. Thus, the main contribution to the total binding energy is
due to the EVDW term. The non-polar solvation contribution (ESURF) is essentially always
small and similar for all compounds.

Additional per-residue energy decomposition analysis for the studied compounds was
performed, as depicted in Figure 4. It can be seen that in the case of compound 22, Gly121
from the oxyanion sub-site, followed by Tyr337 from the anionic domain, considerably
contributed to the binding energy. Moreover, Trp86 and Phe338 from the anionic sub-site,
Gly120 and Gly122 from the oxyanion pocket, and His447 from the CAS contribute to the
binding energy. His447 had a significant contribution to the total energy of ligand 28 to
AChE, followed by Trp86, Gly120, Gly121, and Tyr337. In the case of compound 21, a
considerable contribution to the binding energy comes from Asp74 from the PAS, followed
by Trp86, Tyr341 (PAS), and His447; a sizeable contribution to the binding energy of 9 stems
from Trp86, followed by Gly121, Glu202, and Tyr337. The main contributing residue to the
total binding energy for compound 29 and the enzyme is Trp86 followed by Gly121 and
Glu202. The per-residue energy decomposition for the positive control, GAL, reveals that
Trp86, Gly121, Glu202, and Tyr337 are the most highly contributing ones.

Figure 4. Cont.
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Figure 4. Energy decomposition per residue of predicted compounds (A) 22, (B) 28, (C) 21, (D) 9,
(E) 29, and (F) GAL. The energy contribution larger than 1 kcal/mol is displayed.

To gain further insight into the intermolecular interactions between the ligands and
the enzyme during the course of the production, dynamics were analyzed using cpptraj
V4.14.0 [58]. Compound 22 forms in three hydrogen bonds. Two of them are formed
between the O atom from the carbonyl group of the linker and H atoms at N-terminus of
Gly121 and Gly122 (Figures 5A and S3A,B). The third hydrogen bond occurs between the
O atom from the carbonyl group from the pyridin-2-one moiety of 22 and H atom from the
hydroxyl group of Tyr337 (Figures 5A and S3C). The distance between the pyridin-2-one
ring of 22 and indole part of Trp86 is appropriate for a π–π contact (Figures 5A and S3D).
Distances between atoms during the course of simulation are shown in Figure S3A–D.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Intermolecular interactions between AChE and compound (A) 22 (in 329.8 ns), (B) 28 (in
486.4 ns), (C) 21 (in 988.4 ns), (D) 9 (in 557.6 ns), (E) 29 (in 654.8 ns), and (F) GAL (364.8 ns). Hydrogen
bonds are denoted as orange dashes. Distances between center of mass of π–π or π–p electrons,
prerequisite for π–π stacking or π–p contact, are denoted in blue dashes. Cation–π distances are
presented in magenta. Salt bridges are denoted with green dashes. Distances are presented in Å.
Residues are colored according to their energy contribution—blue colored ones favor the binding,
while red colored do not favor it. More saturated color indicates higher contribution. Ligands are
colored by element.

The complex with compound 28 is stabilized via six hydrogen bonds during molec-
ular dynamics. The NH group at the indole moiety acts as a hydrogen bond acceptor
and donor with the N-terminus from Gly121 and the carboxyl group from Glu202, re-
spectively (Figures 5B and S4A,B). Similarly, the OH group from Ser203 takes part in two
short-lasting hydrogen bonds with NH and CO groups from the indolinone part of 28
(Figures 5B and S4C,D). The N atom at His447 forms hydrogen bonds with both H atoms
at the quaternary ammonium group from the ligand (Figures 5B and S4E,F). The distance
between the positively charged ammonium atom and center of mas of Tyr337 is a precon-
dition for a cation–π interaction (Figures 5B and S4G). Centers of mass of indole moieties
of Trp86 and 28 are at an appropriate distance for π–π contact (Figures 5B and S4H). The



Molecules 2022, 27, 3139 11 of 19

distance and position between the centers of mass of His447 and the indolinone part of 28
are a prerequisite for stable π–π stacking observed for a long period during the simulation
(Figures 5B and S4I). Distances between atoms during the production dynamics are shown
in Figure S4A–I.

A salt bridge is formed during the simulation between the carboxyl group from
Asp74 and the quaternary ammonium group from ligand 21 (Figures 5C and S5A,B). One
hydrogen bond is formed between the H atom of the side chain hydroxyl group of Ser125
and an O atom from a CO group from the linker (Figures 5C and S5C). Indole moiety from
Trp86 is appropriately located for the formation a π–π contact with the indole part from
ligand 21 (Figures 5C and S5D). Terminal benzene ring of 21 reaches Tyr341 from PAS,
where a π–π interaction can be formed (Figures 5C and S5E). Distance plots in the course of
the simulation are presented in Figure S5A–E.

In the case of compound 9, four hydrogen bonds and one salt bridge stabilize the
complex with the enzyme (Figure 5D). A salt bridge is formed between the carboxyl
group from Glu202 and the quaternary ammonium group (Figures 5D and S6A,B). Three
hydrogen bonds occurred during the simulation between the O atom at the CO group
from the ligand’s linker and H atoms at N-terminus of Gly121 and Gly122, and one with H
atom from His447 (Figures 5D and S6C,D,F). The oxygen atom of the Tyyr337 hydroxyl
takes part in the fourth hydrogen bond with an H atom from the linker amino group
(Figures 5D and S6E). The distance between the indole part from Trp86 and the positively
charged ammonium atom is appropriate for a cation–π contact (Figures 5D and S6G).
Figure S6A–G shows the respective distance plots.

Two hydrogen bonds are formed between compound 29 and the enzyme. The first
one is between the hydroxyl hydrogen from Tyr133 and a O atom from indolinone moiety’s
carbonyl group. The second one is between carboxyl group from Glu202 and the amino
hydrogen from the indole part of the molecule (Figures 5E and S7A,B). The distance between
the center of mass of the indole moiety from Trp86 is appropriate for a cation–π interaction
with the positively charged ammonium atom of ligand 29 (Figures 5E and S7C). Distance
plots are presented in Figure S7A–C.

Additionally for comparison, we analyzed the interactions between the positive control
GAL and AChE (Figure 5F). Four hydrogen bonds stabilize the complex between both
partners. In three of them, O atom from GAL’s OH group takes part with Gly121, Glu202,
and His447, respectively (Figures 5F and S8A–C). The fourth one is formed between the
O atom at OH from Tyr337 and the hydrogen atom in the quaternary ammonium group
(Figures 5F and S8D). The centers of mass of the benzene ring from Tyr124 and Tyr337 are
at appropriate distances for cation–π contacts (Figures 5F and S8E,F). The distance between
the center of mass of the indole moiety from Trp86 and the double bond from GAL is
a prerequisite for π–π interaction (Figures 5F and S8G). For all of the discussed ligands,
multiple steric interactions stabilize the complexes during simulation.

Compounds 9 and 22 are quinolizidine-type alkaloids. Compound 9 is a lupinine
derivative containing terminal indole moiety, while compound 22 is a N-substituted cytisine
derivative with terminal phenyl ring. It has been shown that lupinine and its tetramethy-
lammonium derivative are reversible inhibitors of AChE [59]. Cytisine is used in smoking
cessation [60], but it does not inhibit AChE and BChE [61]. Additionally, quinolizidine
alkaloids are known to bind to nicotinic and muscarinic acetylcholine receptors (nAChR
and mAChR), as lupinine binds preferably to mAChR, while cytisine binds preferably to
nAChR [62]. Hupersine A, isolated from Huperzia serrata, is a quinolizidine-type alkaloid
acting as a reversible AChE inhibitor and NMDA receptor antagonist [63–66].

Compound 29 is a dicorynamine derivative. Dicorynamine is a β-carboline alka-
loid isolated from Dicorynia guianensis Amsh heartwood [67]. It has been found that
the crude extract of alkaloids demonstrates the maximum scavenging activity in the
ABTS model with IC50 = 90.07 µg/mL compared to the positive control ascorbic acid
(IC50 = 105.90 µg/mL) [67]. In our ABTS study, the dicorynamine derivative, 29, showed
80.94% ABTS activity, which is close to the positive control BHT, 92.38% (Table 1).
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Compounds 21 and 28 are indole-containing compounds. Their structures partially
resemble the structure of the indole alkaloid ibogaine found in Tabernaemontana species of
the Apocynaceae family. Ibogaine has been extensively studied for anti-addictive properties,
but clinical trials failed due to cardiotoxicity [68]. Additionally, ibogain-type alkaloids
like catharanthine and coronaridine congeners have been found to selectively inhibit the
nAChRs and Cav2.2 channels, and to potentiate GABA A receptors [69–72]. Ibogaine
and coronaridine are NMDA receptor antagonists, with Ki = 1.1 µM and Ki = 6.2 µM,
respectively [73].

4. Materials and Methods
4.1. Virtual Screening by Molecular Docking

Approximately 150,000 natural compounds collected from 11 freely available databases
in ZINC12 were screened virtually by molecular docking. The structures were docked into
the X-ray structure of recombinant human acetylcholinesterase (rhAChE, pdb id: 4EY6,
R = 2.40 Å) [6]. The docking simulations were performed with GOLD v.5.2.2 [CCDC Ltd.,
Cambridge, UK] using a previously described and optimized-for-this-system protocol [45–51].
The following settings were used: scoring function ChemPLP, rigid protein, flexible ligand,
and a radius of the binding site of 6 Å around the crystallographic structure of GAL.
For each ligand, 100 poses were generated. The structural water molecule HOH846B,
forming bridging interactions between the crystallographic GAL and enzyme, was excluded
from the docking calculations due to the diversity of the screened ligand structures. The
highest scored pose for each ligand was considered. The protocol was validated as the
crystallographic structure of GAL was removed from the complex and redocked again at
the described settings.

4.2. ADME Filters

The tested compounds were screened by several ADME filters. The BOILED-Egg
(Brain Or Intestinal EstimateD permeation) method based on the lipophilicity and polarity
of small molecules [74] implemented in the SwissADME server [41] was used to predict the
BBB permeability of the ligands. Lipinski’s filter, also known as the ‘rule of five’, is based
on experimental and computational approaches to estimate solubility and permeability
in drug discovery [75]. A knowledge-based approach for qualitative and quantitative
characterization of known drug databases is used in the Ghose’s filter [76]. The Veber’s
filter is based on two criteria: number of rotatable bonds and polar surface area, which are
in a good correlation with the experimental oral bioavailability data for over 1100 drug
candidates [77]. A statistical model for the recognition of passive intestinal absorption
is applied in the Egan’s filter [78]. The Muegge’s criterium presents a pharmacophore
point filter using so called “chemical wisdom” that is unbiased from fitting the structural
content of specific drug databases to prediction models [79]. The GI absorption prediction
is based on the BOILED-Egg method [74]. PAINS alerts help in the identification of frequent
hitters or promiscuous compounds in many biochemical high throughput screens based on
substructural features [80]. Liead-like combinatorial libraries designed by Teague et al. are
applied in the lead-likeness filter [81].

4.3. Visual Inspection

The molecules that passed the ADME filters were visually inspected by two criteria:
position within the binding gorge, namely if the ligand is placed in the binding site near the
PAS or deeply in the CAS; and a size of at least 5 Å for the aromatic moiety was chosen as a
requirement to retain the ligand in the binding site. The size was defined as the distance
between two terminal heavy atoms of the aromatic ring placed in CAS. The size of the
aromatic moiety of GAL in CAS is 6.033 Å.

A mandatory condition for hit selection was the vendor availability and ChemPLP
score higher than that of GAL.
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4.4. Molecular Dynamic Simulations and Trajectory Analyses
4.4.1. System Preparation

The coordinates of pdb id: 4EY6 were used as initial ones for the complex between
AChE and GAL [6]. The structural water molecule HOH846B was kept for all MD simula-
tions. As the X-ray AChE structure contains missing regions between residues 258 and 262
as well between 491 and 496, the Ace and NMe caps were added at both ends as well as at
both terminal residues of the protein chain. Missing chain regions are far from the ACh
binding site on AChE and do not influence the final results. The protein chain was solvated
in a truncated octahedral box with TIP3P water [82] as a saline, as the system was kept
neutral. The initial coordinates for the selected hit compounds were taken from the docking
calculations. Ligand protonation states and charges at physiological pH were used as the
pKa values were predicted using ACD/logD tool (Advanced Chemistry Development, Inc.,
ACD/Labs). Ligand parameters were obtained using the general Amber force field (GAFF
2.11) [83] with AM1-BCC charges [84].

4.4.2. Molecular Dynamic Simulations

The solvated systems were subject to energy minimization, then heated to 300 K for
1 ns, followed by 1 ns of constant pressure density equilibration. Next, the systems were
equilibrated for 1 ns under constant temperature (300 K) and pressure (1 bar), using the
Langevin thermostat [85] and Berendsen barostat [86], respectively. They were simulated
for 1000 ns (1 µs) of production dynamics with the ff14SB force field [87] under periodic
boundary conditions. Frames were saved every 200 ps (0.2 ns) for a total of 5000 per
trajectory, to be used in subsequent analysis.

4.4.3. Trajectory Processing and MM-GBSA Calculations

The stability of the systems was evaluated via root-mean-square deviations (RMSD) for
ligand-heavy atoms, protein carbon alpha (Cα), and root-mean square-fluctuations (RMSF)
with respect to the starting coordinates for protein Cα atoms with cpptraj V4.14.0 [58]. For
each complex trajectory, the enthalpy of binding between the AChE and the ligand (∆H)
was computed with the MMPBSA.py tool [88], part of the Amber18 package. We used the
end-state free energy method, MM-GBSA (molecular mechanics-generalized Born surface
area), which includes an implicit solvent analogous to MM-PBSA (molecular mechanics
Poisson–Boltzmann surface area) but is computationally cheaper than MM-PBSA [42].

4.5. AChE Inhibitory Activity

The compounds selected for testing were purchased from InterBioScreen Ltd.
The microplate assay used for measuring AChE inhibitory activity was performed

in 96-well plates using a modified method of Ellman et al., 1961 [89], as described by
López et al., 2002 [90]. Acetylthiocholine iodide (ATCI) in solution with 5,5′-dithiobis(2-
nitrobenzoic acid) (DTNB) was used as a substrate for the acetylcholinesterase from Elec-
trophorus electricus (Sigma-Aldrich, Darmstadt, Germany). All compounds were tested at
concentrations from 10−2 to 10−8 M. Fifty microliters of AChE (0.25 U/mL) dissolved in
phosphate buffer (8 mM K2HPO4, 2.3 mM NaH2PO4, 0.15 M NaCl, pH 7.5) and 50 µL of the
samples dissolved in the same buffer were added to the wells. The plates were incubated
for 30 min at room temperature before the addition of 100 µL of the substrate solution
(0.04 M Na2HPO4, 0.2 mM DTNB, 0.24 mM ATCI, pH 7.5). The absorbances were read
in a microplate reader (BIOBASE, ELISA-EL10A, China) at 405 nm after 3 min. Enzyme
activity was calculated as inhibition percentage compared to an assay using a buffer instead
of inhibitor. GAL was used as a positive control. The AChE inhibitory data were then
analyzed with the software package Prism 9 (Graph Pad Inc., San Diego, CA, USA). The
IC50 values were measured in triplicate and the results are presented as means ± SD.
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4.6. Antioxidant Activity. ABTS Radical Scavenging Activity

2,2′-azinobis-(3-ethylbenzothiazine-6-sulfonic acid) (ABTS), potassium persulphate,
and butylhydroxy toluol (BHT) were purchased from Sigma-Aldrich. For ABTS assay,
the procedure followed the method of Grochowski et al. [91] with some modifications.
The stock solutions included 7 mM ABTS solution and 2.4 mM potassium persulphate
solution. The working solution was then prepared by mixing the two stock solutions in
equal quantities and allowing them to react for 14 h at room temperature in the dark. The
solution was then diluted by mixing 2 mL ABTS solution with 50 mL methanol to obtain
an absorbance of 0.705 ± 0.05 units at 734 nm using a Shimatzu 1203 UV-VIS spectropho-
tometer (Japan). A fresh ABTS solution was prepared for each assay. One millimeter of
each com-pound (125 µL) was allowed to react with 1850 µL of the ABTS solution, and the
absorbance was taken at 734 nm after 7 min. The control contains 125 µL methanol and
1850 µL of the ABTS solution. All determinations were performed in triplicate (n = 3). The
results were expressed as % ABTS activity, using the following equation: % ABTS radical
scavenging activity = ((Acontrol–Asample)/Acontrol) × 100, where Acontrol is the absorbance
of the control, while Asample is the absorbance of the sample. Butylhydroxytoluene (BHT)
(1 mM in MeOH) was used as a positive control.

5. Conclusions

In the present study, five novel naturally originating hits were discovered by multistep
virtual screening as promising AChE inhibitors. Two of them (9 and 22) are quinolizidine-
type alkaloids, another two (21 and 28) belong to the indole-type alkaloid family, and one
(29) is a β-carboline-type alkaloid. Their anti-AChE activities range from 0.39 to 5.7 mM.
Additionally, 29 and 28 showed high antioxidant activity. Surprisingly, one powerful an-
tioxidant compound was discovered as well. This is compound 16, which has no AChE
activity but possesses antioxidant activity higher than that of the positive control butylhy-
droxytoluene. The post-MD simulation analyses reveals the structural features responsible
for AChE binding. These are the carbonyl group from the linker and the pyridin-2-one
moiety of 22; the quaternary amonium groups of 9, 21, 22, and 29; the amide group from
the linker; and the quinolizidine moiety of 9. All together these findings show that the
novel molecules are promising hits for further lead optimization and development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103139/s1, Figure S1: Ligands heavy atoms (up)
and protein backbone C-atoms RMSDs (in the middle) and RMSFs (down) for AChE; Figure S2:
Convergence of enthalpies with excluded and included solvent interactions. Figure S3. Distance
plots over the course of simulation for compound 22. (A) between H atom at N-terminal from Gly121
and O atom at CO group from the linker; (B) between H atom at N-terminal from Gly122 and O
atom at CO group from the linker; (C) between H atom at OH group from Tyr337 and O atom
at CO group from pyridin-2-one; (D) between indole part of Trp86 and pyridin-2-one. Figure S4.
Distance plots over the course of simulation for compound 28. (A) between H atom at N-terminal
from Gly121 and N atom from indole moiety; (B) between the carboxyl group from Glu202 and
H atom at NH group from indole moiety; (C) between O atom in OH group from Ser203 and H
atom in NH group from indolinone; (D) between H atom in OH group from Ser203 and O atom
in carbonyl group from indolinone; (E) between N atom from His447 and H1 atom in quaternary
ammonium group; (F) between N atom from His447 and H2 atom in quaternary ammonium group;
(G) between the positively charged N atom and Tyr337; (H) between Trp86 and indole part, and (I)
between His447 and indolinone moiety. Figure S5. Distance plots over the course of simulation for
compound 21. (A) between carboxyl group from Asp74 and H atom in quaternary ammonium group;
(B) between carboxyl group from Asp74 and positively charged N atom; (C) between H atom at OH
group from Ser125 and O atom in CO group from the linker; (D) between indole moieties from Trp86
and 21; (E) between Tyr341 and benzene. Figure S6. Distance plots over the course of simulation for
compound 9. (A) between carboxyl group from Glu202 and H atom in quaternary ammonium group;
(B) between carboxyl group from Glu202 and positively charged N atom; (C) between H atom at
N-terminus from Gly121 and O atom at CO group from linker; (D) between H atom at N-terminus
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from Gly122 and O atom in CO group from linker; (E) between O atom in CO group from Tyr337 and
H atom in amino group from the linker; (F) between the H atom at NH from His447 and O atom at
the carbonyl group from the linker; (G) between indole moiety from Trp86 and cation in quaternary
ammonium group. Figure S7. Distance plots over the course of simulation for compound 29. (A)
between H atom in OH group from Tyr133 and O atom in CO group; (B) between COO- from Glu202
and H atom in NH group from indole part; (C) between the indole moiety of Trp86 and positively
charged ammonium atom. Figure S8. Distance plots over the course of simulation for GAL. (A)
between H atom in NH group from Gly121 and O atom in OH group; (B) between COO- from Glu202
and H atom in NH group from indole part; (C) between the H atom from His447 and O atom in
OH; (D) between O atom in OH from Tyr337 and H atom in NH; (E) between the benzene of Tyr124
and positively charged ammonium atom; (F) between the benzene of Tyr337 and positively charged
ammonium atom; (G) between the indole moiety of Trp86 and the unsaturated double bond. Table S1:
Natural compounds selected as potential AChE inhipitors by docking-based virtual screening and
ADME filtering. Blue lines separate the different structural groups. The stable complexes from MD
simulations are denoted in bold. The galantamine derivatives are presented in italics. Table S2. A
three-step procedure of molecule selection for anti-AChE screening. ChemPLP scores from docking,
averaged enthalpies with included solvent interactions, and sum of both absolute values are shown.
The selected compounds are given in bold.
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