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Abstract

Objective: People with Parkinson disease (PD) frequently develop dementia,

which is associated with neocortical deposition of alpha-synuclein (a-syn) in

Lewy bodies and Lewy neurites. In addition, neuronal loss and deposition of

aggregated a-syn also occur in multiple subcortical nuclei that project to neo-

cortical, limbic, and basal ganglia regions. Therefore, we quantified regional

deficits in innervation from these PD-affected subcortical nuclei, by measuring

the neurotransmitters and neurotransmitter transporter proteins originating

from projections of dopaminergic neurons in substantia nigra pars compacta,

serotonergic neurons in dorsal raph�e nuclei, noradrenergic neurons in locus

coeruleus, and cholinergic neurons in nucleus basalis of Meynert. Methods:

High-performance liquid chromatography and novel enzyme-linked

immunosorbent assays were performed to quantify dopaminergic, serotonergic,

noradrenergic, and cholinergic innervation in postmortem brain tissue. Eight

brain regions from 15 PD participants (with dementia and Braak stage 6 a-syn
deposition) and six age-matched controls were tested. Results: PD participants

compared to controls had widespread reductions of dopamine transporter in

caudate, amygdala, hippocampus, inferior parietal lobule (IPL), precuneus, and

visual association cortex (VAC) that exceeded loss of dopamine, which was only

significantly reduced in caudate and amygdala. In contrast, PD participants had

comparable deficits of both serotonin and serotonin transporter in caudate,

middle frontal gyrus, IPL, and VAC. PD participants also had significantly

reduced norepinephrine levels for all eight brain regions tested. Vesicular acetyl-

choline transporter levels were only quantifiable in caudate and hippocampus

and did not differ between PD and control groups. Interpretation: These

results demonstrate widespread deficits in dopaminergic, serotonergic, and

noradrenergic innervation of neocortical, limbic, and basal ganglia regions in

advanced PD with dementia.

ª 2015 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

949

http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

The defining histopathologic feature of Parkinson disease

(PD) is the accumulation of misfolded alpha-synuclein

(a-syn) protein in Lewy bodies and Lewy neurites.1

Postmortem examinations of PD brains indicate stage-

dependent deposition of aggregated a-syn and topo-

graphical neuronal loss in multiple subcortical nuclei2

including substantia nigra, nucleus basalis of Meynert

(cholinergic),3 locus coeruleus (noradrenergic),4 and

dorsal raphe nuclei (serotonergic).5,6 Neocortical accu-

mulation of a-syn accompanies the development of

dementia that commonly occurs in PD and likely con-

tributes to impaired function of cortical neurons.7–9

However, the affected subcortical nuclei project rostrally

to striatal, limbic, and neocortical regions; and the loss

of innervation from these nuclei may also contribute to

impaired executive, visuospatial, attentional, and mem-

ory function in PD.

Cognitive and psychiatric changes in PD are linked in a

variety of ways to alterations in multiple neurotransmitter

systems.10–14 Previous studies have measured levels of

individual neurotransmitters or transporter proteins in a

limited number of regions such as caudate, putamen, and

neocortex.15–17 However, few studies have examined the

degree to which deficits in multiple neurotransmitter sys-

tems occur across neocortical and limbic regions.

The aim of the current study was to determine the

extent of regional deficits in dopaminergic, serotonergic,

noradrenergic, and cholinergic innervation in postmortem

tissue from those that had advanced PD and dementia and

neurologically normal controls. We combined measures of

neurotransmitters and corresponding transporter proteins

in basal ganglia, limbic, and neocortical regions. We used

high-performance liquid chromatography (HPLC) to mea-

sure neurotransmitter levels and developed novel sandwich

enzyme-linked immunosorbent assays (ELISAs) to mea-

sure relevant transporters. The results indicate widespread

loss of dopaminergic, serotonergic, and noradrenergic

innervation in advanced PD.

Materials and Methods

Standard protocol approvals and patient
consents

The Human Research Protection Office at Washing-

ton University in Saint Louis approved this study.

Written informed consent to perform a brain autopsy

was obtained from all participants. After death, the

immediate next-of-kin were contacted and confirmed

consent for brain removal and retention for research

purposes.

Study participants

The cohort included 15 PD participants with dementia and

six healthy age-matched neurologically normal control par-

ticipants. All PD participants and one control participant

were recruited through the Movement Disorders Center

(MDC), and five control participants were recruited

through the Knight Alzheimer Disease Research Center

(ADRC); both centers are located at Washington University

in Saint Louis. PD participants had a clear response to levo-

dopa (L-DOPA). Postmortem brain tissue was collected

between April 2008 and May 2013. Inclusion criteria for

the study were (1) PD participants who had a clinical diag-

nosis of idiopathic PD based on the United Kingdom

Parkinson Disease Society Brain Bank diagnostic criteria18

and either Clinical Dementia Rating (CDR global score) ≥1
or a clinical diagnosis of dementia; and (2) control partici-

pants with no family history of PD and no dementia

(CDR ≤ 0.5). Exclusion criteria for all participants were (1)

any neurological diagnosis other than PD; (2) psychiatric

disorders other than depression or anxiety; and (3) unwill-

ingness to consent to brain autopsy.

Motor assessments

MDC clinicians evaluated motor symptoms using the

Unified Parkinson Disease Rating Scale motor subscale III

(UPDRS-III). Evaluations were performed on anti-parkin-

sonian medications.

Dementia ratings

Dementia was rated using the CDR scale by experienced

raters. The CDR included assessment of whether cognitive

dysfunction was sufficiently severe to impair activities of

daily living. PD participants with CDR ≥ 1, in accordance

with criteria for dementia in PD,19 were included in the

study. PD participants were included in the study regard-

less of the time of onset of cognitive decline or dementia

(as elicited by history) relative to the onset of motor

symptoms.

Tissue dissection

The protocols to retrieve, dissect, preserve, perform

histology and immunohistochemistry, and diagnose with

established neuropathologic diagnostic criteria are rou-

tinely done in the Betty Martz Laboratory of the Knight

ADRC.20 The brain regions were dissected from frozen

1 cm coronal slices and included the body of the caudate

nucleus; gray matter from anterior cingulate gyrus

(ACG), middle frontal gyrus (MFG), inferior parietal lob-

ule (IPL), precuneus, and visual association cortex
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(VAC); hippocampus/entorhinal cortex; and amygdala.21

Detailed procedures of tissue handling and dissection are

described further in Data S1.

Extraction and analysis of
neurotransmitters by HPLC

Neurotransmitters dopamine (DA), serotonin (5HT), and

norepinephrine (NE) were extracted and analyzed by

HPLC with electrochemical detection using a method

modified from Xia et al.22 described in Data S1.

Extraction and analysis of neurotransmitter
transporter proteins by ELISA

The extraction method for transporter proteins was

adapted from previously published methods23 and is

described in Data S1. Capture and detection antibodies

used for dopamine transporter (DAT), serotonin trans-

porter (SERT), and vesicular acetyl choline transporter

(VAChT) sandwich ELISAs were screened from commer-

cially available antibodies (Table S1). DAT recombinant

protein from Novus Biologicals, LLC, Littleton, CO

(H00006531-P01) was used as a standard for DAT ELISA.

SERT and VAChT ELISAs used recombinant SERT and

VAChT that were expressed as his-tag proteins in

HEK293FT cells and purified by Nickel affinity chro-

matography based on previous methods,24 described in

more detail in Data S1. The sandwich ELISA protocols

were optimized for each neurotransmitter transporter

protein and also are described in detail in Data S1.

Statistical analysis

Data were analyzed using GraphPad Prism software, ver-

sion 4 (Graph Pad Software, Inc., La Jolla, CA) with

details described in Data S1. Due to unequal group sizes

and non-normal distribution of data points, nonparamet-

ric Mann–Whitney U tests were applied to compare

groups for HPLC and ELISA data. All tests were two-tailed

and corrected for multiple comparisons with the Holm–
Bonferroni method25 using a significance level of 0.05.

Results

Demographics and clinical information of
participants

Table 1 summarizes the demographics and clinical infor-

mation of the study participants. Age at death did not

significantly differ between control and PD participants

(Table 1). The male/female ratio was higher in PD

compared to controls (Table 1). Detailed clinical and

pathological information for each participant is included

in Table S2.

Assay performance characteristics for HPLC
and ELISA assays

The HPLC assay lower limits of quantification (LLOQs)

were 0.025 ng/mL for both DA and NE, and 0.10 ng/mL

for 5HT, corresponding to 0.125 ng/g wet wt for DA and

NE, and 0.5 ng/g wet wt for 5HT. The percent coeffi-

cients of variation (%CVs) for DA, 5HT, and NE assays

are reported in Table S3.

Specificity of the ELISA antibodies used for the quan-

tification of DAT, SERT, and VAChT were confirmed by

immunoprecipitation (IP) and western blotting (WB)

(Fig. S1). Representative standard curves for each ELISA

are shown in Fig. S2. The ELISA LLOQs for DAT, SERT,

and VAChT were 0.1, 0.016, and 0.3 ng/mL in the ELISA

well, respectively, which corresponded to 3.3, 0.5, and

9.9 ng/mL in the extracts, and 33, 5, and 99 ng/g wet wt

tissue. Since all group comparisons were performed for

an individual brain region within the same plate and no

comparisons were performed between plates, intraplate %

Table 1. Demographics and clinical information of the study

participants1.

Controls PD with dementia P

Demographics

Participants, N 6 15 NA

Age at death, y 84 (70–100) 79 (71–93) 0.512

Male/female, N 2/4 12/3 0.043

Clinical characteristics of PD participants with dementia

Age at PD diagnosis, y NA 63 (54–82) NA

Duration of motor

impairment, y

NA 14 (8–27) NA

UPDRS-III score

(OFF medications)

NA 44 (35–73.5) NA

LEDD, mg NA 800 (0–1350) NA

SSRI medications, N NA 10/15 NA

Other antidepressant

medications4, N

NA 2/15 NA

AChE inhibitor

medications5, N

NA 8/15 NA

Neuroleptic

medications6, N

NA 14/15 NA

NA, not applicable; UPDRS, Unified Parkinson Disease Rating Scale;

LEDD, levodopa equivalent daily dose; SSRI, selective serotonin reup-

take inhibitors; AChE, acetylcholinesterase.
1Values are medians (range) unless otherwise indicated.
2Mann–Whitney U test.
3Chi-square test.
4Mirtazepine and venlafaxine.
5Donepezil, rivastigmine, and galantamine.
6Quetiapine and clozapine.
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CVs were the most relevant measures of assay consistency,

which are included in Table S3.

Neurotransmitter and transporter measures

DA and DAT

PD participants had significantly lower DA levels com-

pared to control participants for caudate and amygdala

(Fig. 1, Table 2). DA levels for control and PD partici-

pants in MFG, ACG, hippocampus, IPL, precuneus, and

VAC did not significantly differ (Fig. 1). Table 2 lists

levels of DA in PD expressed as a percentage of controls

and their corresponding P values for all brain regions.

PD participants had widespread significant reductions in

DAT levels compared to control participants for caudate,

hippocampus, amygdala, IPL, precuneus, and VAC (Fig. 1,

Table 2). DAT levels in MFG and ACG did not significantly

differ between control and PD participants (Fig. 1, Table 2).

5HT and SERT

PD participants had significantly lower 5HT levels com-

pared to control participants for four of the eight brain

regions tested, which include caudate, MFG, IPL, and

VAC (Fig. 2, Table 2), whereas 5HT levels did not differ

between control and PD participants for ACG, hippocam-

pus, amygdala, and precuneus (Fig. 2, Table 2).

Similar to 5HT, PD participants also had significantly

lower SERT levels compared to control participants for

the same brain regions that include caudate, MFG, IPL,

and VAC (Fig. 2, Table 2), but not for ACG, hippocam-

pus, amygdala, and precuneus.

NE

PD participants had significantly lower NE levels com-

pared to control participants for all eight brain regions

tested, which include caudate, MFG, ACG, hippocampus,

amygdala, IPL, precuneus, and VAC (Fig. 3, Table 2).

VAChT

VAChT levels were below the LLOQ for samples from

MFG, ACG, amygdala, IPL, precuneus, and VAC. VAChT

levels were only quantifiable and did not significantly differ

between PD and control participants for caudate and

hippocampus (Fig. S3).

Neurotransmitter/transporter ratios

DA/DAT ratio was higher in caudate compared to other

brain regions in controls, whereas caudate DA/DAT was

dramatically lower in PD and similar to other regions in

PD (Table S4). 5HT/SERT ratios were similar across all

regions for controls and PD.

Relationship between neurochemical
measures, clinical and pathological features

We grouped PD participants (n = 15) according to differ-

ent pathological subtypes; a-syn only (n = 6); a-syn with

amyloid b (Ab) deposition (Braak amyloid stages B–C)
(n = 7); and a-syn with Ab plus at least moderate neocorti-

cal tau deposition (Braak tau stages 5–6) (n = 2).26 Since

the sample size for the a-syn with Ab plus tau group was

too low to allow statistical testing, we compared the a-syn
only and a-syn with Ab deposition groups and did not find

any significant group differences in any of the neurotrans-

mitter or transporter measures. Furthermore, we did not

find any significant correlations between neurochemical

measures and CDR, Mini Mental State Examination

(MMSE), or UPDRS-III scores within PD participants,

when corrected for multiple comparisons.

Discussion

Postmortem analysis of multiple brain regions in advanced

PD with dementia compared to age-matched neurologically

normal controls revealed widespread reductions in neuro-

transmitter levels of DA, 5HT, and NE, along with reduc-

tions in their corresponding transporter proteins, DAT and

SERT. PD participants had reduced dopaminergic innerva-

tion in six brain regions as reflected by significantly reduced

DAT levels in caudate, hippocampus, amygdala, IPL, pre-

cuneus, and VAC. Reduced DAT levels were accompanied

by reduced DA in only two regions (caudate and amyg-

dala), which likely reflects exogenous L-DOPA administra-

tion. PD participants had reduced serotonergic innervation

in four brain regions (caudate, MFG, IPL, and VAC). In

contrast to the dopaminergic system, regional reductions of

5HT matched that of SERT. Finally, PD participants had

marked reductions in noradrenergic innervation, reflected

by reduced NE levels in all brain regions tested including

caudate, MFG, ACG, hippocampus, amygdala, IPL, pre-

cuneus, and VAC. In contrast to the reductions in

dopaminergic, serotonergic, and noradrenergic systems, we

did not observe PD-related reductions in VAChT levels,

but we were only able to quantify VAChT in caudate and

hippocampus. The observed deficits in dopaminergic, sero-

tonergic, and noradrenergic innervation of multiple brain

regions provide insights into PD-related brain dysfunction,

particularly in the context of PD with dementia.

Measurements of DAT revealed more widespread

dopaminergic deficits compared to DA. Relative preserva-
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tion of DA levels in regions where DAT losses occur likely

reflects exogenous L-DOPA administration that increases

DA concentration in brain regions with residual DOPA

decarboxylase activity yet does not affect DAT on residual

dopaminergic presynaptic terminals. Similarly, exogenous

L-DOPA could lead to higher than normal levels of DA in

Figure 1. Comparison of DA and DAT levels between control and PD with dementia participants. DA and DAT levels in control and PD with

dementia for caudate (A), middle frontal gyrus (B), anterior cingulate gyrus (C), hippocampus (D), amygdala (E), inferior parietal lobule (F),

precuneus (G), and visual association cortex (H). Statistically significant group differences (P < 0.05) are indicated by an asterisk. DA, dopamine;

DAT, dopamine transporter; PD, Parkinson disease.
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some cortical regions that could potentially relate to

drug-induced cognitive side effects.27 The differences in

DA/DAT ratios among different brain regions in controls

likely reflect regional differences in DOPA decarboxylase

and DA storage capacities for intact DAT-containing

presynaptic terminals. Alternatively, nonselective DA

uptake by SERT or NET also could influence DA/DAT

ratios.28 Higher levels of DA synthesis and storage com-

pared to DAT are likely to cause the significantly higher

DA/DAT ratio measured in caudate compared to cortical

regions in controls (caudate, 0.63; cortical regionsmedian,

0.02). The lower caudate DA/DAT ratio (0.08) in PD

patients indicates a relative loss in DA synthesis and stor-

age capacity for the remaining DAT-containing terminals.

In contrast, regional reductions of 5HT matched reduc-

tions of SERT in PD and the relative invariance of 5HT/

SERT ratios across regions in both controls and PD suggest

that exogenous drug administration does not influence

these ratios. PD-related degeneration of 5HT neurons

equally affects local 5HT concentration and presynaptic

terminal membranous SERT, a major difference between

the 5HT/SERT system and the DA/DAT system in PD.

Dramatic reductions of NE levels in all brain regions

reflects extensive loss of innervation from locus coeruleus

neurons, which may further contribute to cortical neuron

dysfunction related to local synucleinopathy in advanced

PD. The loss of NE secondary to locus coeruleus lesions

in animal models alters cerebral oxidative metabolism

and blood flow,29 which fits with the observed excessive

oxidative metabolism in mildly affected, never-medicated

PD patients and could indicate uncoupling of oxidative

phosphorylation.30 Altered oxidative metabolism as well

as other consequences of noradrenergic deficits, including

altered neuroinflammatory pathways,31–33 may contribute

to attention, cognitive, or mood dysfunction in PD.

Our observed neurotransmitter and transporter deficits

in caudate agree with a number of previous studies. The

reduced caudate levels of DAT for PD participants in our

study agree with previously reported reductions in striatal

DAT by autoradiography,34 immunohistochemistry and

WB,35 positron emission tomography (PET),15 and single

photon-emission computed tomography (SPECT) imag-

ing.36 The magnitude of DA and DAT reductions in cau-

date (2.5% and 17.5% of controls, respectively) is greater

in our study compared to two other studies, which

observed reductions in DA and DAT markers in caudate

ranging from 9% to 30% of controls, and more pro-

nounced reductions (2–3% of controls) in putamen.16,37

The reduced caudate SERT levels in our study agree with

previous measurements of caudate 5HT,38 and with previ-

ous measurements of caudate SERT levels by WB analy-

sis,16 PET,39 and SPECT imaging.40 Reduced caudate NE

was observed in one prior study,41 while another study

did not detect changes in caudate NE.37 Our VAChT

measurements are consistent with findings of in vivo PET

imaging in neurologically normal individuals, where the

density of VAChT is higher in the striatum and hip-

pocampus compared to neocortical regions.42,43

A few previous studies reported neurotransmitter

changes in cortical regions although they examined a

smaller number of regions compared to our study. Our

findings confirm the absence of significant DA loss in

frontal and cingulate cortex for PD participants on L-

DOPA despite reductions of DA in caudate.38 Similar

changes in the levels of 5HT were observed in frontal

cortex, but unlike our study, significant reductions of

5HT were observed in cingulate cortex.38 Interestingly,

the same group also observed widespread deficits in NE

levels in frontal, cingulate, hippocampus, and entorhinal

cortex, although the relative differences between control

and PD was less pronounced than in our study. The sig-

nificant reductions in NE in frontal cortex observed by

Goldstein et al.41 also agree with our study. Modest dis-

crepancies in findings between our study and these other

Table 2. Levels of neurotransmitters and transporters in PD with dementia as a percentage of controls in all brain regions.

DA DAT 5HT SERT NE

%C P %C P %C P %C P %C P

Caudate 2.5 0.001 17 0.003 31.6 0.003 38.5 0.007 7.3 0.001

MFG 158 0.79 97.3 0.5 19.7 0.001 19 0.005 9.65 0.001

ACG 120 0.9 115.4 0.8 52.5 0.011 68.3 0.17 3.9 0.002

Hippocampus 106 0.46 37.5 0.002 67.4 0.2 102.8 0.97 27.3 0.007

Amygdala 27.8 0.001 18.1 0.001 60.5 0.06 74.6 0.11 10.92 0.002

IPL 140.3 0.84 35 0.001 16.8 0.001 32.13 0.001 4.2 0.001

Precuneus 198.3 0.41 36.5 0.001 68.6 0.63 66.4 0.213 17.6 0.001

VAC 176 0.67 41.8 0.003 11.8 0.003 9.9 0.001 15.8 0.001

Shaded boxes represent measures that were significantly different between control and PD with dementia at P < 0.05, adjusted for multiple

comparisons performed for each measure. DA, dopamine; DAT, dopamine transporter; 5HT, serotonin; SERT, serotonin transporter; NE,

norepinephrine; C, control; MFG, middle frontal gyrus; ACG, anterior cingulate gyrus; IPL, inferior parietal lobule; VAC, visual association cortex.
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studies may be related to differences in disease duration,

severity of disease, cognitive status, drug exposure, or

analysis methods.

Novel aspects of our study include the analysis of a large

number of brain regions, and the simultaneous

measurement of multiple neurotransmitters with their

Figure 2. Comparison of 5HT and SERT levels between control and PD with dementia participants. 5HT and SERT levels in control and PD with

dementia for caudate (A), middle frontal gyrus (B), anterior cingulate gyrus (C), hippocampus (D), amygdala (E), inferior parietal lobule (F),

precuneus (G), and visual association cortex (H). Statistically significant group differences (P < 0.05) are indicated by an asterisk. 5HT, serotonin;

SERT, serotonin transporter; PD, Parkinson disease.
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corresponding transporters in a homogenous population of

end-stage PD. Such concurrent measurements have not

been reported previously, with the exception of two studies

that measured only striatal neurotransmitters and trans-

porters for just dopaminergic and serotonergic systems.16,37

Unlike PET44 or SPECT45 imaging radioligands that bind

to multiple members of the neurotransmitter transporter

family, the DAT, SERT, and VAChT ELISAs developed in

this study are highly specific based on the epitopes recog-

nized by the capture and detection antibodies. These mea-

sures were further validated using IP and WB. The results

from the novel ELISAs agree with previous findings of

transporter reductions, suggesting consistency and reliabil-

ity of the developed assays. Moreover, ELISAs offer an

advantage in sensitivity and throughput compared to

immunohistochemical or WB methods.16,35,46,47 Further-

more, the higher sensitivity of the ELISAs enabled quantifi-

cation of DAT and SERT in multiple cortical regions where

levels are significantly lower than caudate.

This study has several limitations. The modest sample

size and homogeneously severe cognitive impairment pre-

cluded analysis of whether the neurotransmitter or trans-

porter differences relate to specific cognitive phenotypes

associated with PD. The number of males and females was

not equal, particularly in the PD group. The higher per-

centage of males within the PD group reflects to some

extent the higher prevalence of PD in males,48,49 and also

may be explained by sex differences in participation in the

study or in the death rates among the PD participants. The

widespread and dramatic differences between PD and con-

trol participants are unlikely to be explained by differences

in sex ratios between the two groups, but the possibility

exists that sex may have small influences on baseline levels

which only can be excluded with further studies of larger

sample sizes. The small sample sizes (n = 2–3) obtained

when groups were subdivided based on sex prevented

within group or between group comparisons to investigate

this further using nonparametric statistics. Some measure-

ments demonstrate significant dispersion not only in PD

participants, where variability in disease manifestation may

contribute, but also in control participants. In addition to

biologic variability, additional contributing factors specific

to the nature of this study include variability related to

postmortem intervals, dissection of postmortem tissue, and

drug exposure. The lack of an ELISA for quantification of

NET limited our ability to further assess and confirm the

loss of noradrenergic innervation throughout the brain

regions examined. VAChT ELISA was not sufficiently sensi-

tive to measure VAChT levels in cortical regions, and thus

we were not able to determine whether degeneration of

nucleus basalis cholinergic neurons results in altered

cholinergic innervation of these brain regions.

Our results demonstrate widespread deficits in

dopaminergic, serotonergic, and noradrenergic innerva-

tion of neocortical, limbic, and basal ganglia regions in

advanced PD with dementia. Our data do not prove

Figure 3. Comparison of NE levels between control and PD with dementia participants. NE levels in control and PD with dementia for caudate

(A), middle frontal gyrus (B), anterior cingulate gyrus (C), hippocampus (D), amygdala (E), inferior parietal lobule (F), precuneus (G), and visual

association cortex (H). Group differences were statistically significant for all of the brain regions tested (P < 0.05), as indicated by an asterisk. NE,

norepinephrine; PD, Parkinson disease.
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whether these findings reflect the presence or absence of

dementia. Future enrollment of additional PD partici-

pants with mild and no cognitive impairment will enable

further characterization of the range of neurotransmitter

and transporter deficits in PD, and determine whether

levels are correlated with specific cognitive phenotypes.

The novel DAT and SERT ELISAs could be further

extended to other disorders, such as schizophrenia, Tour-

ette’s syndrome, attention deficit hyperactivity disorder,

or depression, where dysregulation of DAT or SERT are

implicated.50–53 Furthermore, combining postmortem

measurements of neurotransmitters and their correspond-

ing transporters with in vivo PET imaging would be help-

ful to further define specific brain regions and

neurotransmitter systems affected in PD.
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