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Cis-regulatory elements (CRE), short DNA sequences through which transcription factors (TFs) exert regulatory control on

gene expression, are postulated to be the major sites of causal sequence variation underlying the genetics of complex traits

and diseases. We present integrative analyses, combining high-throughput genomic and epigenomic data with sequence-

based computations, to identify the causal transcriptional components in a given tissue. We use data on adult human hearts

to demonstrate that (1) sequence-based predictions detect numerous, active, tissue-specific CREs missed by experimental ob-

servations, (2) learned sequence features identify the cognate TFs, (3) CRE variants are specifically associated with cardiac

gene expression, and (4) a significant fraction of the heritability of exemplar cardiac traits (QT interval, blood pressure,

pulse rate) is attributable to these variants. This general systems approach can thus identify candidate causal variants

and the components of gene regulatory networks (GRN) to enable understanding of the mechanisms of complex disorders

on a tissue- or cell-type basis.

[Supplemental material is available for this article.]

Themajority of sequence variation affecting inter-individual com-
plex disease risk is common and noncoding, in contrast to the rare
coding variation underlyingMendelian disorders (Chakravarti and
Turner 2016). These findings are consistent with the intense natu-
ral selection on coding sequence variation and the much weaker
selection on noncoding variation (Asthana et al. 2007). Most com-
plex traits arise from multigenic effects with identified risk alleles
having small effects so that no individual effect is either necessary
or sufficient (Chakravarti and Turner 2016). Thus, there must be
considerable redundancy in noncoding functions. The best candi-
dates for these noncoding functions are cis-regulatory elements
(CREs) of gene expression because they are the primary agents of
regulatory control and affect disease risk through altered gene ex-
pression (Davidson 2010; Maurano et al. 2012; Phillips-Cremins
and Corces 2013; Chatterjee et al. 2016).

Understanding the regulatory genomic architecture is, there-
fore, important for elucidating the etiologies of complex disorders,
particularly at the tissue- and cell-type levels. This involves identi-
fying the numbers of transcription factors (TFs) and enhancers en-
gaged, their genomic distribution, and the feedback mechanisms
required for expression control of each gene, namely, the com-
ponents of its gene regulatory network (GRN) (Davidson 2010).
Additionally, we need to quantify the effect of sequence variation

within the GRN on gene expression. These questions can now be
answered using high-throughput ChIP-seq (Barski et al. 2007;
Johnson et al. 2007; Robertson et al. 2007), DNase-seq (Boyle
et al. 2008; John et al. 2011), and ATAC-seq (Buenrostro et al.
2013) experimental data from the NIH ENCODE (The ENCODE
Project Consortium 2012) and Roadmap Epigenomics Projects
(Roadmap Epigenomics Consortium et al. 2015) on many cell
types, tissues, and developmental times and states, in conjunction
with human sequence variation (the 1000 Genomes Project;
1KGP) (The 1000 Genomes Project Consortium 2015) and its ef-
fects on gene expression across human tissues (the Genotype-Tis-
sue Expression Project; GTEx) (The GTEx Consortium 2015). The
fulcrum of a GRN are its enhancers (CREs); however, their com-
plete experimental detection is not possible because CRE activity
is affected by many factors (Misteli 2001; Degner et al. 2012; He
et al. 2014): (1) Functional strength is variable across enhancers;
(2) activity is stochastic across cells; (3) detected activity varies
by experimental protocol and sample; and, (4) resolution of a
CRE’s genomic location from current data is approximate. In prin-
ciple, ChIP-seq data are superior, but the general lack of TF-specific
antibodies is a major roadblock to this approach. We solve these
major impediments instead by using a generalizable genome se-
quence-based machine learning approach (Lee et al. 2011, 2015;
Ghandi et al. 2014). This method learns the short genome se-
quence features that maximally discriminate sequences underly-
ing CREs from random genome sequences. The learned models
are then used to identify additional CREs with similar sequence
features, including combinations of transcription factor binding
sites that failed detection through experiments.
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We focus here on identifying the GRN ‘parts list’ of the adult
human heart and the effects of CRE genetic variation on an exem-
plary cardiac trait, the electrocardiographic QT interval (QTi),
causal to sudden cardiac death and other conduction disorders
(Tomaselli et al. 1994). We show the generalizability of our results
by using these cardiac enhancers to explain phenotypic variation
in systolic/diastolic blood pressure and pulse rate but not BMI.
We focus on the heart because of the extensive genome-wide asso-
ciation study (GWAS) literature implicatingCRE variation inmany
cardiovascular diseases and phenotypes (Arking et al. 2014; Ka-
poor et al. 2014; The CARDIoGRAMplusC4D Consortium 2015;
Eppinga et al. 2016) but also because the QTi is likely affected by
the cardiac system alone. A number of human cardiac CRE maps
exist (Narlikar et al. 2010; May et al. 2012), with a recent study
identifying distal heart enhancers based on H3K27ac and EP300/
CREBBP profiles (Dickel et al. 2016). At least one study has also
used DNase-seq and histone modification ChIP-seq data for heart
tissues to identify functional regulatory variants associated with
electrocardiogram traits (Wang et al. 2016). Our study improves
on these maps by comprehensive identification of CREs. In addi-
tion, we identify their corresponding TFs and analyze the effects
of genetic variants within these heart CREs for heart-related traits.

Results

Experimental detection of cardiac CREs is incomplete

A schematic overview of our approach is shown in Supplemental
Figure S1. We first performed DNase-seq to identify open chroma-

tin regions through DNase I hypersensitive sites (DHSs) as poten-
tial CREs in two adult human hearts (left ventricles) together
with three publicly available heart DNase-seq data sets (Fig. 1A).
Peak calling with MACS2 (Zhang et al. 2008) identified vary-
ing numbers of DHSs (50,000–110,000) across the five samples
(Methods; Supplemental Fig. S2A). We defined DHSs as 600-bp re-
gions centered at the identified summits. DHSs frequently cluster
in small regions, and 22%–32% of extended DHSs overlap their
neighbors, forming larger DHSs with multiple summits (Supple-
mental Fig. S2B). We next compared heart DHSs with other tissue
DHSs using the top 50,000DHSs from each sample and the Jaccard
index (number of bases in the intersection over the union for each
pair). These comparisons show higher similarity (∼50%) between
the adult cardiac samples than with other tissues (∼30%), includ-
ing fetal heart (Methods; Supplemental Fig. S2C). Thus, DHS
maps do uncover tissue-relevant CREs, although many regions
are open across many tissues. Nevertheless, technical and biologi-
cal variation affects the adult cardiac DHS maps. To maximally
detect CREs, we aggregated all DHSs across the five adult heart rep-
licates and identified ∼160,000 distinct regions (“observed DHSs”)
covering∼4% of the genome. Usingmultiple samples is important
because ∼40% of DHSs were detected only once across the repli-
cates, while only ∼22% detected across all five (Fig. 1B).

Sequence-based models can predict additional CREs

To elucidate the sequence code for these cardiac CREs, we used the
gapped k-mer support vector machines (SVM) method, gkm-SVM
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Figure 1. A machine learning algorithm (gkm-SVM) accurately predicts cis-regulatory elements. (A) An example of heart DNase-seq signals (raw data)
and peaks (MACS2) at the GATA4 locus across multiple human samples. (B) A genome-wide heat map of DNase-seq read densities in 1000-bp windows
centered at heart DHSs. Randomly sampled 1000 regions were used. Regions were grouped based on the configuration of the DHS peaks across the five
samples with at least one observed DHS. (C) ROC curves of gkm-SVMmodels for five replicates against reserved test sets. (D) Comparisons of the fraction of
DHSs overlapping predicted regions (precision) and fraction of predicted regions overlapping DHSs (recall).
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(Ghandi et al. 2014), widely accepted as one of the state-of-the-art
sequence-based methods (Kreimer et al. 2017). Also, extracting
predictive sequence features from gkm-SVM is easier than from
other methods. We used an improved software LS-GKM (Lee
2016) that enabled training on larger data sets (∼100,000 DHSs)
(Supplemental Fig. S3A). The gkm-SVM attained considerable ac-
curacy in classifying CREs from non-CREs on reserved Chromo-
some 9 data (Methods; Fig. 1C). Of note, the choice of a specific
chromosome did not affect the method’s performance as its accu-
racy was unchanged with fivefold cross-validation (Supplemental
Fig. S3B). Importantly, our model trained on a single data set can
predict DHSs observed in the other data sets and systematically as-
signs higher scores to DHSs experimentally missed than random
genomic regions, demonstrating that sequence-based predictions
do indeed identify true DHSs (Supplemental Methods; Supple-
mental Fig. S4A).

The number of samples used for model building determines a
model’s accuracy. Our tests show that using all five samples iden-
tified an additional 5%–10% true DHSs than any single sample,
although the maximum accuracy was rapidly attained (Supple-
mentalMethods; Supplemental Fig. S4B). Further, the randomness
of negative sets for training is also a major source of variation. To
minimize this effect, we averaged 10 different models, trained on
independently generated negative sets, and used the combined
model for DHS prediction at balanced precision and recall rates
(∼43%) (Methods; Fig. 1D).

Scanning the entire genome yielded an additional 88,026 dis-
tinct “predicted” heart DHSs after excluding regions that over-
lapped observed ones (Methods; Fig. 2A). Thus, these predicted
DHSs do not suffer from overfitting by construction. For valida-
tions, we used several functional annotations to compare them to
observed regions. First, we assessed sequence conservation against

A
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Figure 2. Learned sequence features predict additional CREs. (A) Venn diagram of observed and predicted DHSs and their proportions in noncardiac cell
types. (B) Heat map of DHS signal intensities in heart-related cell types and tissues at observed (left) and predicted (right) DHSs. Randomly sampled 5000
regions from observed and predicted DHSs were used. Observed DHSs are mostly located in ubiquitously open chromatin regions in cardiac-relevant cells
and tissues, while predicted DHSs show greater cell-type specificity.
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randomly permuted regions (Supplemental Fig. S5A): Both ob-
served DHSs and, to a lesser extent, predicted DHSs significantly
overlap genomic conserved elements (binomial test, P< 2.2 ×
10−16) (Davydov et al. 2010). Second,we asked how frequently pre-
dicted DHSs were in open chromatin in other tissues. We defined
two different DHS sets: (1) a universal set by combining DHSs
from all ENCODE and Roadmap data sets, except from adult heart;
and (2) a heart-related set of DHSs from cardiac-related samples
only (Methods). Both observed and predicted DHSs significantly
overlapped both DHS classes (Supplemental Fig. S5B,C): 94.7% of
observed and57.7%of predictedDHSs are open inheart-related tis-
sues, with an additional 30.7% in other cell types (Fig. 2A). Third,
we comparedH3K27ac histonemodificationmarks in heart tissues
to show the samepattern: 52.3%of observedbutonly10.9%of pre-
dicted DHSs overlapped H3K27ac marked regions (Supplemental
Fig. S5D). Yet, we identified ∼7500 additional regions, under the
stringent criteria that predicted regions overlap H3K27ac marks
and are heart-related DHSs, not detected by DNase-seq alone.
Predicted DHSs are largely restricted to specific tissues and cells
(Fig. 2B; Supplemental Fig. S5E) while nearly half of observed
DHSs are open across many different noncardiac cell types. More-
over, predicted DHSs show systematically weaker DHS signals
than observed DHSs (Supplemental Fig. S5F).

Varying degrees of overlap with functional annotations led
us to further investigate potential sources of variation in CRE iden-
tification. We divided predicted DHSs into four distinct categories
based on overlap: heart H3K27ac histonemodifications and heart-
related DHSs (tier 1); heart-related DHSs only (tier 2); universal
DHSs only (tier 3); and the remainder (tier 4). For each of these
categories, we considered the (1) proportion of ambiguous bases,
(2) average SNP (single nucleotide polymorphism) frequency per
base (common and rare SNPs, 1% MAF as a threshold), (3) pro-
portional overlap with H3K9me3 histone modifications in heart
tissues, a representative heterochromatin mark (Nakayama et al.
2001), and (4) proportional overlap with FANTOM5 enhancers
(Methods; Lizio et al. 2015). As a positive control, we included ob-
servedDHSs for comparison (Supplemental Table S1). First, thepre-
dicted DHSs in the lower tiers (3 and 4) have poorer mappability:
Predicted DHSs in tier 4 have 2–3.5× more ambiguous bases than
observedDHSs, dependingon read length. Since the functional an-
notations (H3K27ac andheart-relatedDHSs)were also identifiedby
sequencing, the variability in CRE detection can be explained at
least in part by differential mappability. SNP frequencies also fol-
low the expected pattern; higher SNP frequency in the lower tiers
(2 & 3) imply that these predicted DHSs are more variable, making
read mapping difficult. Predicted DHSs in tier 4 show the lowest
SNP frequency because their extremely poor mappability reduces
SNP identification (Nielsen et al. 2011). DHSs predicted in the
lower tiers are more enriched in heterochromatin, suggesting that
chromatin organization, a feature difficult to predict using se-
quence-based models only, influences CRE detection as well.
Lastly, we used FANTOM5 enhancers (Lizio et al. 2015) as an or-
thogonal enhancer validation set and compared them to predicted
DHSs. Significant proportions of predictedDHSs in tiers 1, 2, and 3
(12.3%,5.9%,and2.7%)were FANTOM5enhancers (binomial test,
P< 2.2 ×10−16 for all cases), but tier 4 had only 0.5% FANTOM5 en-
hancers (P<0.97).

Another potential cause of variation in CRE detection lies in
peak calling, with some predicted DHSs being missed due to being
below our detection threshold. Thus, we recalled DHS peaks with
relaxed thresholds (false discovery rate <0.1, 0.15, 0.2, and 0.25)
and identified larger numbers of DHSs (193, 205, 242, and 280 k,

respectively). We calculated the proportion of the original pre-
dicted DHSs overlapping these newly identified DHSs (Supple-
mental Table S2) to show that predicted DHSs, especially in the
higher tiers, overlapmany of these less stringent DHSs. Thus, a sig-
nificant fraction of predicted DHSs are likely true. Taken together,
our results suggest that sequence-based predictions of an addition-
al ∼55% cardiac CREs are highly complementary to their experi-
mental detection and necessary for obtaining comprehensive
CRE maps.

Sequence-based models can also predict cardiac TFs

We next tested whether the sequence features of gkm-SVM allow
identification of the cognate TFs through their TF binding se-
quences (TFBS) in the corresponding tissue/cell types (Lee et al.
2011; Gorkin et al. 2012). First, we used the distribution of all
11-mer weights in the SVM model and compared it to those that
match TFBSs for known heart TFs. Indeed, TFBSs for CTCF and
MEF2A as well as other known cardiac factors are significantly en-
riched in the top fifth percentile of the SVM weight distribution,
while an exemplar noncardiac factor such as POU5F1 is not (Fig.
3A). Thus, to search for cardiac TFs, we used the Cis-BP database
(Weirauch et al. 2014) augmented by 93 new position weight ma-
trices (PWMs) of C2H2 Zinc-Finger (ZF) TFs (Schmitges et al. 2016),
to show that 11-mers matching 54% of PWMs (473/868) associat-
ed with 506 TFs were enriched in the top fifth percentile of the dis-
tribution (Supplemental Data S1). As expected, 11-mers matching
these predicted cardiac TFs systematically have larger SVMweights
than those that don’t (Supplemental Fig. S6). Since not all TFs are
expressed in any given tissue, we further restricted attention to the
334 TFs expressed in heart left ventricles using gene expression
profiles from the GTEx project (Supplemental Methods); Fisher’s
exact test confirmed that predicted TFs were significantly associat-
ed with cardiac gene expression (Fig. 3B).

These results are physiologically relevant since left ventricles
and atrial appendages from adult hearts were the twomost signifi-
cant tissues among the 53 GTEx tissue gene expression profiles we
examined (Fig. 3C). Many other tissues also showed significant as-
sociation because many TFs are expressed across multiple tissues.
Thus, enrichment tests after removing 353 commonly (>90% of
tissues) expressed TFs dramatically reduced the significance for ev-
ery tissue except for the two heart tissues (Fig. 3D). Thus, cardiac
CRE functions are activated by a large number of both commonly
expressed and cardiac-specific TFs. Our analyses revealed 78 selec-
tively expressed and CRE-enriched TFs in heart tissues, of which
29 are C2H2 ZFs with diverse binding specificities, with 44 others
belonging to seven other major classes; 16 basic-helix-loop-helix
(bHLH), nine Nuclear Receptor (NR), five Sox, four Homeodomain
(HD), four basic leucine zipper (bZIP), three GATA, and three ETS
transcription factors (Fig. 4). Many expressed TFs in the same fam-
ily have similar sequence specificities, explaining some part of the
expected functional redundancy.

We validated these predicted cardiac TFs also using ENCODE
ChIP-seq data (Supplemental Methods) based on two classes:
potential cardiac TF ChIP-seq data (n =1054 for 176 TFs) and the
remainder (n=313 for 126 TFs). For each, we calculated the overlap
between ChIP-seq peaks and our observed and predicted DHSs
to show that candidate cardiac TF-bound regions overlap heart
DHSs significantly more often than noncardiac TFs (P<2.2 ×
10−16 for observed DHSs, P<2.84×10−16 for predicted DHSs,
with one-tailed two-sample Kolmogorov-Smirnov tests) (Supple-
mental Fig. S7).
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Common cardiac DHSs are mostly promoters and CTCF sites

Many DHSs are accessible across diverse cell types (Xi et al. 2007;
Song et al. 2011; Thurman et al. 2012). These common DHSs are
typically enriched in transcription start sites (TSSs) or CTCF bind-
ing sites or both, with the remainder enriched in cell-type–specific
distal enhancers. To discriminate the cardiac DHSs, we defined
common DHSs as regions that are open in ≥30% of all ENCODE/
Roadmap tissue samples (Supplemental Methods; Lee et al.

2015). Consistent with previous observations (Xi et al. 2007;
Song et al. 2011; Thurman et al. 2012), ∼47% of observed heart
DHSs are common DHSs, of which ∼63% overlap TSSs or CTCF
bound regions (Supplemental Fig. S8). Tounderstand the sequence
features of these classes of DHSs we separately trained a gkm-SVM
model after removing these common DHSs. In this heart-specific
model, consistent with the CTCF ChIP-seq peak overlap analysis,
most of the predictive 11-mers that showed a major decrease in
SVM scores (Z-score differences > 6) were CTCF binding sites. In

A

B
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Figure 3. Learned sequence features identify cardiac TFs. (A) SVMweight distributions of PWM-matched 11-mers for the top two scoring TFs (CTCF and
MEF2A), five well-known cardiac-specific TFs (GATA4, NKX2-5, HAND1, HAND2, SRF, and HEY2), and a cardiac-irrelevant TF (POU5F1). The fifth percentile
is shown as a green line. The enrichment is defined as the fraction of TFBS-matching 11-mers in the top fifth percentile of all 11-mers compared to the
expected fraction (5%). (B) 2 × 2 contingency tables comparing TFs enriched in heart DHSs with TFs expressed in heart left ventricles (top) and atrial ap-
pendages (bottom). (C,D) −log10(P) of one-sided Fisher’s exact test for every tissue tested using all TFs (C) and after removing commonly expressed TFs (D);
the two tissues from adult heart (atrial appendage and left ventricle) are highlighted in redwith the Bonferroni-corrected P-value threshold (0.05) shown as
a dashed line.
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the top five, motifs showing a major decrease were additionally
ZBTB4, PLAG1, SP4, and KLF10 binding sites, known to be pro-
moter-binding TFs (Supplemental Fig. S8C,D). These analyses pro-
vide a principled, statistical way to distinguish TSSs, CTCF binding
sites, and distal enhancers fromDHS data, in a tissue- or cell-type–
specific manner.

Predicted cardiac regulatory variants affect chromatin

accessibility and gene expression

Our sequence-based model allows systematic predictions of
whether a DNA sequence variant within a CRE is likely to affect
its function, thusmaking detection of (cardiac) regulatory variants

Figure 4. A list of 78 TFs enriched in heart DHSs as well as selectively expressed in cardiac tissues. The 78 TFs were grouped based on their DNA binding
domain families. These PWMs were also clustered based on their sequence specificity. For each TF, cluster number (Clus), name, gene expression (FPKM) in
left ventricle, fold enrichment (nfolds), and PWM are shown, respectively.
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possible. To assess this function, we used the deltaSVM method
(Lee et al. 2015; Beer 2017; Kreimer et al. 2017) to first assess a small
set of high-confidence cardiac regulatory variants associated with
allele-biased DHSs (Methods). We tested two different gkm-SVM
models, one trained on all heart DHSs (“generic model”) and the
other on cardiac-specific DHSs after removing common DHSs
(“specific model”): deltaSVM scores from bothmodels were signif-
icantly correlated with their allele-biased chromatin accessibility
(Fig. 5A; Supplemental Fig. S9A). Both models achieved compara-
ble precision—46% and 52% at 40% recall—using 4× larger sets
of control variants with no allele bias (Fig. 5B). Although their per-
formance is similar, they do not predict the same variants since
∼30% of variants are unique to each model (Supplemental Fig.
S9B). This result is consistent with the k-mer weight distribution
differences between the models (Supplemental Fig. S8C) and sug-
gests that the specific model is better at detecting cardiac-specific
TFBSs by ignoring CTCF and general promoter TFBSs.

These results prompted the question of whether deltaSVM
predicted variants affected local gene expression. We identified
all high scoring variants within heart DHSs (Supplemental Data
S2) and compared them to GTEx expression quantitative trait loci
(eQTLs) from 44 different tissues (Methods): deltaSVM variants
predicted by the generic model are significantly associated with
eQTLs inmany tissues (Fig. 5C). This significance is strongly corre-
lated with the number of eQTLs in CREs, which is also correlated
with the sample size used for gene expression studies (The GTEx

Consortium 2015). On the other hand, variants predicted by
the specific model aremostly associated with eQTLs fromheart tis-
sues, although theiroverall statistical significance is lower (Fig. 5D).
We concluded that, despite the pleiotropy of many regulatory var-
iants, the specific model does identify cardiac-specific regulatory
variants with increased specificity but at the cost of missing some
regulatory variants common to many tissues. Further, inclusion
of predicted DHSs enhanced detection by increasing the statistical
significance of eQTL associations (Supplemental Fig. S9C,D).

Predicted cardiac regulatory variants explain cardiac phenotypes

We hypothesize that these predicted causal variants, within ob-
served and predicted CREs explain a significant fraction of cardiac
phenotype heritability, which we tested using QTi GWAS (Arking
et al. 2014), an intermediate trait involved in long QT syndrome
and sudden cardiac death (Tomaselli et al. 1994).We used our pub-
lished QTi meta-analysis on 76,061 European ancestry subjects
and ∼2.7 million SNPs and performed Q-Q analysis. First, variants
within heart CREs (Fig. 6A, red dots) are significantly enriched
in QTi GWAS SNPs in comparison to all common SNPs (black
dots). A subset of these heart CRE variants, predicted to be causal
by deltaSVM, especially by the specific model (green dots), are fur-
ther enriched in QTi-associated variants (Fig. 6A).

Taken together, these variants contribute substantially to
QTi heritability, as shown for some functional annotations of

the genome relative to other complex
phenotypes (Yang et al. 2011). To quan-
tify this contribution, we used link-
age disequilibrium (LD) score regression
methods on GWAS summary statistics
(Bulik-Sullivan et al. 2015; Finucane
et al. 2015) to evaluate the heritability
contribution from CRE causal variants
(Supplemental Methods). All common
autosomal variants (1KGP SNPs with
MAF>5% in European ancestry subjects)
explained 11.2% of QTi variation. Using
predefined cell-type group functional an-
notations (Finucane et al. 2015), the car-
diovascular cell-type group contributed
to the most significant enrichment as
compared to other tissues (Fig. 6B); this
cell-type group includes lung tissues, so
that the specificity for QTi may be dilut-
ed. Consequently, we tested our heart
DHS-based annotations by comparing
the enrichment under various defini-
tions of causality (Fig. 6C). We first eval-
uated different DHS lengths, discovering
that a higher heritability (61%) could be
explained by extending DHSs to 2-kb
lengths, although higher enrichment
(7.9×) was achieved at the original defini-
tion of 600 bp.We surmise that narrower
DHSs truncate some CREs, missing true
variants. As a comparison, we also evalu-
ated a recently published cardiac CRE
map based on EP300 and H3K27ac
bound regions from multiple cardiac
developmental stages (Dickel et al.
2016). This enrichment is comparable

A B

C D

Figure 5. Identification of common, cardiac-specific regulatory sequence variants. (A) deltaSVM scores
from the cardiac-specific model as compared to allele-biased chromatin accessibility. (C) Pearson corre-
lation coefficient, (n) number of variants, (P) t-distribution P-value. (B) Precision-recall curves of deltaSVM
scores of allele-biased DHSs against 4× larger control SNP sets; the dashed green line indicates the recall
rate 40%. Error bars are the standard errors calculated from 10 independently sampled control SNP sets.
(C,D) Statistical significance (P) of deltaSVM SNPs from the generic (C ) and specific (D) cardiac models as
compared to eQTLs using the χ2 test; the two heart tissues are highlighted. (AA) Heart atrial appendages,
(LV) heart left ventricles. The Bonferroni-corrected P-value threshold (0.05) is shown as a dashed line.
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to that achieved by our 2-kb heart DHSs (5.4× vs. 5.3×; one-tailed
Z-score P<0.51). The average size of Dickel’s cardiac CREs is bigger
than our 2-kb heart DHSs (3211 bp versus 2467 bp), but the num-
ber of elements is smaller (82,119 versus 133,102). Themajority of
Dickel’s CREs (49,506 out of 82,119, or 60%) overlap ourDHSs, but
many regions are still detected by just one approach, suggesting
that each method detects somewhat different types of CREs.
Next, adding H3K27ac marks to DHSs further increases (from
5.7× to 8.5×) the enrichment by effectively filtering out less infor-
mative DHSs. While the difference between these two enrich-
ments is only marginally significant (one-tailed Z-score P<0.06),
H3K27ac marks alone capture more variants than H3K27ac over-
lapping DHS variants (7.7% vs. 5.8%) but explains a smaller heri-
tability fraction (44.3% vs. 48.8%) (Fig. 6C; Supplemental Fig.
S10). Thus, someH3K27ac peaks do not capture CRE variants, con-
sistent with the fact that H3K27ac peaks are typically located at
CRE boundaries. Adding deltaSVM predictions greatly increased
enrichment but explained a smaller fraction of heritability, likely

due to false negatives in deltaSVM pre-
dictions. Nonetheless, our heart DHS-
based annotations, combined with
deltaSVM predictions and H3K27ac
marks, achieved a highly significant
33.1× enrichment. Tier 1 predicted DHSs
consistently increase the explained heri-
tability by 5%–10% (i.e., 1∼3% addition-
al heritability) without compromising
enrichment (Fig. 6C; Supplemental Fig.
S10). These results confirm that regulato-
ry sequence variation is the major source
of QTi phenotypic variation and that
we can identify a majority of such causal
variants. Of note, including predicted
DHSs with weaker functional support
(Tiers 2, 3, and 4) decreased overall SNP
heritability (Supplemental Table S3).
This is probably due to the assumption
in the LD score regression method that
effect sizes are normally distributed.
Under this assumption, adding a large
number of SNPs with very small effect
sizes can introduce a downward bias. It
is also consistent with our observation
that many predicted DHSs are weaker
compared to observed ones, making
them less contributory to the phenotype.

To demonstrate our method’s broad
applicability, we also analyzed three
additional cardiac phenotypes (systolic
blood pressure, diastolic blood pressure,
and pulse rate) and one noncardiac phe-
notype (BMI) using the UK Biobank pro-
ject public data (Methods; Sudlow et al.
2015). Similar to theQTi result, predicted
cardiac regulatory variants significantly
contributed to all three cardiac-relevant
phenotypes but not BMI (Supplemental
Fig. S11). The heritability of blood pres-
sure explained by the cardiac variants is
consistently less than that for QTi and
pulse rate, suggesting that regulatory var-
iants active in other tissues, such as kid-

ney and blood vessels (Hoffmann et al. 2017), also contribute to
blood pressure phenotypes.

The heart CRE map we generated and the deltaSVM predic-
tions of causality for specific variants within these CREs can be
used to probe each of the known QTi GWAS loci in much greater
detail (Supplemental Data S3). The QTi GWAS meta-analysis
(Arking et al. 2014) identified 35 independent loci with genome-
wide significant (P<5×10−8) common variants. By restricting at-
tention to significant SNPs and their LD proxies (r2 > 0.9), we iden-
tified 149 variants as potentially regulatory (Supplemental Table
S4). Of these, only ∼50% (n=72) are highly associated (r2 > 0.6)
with one of the 67 sentinel SNPs (cf. some of the 35 loci havemul-
tiple independent sentinel SNPs). On the other hand, 108 variants
have alternative measures of high association (|D′| > 0.9) suggest-
ing that many index SNPs may tag multiple regulatory variants
within their haplotypes. Note that these regulatory variants are
not uniformly distributed across the associated loci: 75% are locat-
ed within eight loci (PLN, NOS1AP, ELP6, LITAF, CNOT1, SCN5A,

A

C

B

Figure 6. Cardiac regulatory variants explainQT-interval heritability. (A) Q-Q plots of QTi GWAS results
using different subsets of common genome-wide sequence variants (numbers of variants in paren-
theses); the dashed gray line indicates the genome-wide significance threshold (P<5×10−8).
(B) Comparison of enrichment P-values between 10 predefined cell-type group functional annotations.
(C ) Enrichment values, estimated as the fraction of the heritability (hG

2) explained by variants over the frac-
tion of the SNPs, for various heart DHS-based annotations. (Cardiovascular) the predefined cell-type
group functional annotation for cardiovascular tissues, (H3K27ac) H3K27acmarks in heart, (Dickel) heart
CREmap fromDickel et al. (2016), (obsDHS 600 bp) observed DHSs, (obsDHS 1 kb/2 kb) observed DHSs
with 1-kb/2-kb extension, (allDHS 2 kb) observed and predicted DHSs with 2-kb extension, (dSVM)
deltaSVM predicted variants. A combination of multiple annotations indicates intersection of them.
For example, “obsDHS 2 kbp & dSVM” means a set of variants predicted by deltaSVM and overlapping
observed DHSs with 2-kb extension. The proportion of SNPs are in parentheses; error bars denote stan-
dard errors estimated by a block Jackknife method; no enrichment is shown as a dashed line.
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LAPTM4B, and KCNH2). These variants are significantly enriched
in GTEx eQTLs as well: 104 of 149 variants are eQTLs in at least
one tissue (2.7× enrichment; binomial test, P<3.6 ×10−30), of
which 57 are eQTLs in the two heart tissues (7.5× enrichment; P
<2.2 ×10−34), implying that these specific variants affect the QTi
phenotype by perturbing gene expression in the heart.

As an independent validation of deltaSVM predictions, we fi-
nally analyzed a small number of GWAS variants obtained from a
recently published study (Wang et al. 2016). In this report, 18 pu-
tative functional SNPs were selected based on subthreshold GWAS
significance (5 ×10−8 <P< 1×10−4) for the QTi and QRS duration,
additionally supported by other functional annotations (histone
modificationmarks, DHSs, or eQTLs). These were tested by lucifer-
ase assays in human iPSC-derived cardiomyocytes. Of these, 14
were found within our heart DHSs, of which five were predicted
to be potentially regulatory by deltaSVM. All of these deltaSVM-
predicted SNPs showed differential enhancer activities by the lucif-
erase assay (100% specificity), but the study also identified five ad-
ditional regulatory SNPs (50% false negative rate) (Supplemental
Table S5). Although the small sample size explains the lack of stat-
istical significance (Fisher’s exact test P<0.125), the result is con-
sistent with our predictions.

Discussion

This study shows that sequence-based models can allow the sys-
tematic detection of specific noncoding CREs, the TFs that engage
them, and sequence variants that affect their binding to regulate
target gene expression. These models also allow prediction of the
functional effects of noncoding sequence variation within these
CREs on human phenotypes, as shown here for cardiac traits.
Although much more progress is required, improved epigenomic
and genomic data sets, data at cell-type resolution,more refined se-
quence-basedmodels, yetmore sophisticatedmachine learning al-
gorithms, can lead to reading and assessing the entire human
genome sequence of thousands of individuals comprehensively.
These advances have important implications for understanding
the role of both regulatory and structural variation in both
Mendelian and complex disease. In the short run, as our results
on the QT interval, blood pressure, and pulse rate demonstrate,
we have specific variants with strong a posteriori evidence of regu-
latory effects on specific genes that regulate these phenotypes.
These predictions are specific because they fail to predict noncardi-
ac phenotypes (BMI). Thus, high-throughput functional tests of
specific variants in specific CREs modulated by specific TFs and af-
fecting specific target cardiac genes are likely to be fruitful. In turn,
our cardiac model with genome-wide QT interval or other cardiac
trait data can also enable predictionof additional genes, notmerely
loci,whichmodulate these traits. Eventually, the specific patternof
use of cardiac enhancers and their target genes acrossmany traits is
likely to teach us many new facets of cardiac physiology.

The research described here is integrative, general, and broad-
ly applicable to all cell types and tissues. In time, such regulatory
CRE maps, their cognate TFs, and sequence variants affecting
CRE activity can be routinely constructed for a wide variety of
cell types and tissues. The comparative analyses of such data
will teach us a great deal about what is common and what is spe-
cific regulation for each cell type and the GRNs within them.
Recently, Pritchard and colleagues have advanced the hypothesis
that most complex traits and diseases are omnigenic, arising
from the perturbations of thousands of genes by neighboring se-
quence variants: Although some of these genes have a physiologic

role, many (most?) others merely happen to be expressed in dis-
ease/trait-relevant cell types (Boyle et al. 2017). They attribute
this behavior to GRNs that are so interconnected that numerous
‘trait-irrelevant’ genes affect the functions of a much smaller set
of core (‘trait-relevant’) genes. The comparative analyses of the
models we describe will be essential for distinguishing the core
from the peripheral trait genes as well as for assessing the effects
of different tissues on a given disease.

Methods

Heart DNase-seq data sets

We collected two human heart left ventricle (LV) samples and per-
formed DNase-seq experiments as previously described (Supple-
mental Methods; Song and Crawford 2010). In addition to the
DNase-seq data sets we generated, three additional heart DNase-
seq data sets were obtained from the ENCODE and the Roadmap
Epigenomics projects using themapped reads provided by the con-
sortia (GSM1027322, ENCFF000SPN, and ENCFF000SPP). To iden-
tify DHSs, we processed the mapped DNase-seq reads (hg19) using
MACS2 (Zhang et al. 2008) with the following parameters “-g hs –
nomodel –shift -50 –extsize 100”. Six-hundred basepair regions
centered at the identified summits were used to define DHSs.
The identified DHSs from all five samples were thenmerged to ob-
serve a total of 164,235 distinct regions. For pairwise comparisons,
we selected the top 50,000 regions based on the MACS2 P-values
from each sample and calculated the Jaccard index for each pair.
For comparative analyses, we chose four adult tissues (ovary, pan-
creas, psoas muscle, and small intestine) as well as five fetal tissues
(adrenal gland, brain, heart, kidney, and spinal cord), all available
from the Roadmap project.

Genome-wide prediction of cis-regulatory elements

using gkm-SVM

For each of the heart DHS data sets, we trained the gkm-SVMmod-
els as previously described, with some modifications, and system-
atically evaluated its ability to predict new DHSs missed by
experiments (Supplemental Methods). To identify the best model,
we evaluated the combined model as well as the five individual
ones by varying SVM thresholds. The combined model, which av-
erages the SVM scores over the five heart data sets, consistently
outperformed other models and was chosen as the best model
for subsequent genome-wide CRE prediction. For predicting
CREs, we scored the whole human genome (hg19) for every 600-
bp interval with a 100-bp sliding window.We applied a SVM score
cut-off (>0.9) that balanced precision and recall values estimated
from the test set (precision= recall = 0.43). In this study we used
hg19 as a reference genome and not GRCh38 because realigning
reads to the new reference does not substantially alter hg19-based
versus GRCh38-based gkm-SVMmodels (Supplemental Methods).

Genomic properties of detected DHS elements

For each heart DHS set (observed and predicted), we calculated the
proportion of regions overlapping three different genomic annota-
tions: a set of conserved regions, and two different sets of open
chromatin regions—a universal DHS set and a heart-related DHS
set. We used GERP++ evolutionarily constrained elements (Davy-
dov et al. 2010) as conserved regions, and defined an overlap if
at least 50 bp of the GERP++ element(s) was contained. For open
chromatin regions, we downloaded publicly available DNase-seq
data sets from the ENCODE UCSC Genome Browser (https://
genome.ucsc.edu/encode/) and the Roadmap Epigenomics project

A human cardiac cis -regulatory map

Genome Research 1585
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.234633.118/-/DC1
https://genome.ucsc.edu/encode/
https://genome.ucsc.edu/encode/
https://genome.ucsc.edu/encode/
https://genome.ucsc.edu/encode/
https://genome.ucsc.edu/encode/
https://genome.ucsc.edu/encode/


website (www.roadmapepigenomics.org) and identifiedDHSpeaks
asdescribedabove.Wedefined theuniversalDHSsetbymergingall
DHSs from797DNase-seq data sets (counting replicates separately,
when available) except for the three heart DNase-seq data sets. To
reduce false positive DHSs, we excluded regions that were detected
only once across all data sets, resulting in 967,724 unique DHSs
covering ∼45% of the genome. To define a cardiac-relevant DHS
set, we only used samples derived from muscles, blood vessels,
and fetal hearts (n=126), resulting in 605,466 heart-related ele-
ments covering ∼19% of the genome. We defined an overlap by
at least 300 bp. For histone modification marks of enhancers, we
usedH3K27acChIP-seq peaks anddefined 118,597 distinct cardiac
H3K27ac marked regions (Supplemental Methods). As a negative
control, we created 100 independent sets for each of the heart
DHS sets (observed and predicted) by randomizing their genomic
positions. We then calculated the average proportion of regions
overlapping genomic annotations and performed binomial tests
using the average as a parameter p of the null distribution.

To investigate the potential source of variation in CRE iden-
tification, we evaluated additional genomic properties of the
predicted DHSs: mappability, heterochromatin DNA, and SNP fre-
quencies (Supplemental Methods). To further validate our pre-
dictions, we used CAGE-based enhancers from the FANTOM5
(Functional ANnoTation Of the Mammalian genome) project as
an independent set (Lizio et al. 2015) and calculated the propor-
tion of the predicted DHSs overlapping these elements (>1-bp
overlap).

Predictive sequence feature analysis

To determine potential cardiac TFs, we identified TFs whose
binding sites have systematically higher gkm-SVM weights. Spe-
cifically, we first scored all nonredundant 11-mers (N=411/2 =
2,097,152) using gkm-SVM. We averaged these SVM scores over
the five data sets to reduce the variance between biological repli-
cates and normalized them to zero means. In parallel, we also
identified 868 distinctmotifs associatedwith 904 humanTFs (Sup-
plemental Data S4 and S5; Supplemental Methods). For each of
these 868 motifs, we found all 11-mers matching the motif, deter-
mined by FIMO (Bailey et al. 2009; Grant et al. 2011) with default
setting and tested whether they were enriched in the top 5%of the
11-mer score distribution. To resolve the issue that FIMO cannot
align k-mers to PWMs longer than the k-mers, we generated sets
of shorter PWMs of lengths between 8 and 11 bp tiling across
full-length PWMs longer than 8 bp. We then defined “a hit”
when a given 11-mer matched any of these PWMs. We tested
the null hypothesis that the expected number of the motif match-
ing 11-mers found in the top 5% scoring 11-mers is equal to 5% of
all matching 11-mers, using a Poisson distribution, and identified
PWMs with the Bonferroni-corrected P<0.01. We note that our
motif identification is robust with respect to the choice of k-
mers: Identical analysis using 10- and 12-mers yielded 446 and
514 motifs, respectively, among which 436 (96.1%) and 466
(94.6%) overlap the original 473 motifs with 11-mers.

Allele-biased heart DHSs

To evaluate deltaSVM predictions, we identified DNA sequence
variants that directly affected chromatin accessibility in cardiac tis-
sues by using allele-biased mapping of DNase-seq reads (Supple-
mental Methods). In each of the 17 heart DNase-seq data sets
(fetal and adult combined), we identified all heterozygous regions
with at least 10 reads and calculated P-values of allele-biased DHSs
using QuASAR (Harvey et al. 2015). We combined P-values using
Fisher’s method and identified 100 high-confidence allele-biased

DHS SNPs (P<0.001 and observed in at least three samples with
the same direction of effect). For precision-recall analysis, we also
identified a 4× larger control set of SNPs that do not exhibit al-
lele-specific alignment (combined P>0.9 and observed in at least
four samples) by random sampling. To estimate standard errors,
we generated 10 independent control SNP sets.

deltaSVM analysis of variants within CREs

We adapted the deltaSVM method (Lee et al. 2015) to predict the
regulatory effect of variants within observed and predicted DHSs.
We identified ∼610,000 common variants with at least 1% MAF
in European ancestry 1KGP subjects residing within cardiac
CREs: Of these, ∼420,000 and ∼190,000 were in observed and pre-
dicted CREs, respectively. Next, we extracted 21-bp sequences cen-
tered at each of these CRE variants from the reference genome
(hg19) and calculated the SVM scores of both alleles using the
heart DHS gkm-SVMmodels. The final deltaSVM score is the aver-
age of the differences in these scores from five different heart gkm-
SVMmodels. These were repeated using gkm-SVMmodels trained
on heart-restricted DHSs. Approximately 15% of these variants
have potential cardiac regulatory effects, given a deltaSVM cut-
off that yields 40% recall when predicting allele-biased heart
DHS SNPs. Note that all of the deltaSVMsignificant SNPs predicted
in this study are, by definition, restricted to the heart CREs. To in-
vestigate the relationship between deltaSVM predicted causal var-
iants and their effect on gene expression, we checked for their
overlap with GTEx eQTLs (V6P), restricting attention to eQTLs
within ±50 kbp of the associated genes, to increase specificity.
Using the variants in the cardiac DHSs, we tested for associations
using the χ2 test with the binary variables of whether the variants
have significant deltaSVM scores or not and whether they are
eQTLs in a given tissue or not.

Data access

All sequencing reads from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo) under accession number GSE104989. Supplemental
data and custom scripts are available in the GitHub repository at
https://github.com/Dongwon-Lee/heart_cre_map and in the Sup-
plemental Material.
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