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Introduction
T lymphocyte immunity plays a vital role in maintaining the 
body’s homeostasis through the selective recognition and elim-
ination of abnormal cells, including cancer cells.1,2

Tumor cells initiate the cancer-immunity cycle by releasing 
tumor antigens.3 Antigen-specific T cells first recognize tumor 
antigens presented by major histocompatibility complexes 
(MHCs) on antigen-presenting cells (APCs), leading to their 
priming and activation. Once activated and proliferated, T cells 
migrate to specific sites guided by chemokine concentration 

gradients.4 Following costimulatory signals between T cells 
and APCs to achieve optimal activation, immune checkpoints 
like PD1 and its ligand PDL1 are involved to play a crucial role 
in preventing excessive T-cell activation.3,5 On recognizing the 
same antigen on MHCs, T cells release IFN-γ to enhance the 
efficiency of tumor cell destruction. IFN-γ released from 
CD8+ T cells upregulates the expression of PDL1 on tumor 
cells6,7 (Figure 1). Meanwhile, T-cell receptor signaling upreg-
ulates the expression of PD1 on the T cell surface which binds 
to PDL1 to exert negative regulatory effects and blunt the 
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antitumor function of T cells.8-10 Multiple studies have shown 
that PD-L1 is overexpressed in various types of cancers, includ-
ing breast, lung, gastric, papillary thyroid, bladder, testicular, 
colorectal, melanoma, non–small cell lung (NSCLC), head and 
neck, and kidney cancers.11-13 The interaction between PD-L1 
and PD-1 contributes to the maintenance of an immunosup-
pressive tumor environment by suppressing T lymphocyte 
function leading to proliferation and cytokine secretion reduc-
tion which impairs their ability to destroy tumor cells.14-16 In 
addition, this interaction induces apoptosis of T lymphocytes 
promoting tumor cell survival.17,18 Tumor environment cells 
also express PD-L1, using this pathway to evade the immune 
system.16,19,20 As a result, blocking immune checkpoint path-
ways has become an important strategy for reversing the 
immunosuppressive mechanisms employed by tumor cells to 
reactivate the immune system, and targeting the PD-1/PD-L1 
pathway is considered a frequently used approach.21,22 Clinical 
trials involving anti-PD-L1 agents have yielded encouraging 
results among cancer patients, including renal cell carcinoma, 
melanoma, NSCLC and metastatic urothelial bladder can-
cer.11,23,24 Currently, multiple monoclonal antibodies have been 
approved by the Food and Drug Administration (FDA) as 
inhibitory drugs impeding the PD-1-PD-L1 interaction in 
cancer therapy.23,25-28 Two anti-PD-1 antibodies, pembroli-
zumab (humanized IgG4 antibody) and nivolumab (human 

IgG4 antibody), are approved as the second line for the treat-
ment of Hodgkin lymphoma, NSCLC, metastatic melanoma, 
head and neck squamous cell carcinoma, and kidney cancer.26,29-32 
As for anti-PD-L1 antibodies, atezolizumab (humanized IgG1 
antibody) is approved for the treatment of advanced NSCLC 
and urothelial carcinoma,25,33 whereas durvalumab (human 
IgG1 antibody) and avelumab (human IgG1 antibody) have 
been approved by the FDA and have shown positive responses 
in the treatment of various malignant tumors, including meta-
static NSCLC, melanoma, urothelial carcinoma, and Merkel 
cell carcinoma.34-36 However, monoclonal antibodies have 
drawbacks, including low stability, high manufacturing costs, 
low tumor penetration rates, difficulty in overcoming biologi-
cal barriers, lack of oral availability, and potential immunogenic 
side effects.37-39 Therefore, it is necessary to overcome these 
disadvantages through the development of new small, stable, 
and more effective inhibitory molecules with the ability to bind 
to PD-L1 and block the PD-1/PD-L1 interaction without 
inducing undesirable effects. In this study, we suggest that tar-
geting PD-L1 with small natural molecules could effectively 
block the PD1-PD-L1 interaction and consequently reactivate 
the immune system. The use of natural compounds derived 
from medicinal plants holds great promise for the development 
of therapeutic medicines that are both less harmful and more 
effective. Numerous studies have previously shown the thera-
peutic power of natural molecules.40-43 In this regard, we first 
performed a virtual screening of a database of natural com-
pounds and their derivatives against the crystalline structure of 
PD-L1 available in the Protein Data Bank (PDB; PDB code: 
5O45) to discover potential inhibitors of PD-L1, followed by 
molecular dynamics (MD) simulations to assess the stability of 
the complexes. This approach has been adopted in several pre-
vious studies.44-49

Materials and Methods
Data collection and ligand preparation

A local database of 511 natural compounds and their deriva-
tives (inhibitors) was assembled from various essential oils 
derived from medicinal plants and subjected to screening to 
identify potential compounds that inhibit the interaction 
between PD-1 and PD-L1 in cancer. The ligands obtained 
from the PubChem database50 in 3D SDF format were pre-
pared using AutoDockTools;51 Gasteiger charges were assigned 
and stored in PDBQT format.

Receptor preparation and receptor grid generation

The 3-dimensional crystal structure of human PD-L1 in com-
plex with an inhibitor (PDB ID: 5O45) was utilized for dock-
ing studies. This particular structure was chosen for its high 
resolution (0.99Å) providing a precise and a detailed represen-
tation of the protein’s atomic structure. The inhibitor-bound 
form of PD-L1 ensures that the binding conformation 

Figure 1.  Mechanism of PD1/PD-L1 blockade. The CD8+ T cell activates 

on recognizing the tumor antigen presented on MHC class I and releases 

IFN-γ to bind to IFN-γ receptor, and consequently induces the expression 

of PDL1 on tumor cells. PDL1 conjugates the elevated PD1 on T cell 

surface, triggering inhibitory effect of PD1/PD-L1 axis. Anti-PD1 or 

anti-PDL1 antibody blocks the interaction of PD1 and PD-L1, and 

abolishes the inhibition of CD8+ T cell thus enhancing the antitumor 

activity.4
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is well-defined, enabling a more reliable identification of 
potential inhibitors among the screened compounds. 
Subsequently, heteroatoms were deleted, water molecules were 
eliminated, and Kollman atomic charges, along with polar 
hydrogens, were incorporated into the receptors using 
AutoDockTools.51 The prepared structure, ready for molecular 
docking studies, was saved in AutoDock PDBQT format.

Molecular docking protocols

To identify inhibitors of the interaction between PD-1 and 
PD-L1, molecular docking studies were performed to screen 
511 natural molecules and their derivatives against the active 
site of the PD-L1 protein using the AutoDock Vina docking 
program. For the PD-L1 target, a grid box (X: 40Å, Y: 40Å, and 
Z: 40Å) was created to encompass the binding pocket high-
lighted by CB-Dock2 (https://cadd.labshare.cn/cb-dock2/php/
blinddock.php).52 The center of the grid box was set at (X: 
10.441, Y: 6.855, Z: −18.463), and the other AutoDock Vina 
parameters were maintained at their default values (energy 
range = 4 and exhaustiveness = 8). The ligands’ binding affinities 
to the target’s active site were expressed in kcal/mol units.

Drug-likeness prediction

The ligands with the highest affinities were selected for drug-
likeness assessment. This evaluation was carried out using the 
free online tool Swiss ADME (http://www.swissadme.ch/), 
developed by the Swiss Institute of Bioinformatics.53 We based 
our assessment on Lipinski’s rule of five (Ro5) to predict the 
bioavailability of molecules.54,55 The Ro5 introduced the crite-
ria of the number of rotatable bonds, the molecular weight, the 
number of hydrogen bond acceptors, the number of hydrogen 
bond donors, and the octanol-water partition coefficient. A 
molecule is considered drug-like if it meets at least 4 of the 5 
cited criteria.54

Toxicity analysis

Computational methods facilitated the evaluation of a safety 
profile for the compounds studied. Ligands exhibiting drug-
like properties were selected for toxicity prediction. The 
ProTox-II (https://tox-new.charite.de/protox_II/) server was 
used to assess the toxic effects of the chosen compounds.56 This 
server predicts organ toxicity (hepatotoxicity), as well as various 
toxicological endpoints (carcinogenicity, immunotoxicity, cyto-
toxicity, and mutagenicity) and the median lethal dose (LD50) 
for the selected molecules.

Post-docking analysis and visualization

Molecules not showing toxicity in ProTox-II were selected for 
receptor-ligand interaction analysis to validate their interaction 
with active site residues of the target. Discovery Studio was 
used to perform post-docking visualization 2D.57

Molecular dynamics simulations

By incorporating the classical Newton equation of motion, 
MD simulations generally simulate the movements of atoms 
over time and predict the binding state of ligands in the physi-
ological environment.58 A study of MD simulations was con-
ducted with the docking complex of PD-L1_benzosampangine 
over 100 ns using Schrödinger LLC Desmond software.59 The 
TIP3P solvent model (Intermolecular Interaction Potential 3 
Points Transferable), based on an orthorhombic box, was used 
at a temperature of 300 K, a pressure of 1 atm, and an 
OPLS_2005 force field.60 Using counter-ions and 0.15 M 
sodium chloride, the models were, respectively, neutralized and 
simulated under physiological conditions. The models were 
equilibrated before the simulation, and the trajectories were 
stored for inspection every 100 ps.

MMGBSA calculations

During MD simulations, the binding free energy (ΔGbind) of 
the docked complex was determined using the MMGBSA 
module (Suite Schrodinger, LLC, New York, NY, 2017-4). The 
calculations were performed using simultaneously, the OPLS 
2005 force field, the VSGB solvent model and rotamer search 
techniques.61 MD trajectory frames were chosen at each 10 ns 
interval after MD execution. The following equation was used 
to calculate the total binding free energy:
∆Gbind = Gcomplex – (Gprotein + Gligand)
where ΔGbind = binding free energy, Gcomplex = free energy 
of the complex, Gprotein = free energy of the target protein, 
and Gligand = free energy of the ligand.

Pharmacokinetics (ADME) and toxicity prediction

The ADMET results used in this study were obtained from 
the ADMETlab 2.0 server,62 a widely recognized platform for 
predicting pharmacokinetic and toxicity properties of chemical 
compounds. We focused on evaluating the key ADMET prop-
erties crucial for assessing the potential of drug candidates, 
including physicochemical properties, medicinal chemistry 
parameters, absorption, distribution, metabolism, excretion, 
and toxicity. ADMETlab 2.0 employs a multitask graph atten-
tion framework for robust and accurate prediction models. The 
server’s batch computation module and optimized result repre-
sentation enhance usability. Using ADMETlab 2.0, we sought 
to gain insights into the pharmacokinetic and toxicity profiles 
of compounds to optimize drug candidate screening. The freely 
accessible ADMETlab 2.0 server is a valuable online platform 
for early-stage drug discovery.62

Results
In this study, we screened 511 natural compounds for their 
potential inhibitory effects on the PD-L1 receptor using a 
structure-based drug design approach. The PD-L1 receptor 
was chosen for its pivotal role in immune checkpoint pathways, 

https://cadd.labshare.cn/cb-dock2/php/blinddock.php
https://cadd.labshare.cn/cb-dock2/php/blinddock.php
http://www.swissadme.ch/
https://tox-new.charite.de/protox_II/
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which are essential for the regulation of immune responses. 
Inhibiting PD-L1 can enhance antitumor immunity by pre-
venting its interaction with PD-1, thus making it a valuable 
target for cancer immunotherapy. In our docking study, we 
used the 3-dimensional crystal structure of human PD-L1 in a 
complex with an inhibitor (PDB ID: 5O45). This particular 
structure was selected because of its high resolution (0.99Å), 
which provides an accurate and detailed representation of the 
protein’s atomic structure. The inhibitor-bound form of PD-L1 
ensures well-defined binding conformation, enabling more 
reliable identification of potential inhibitors from the screened 
compounds. During the screening, compounds were evaluated 
based on their ability to interact with the active site residues of 
PD-L1. This criterion is a key factor in achieving effective dis-
ruption of the PD-1/PD-L1 interaction. In addition, com-
pounds were assessed for their drug-like properties, nontoxicity, 
and stability of the complexes formed with PD-L1 in MD 
simulations. These criteria are essential to ensure that the 
selected compounds not only have the potential to effectively 
inhibit PD-L1, but also have the favorable pharmacokinetic 
and pharmacodynamic profiles required for further develop-
ment as therapeutic agents. Compounds that interact favorably 
with PD-L1active site residues, have drug-like properties, are 
non-toxic, and form stable complexes in MD simulations were 
considered as potential active inhibitors of PD-L1. These can-
didates were selected for further experimental validation, high-
lighting their potential as promising therapeutic agents in 
cancer immunotherapy.

The following residues of PD-L1, ILE54, TYR56, 
MET115, ILE116, SER117, ALA121, ASP122, and TYR123, 
have been reported in various studies to contribute to the inter-
action between PD-L1 and PD-1.63-67 The Cb-Dock2 tool 
was used to identify the binding pocket of PD-L1. The bind-
ing site is illustrated in Figure 2.

Molecular docking is a critical step in structure-based drug 
design. In this study, molecular docking simulations were car-
ried out employing the AutoDock Vina program to evaluate 
the potential of small natural molecules to inhibit the interac-
tion between PD-1 and PD-L1 for immune system reactiva-
tion. We set −9 kcal/mol as the threshold binding energy value 
to select only molecules that strongly engage the PD-L1 active 
site.68 Table 1 presents the binding energy values for the top 23 
ligands among the 511 screened compounds, where their bind-
ing energies (below −9 kcal/mol) indicate a strong affinity for 
the PD-L1 target. Kaempferol 3-(6′-galloylgalactoside) and 
Z-guggulsterone exhibited the best binding energy toward the 
target (−9.8 kcal/mol), implying their strong interaction with 
the binding pocket residues. The binding energy values and 
binding poses for the top-docked compounds are summarized 
in Table 1.

Lipinski’s rule of five is applied to determine whether a 
molecule has the appropriate properties to qualify as a potential 
active pharmaceutical ingredient for oral administration. We 

assessed the drug-likeness properties of the molecules with the 
best docking scores (Table 1) to exclude compounds that are 
unsuitable for further developmental research. As shown in the 
table below (Table 2), 17 out of the 23 studied compounds 
adhered to Ro5, suggesting that these molecules are promising 
drug candidates. Only Kaempferol 3-(6′-galloylgalactoside), 
amentoflavone, hypericin, pseudohypericin, beta-carotene, and 
hesperidin showed 2 or more violations. The detailed proper-
ties of each molecule are reported in Table 2.

Toxicity was assessed by considering various targets associ-
ated with adverse effects of drugs to exclude any toxic com-
pounds from the study. The compounds studied had to be 
inactive on all targets with a high LD50. Benzosampangine 
showed no signs of toxicity, with LD50 value equal to 2000 mg/
kg. However, Z-guggulsterone, enoxolone, chelerythrine, and 
finasteride are both carcinogenic and immunogenic. While, 
veratramine, tomatidine, benzo[c]phenanthridine, limonin, 
peiminine, and finasteride exhibited low LD50 values of 315, 
500, 331, 244, 280, and 418 mg/kg, respectively, indicating their 
potential toxicity. The detailed toxicological properties of each 
molecule are reported in Table 3.

Various interactions were observed between benzosam-
pangine and the PD-L1 protein structure. As shown in Figure 
3, benzosampangine engaged with several residues in 
PD-L1active site, indicating a strong binding affinity. 
Specifically, it demonstrated Van der Waals interactions with 
ILE54, GLN66, ILE116, ASP122, and TYR123. Although 
individually weak, these Van der Waals forces collectively pro-
vide substantial stabilization to the ligand-receptor complex by 
creating extended contact surfaces. A carbon-hydrogen bond 

Figure 2.  The predicted binding pocket of PD-L1. Key residues 

represented in blue in the binding pocket and the surfaces of the binding 

pocket in PD-L1 are presented in gray.
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Table 1.  Molecular docking results and binding poses of top docked compounds with PD-L1 structure.

Compounds Affinity (Kcal/mol) PubChem CID Binding poses

Kaempferol 3-(6″-galloylgalactoside) –9,8 5280863

Z-guggulsterone –9,8 6450278

Veratramine –9,7 6070

Amentoflavone –9,6 5281600

Hypericin –9,4 3663

Taraxerol –9,4 92097

Tomatidine –9,4 65576

(Continued)
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Compounds Affinity (Kcal/mol) PubChem CID Binding poses

Benzo(4,5)sanpangine –9,4 383960

Benzo[c]phenanthridine –9,3 344234

Isoginkgetin –9,3 5318569

Limonin –9,3 179651

Pseudohypericin –9,3 4978

Berbamine –9,2 275182

Beta-carotène –9,2 5280489

Table 1.  (Continued)

(Continued)
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Compounds Affinity (Kcal/mol) PubChem CID Binding poses

Enoxolone –9,2 10114

Officinatrione –9,2 71567452

Sophoradin –9,2 5321393

Taraxasterol –9,2 115250

Chelerythrine –9,1 2703

Hesperidin –9,1 10621

Peiminine –9,1 167691

Table 1.  (Continued)

(Continued)
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with SER117 enhances the specificity and stability of the bind-
ing interaction. Hydrogen bonds are crucial for maintaining 
the proper orientation and binding affinity of the ligand in the 
active site, often contributing significantly to the overall bind-
ing energy. Notably, benzosampangine forms 3 Pi-sulfur inter-
actions with MET115. These interactions are significant as 
they involve the aromatic ring system of benzosampangine 
interacting with the sulfur atom of methionine. Although less 
common, Pi-sulfur interactions provide strong noncovalent 
interactions that can significantly stabilize the ligand in the 
binding pocket, contributing to the high binding affinity 
observed. Moreover, benzosampangine and TYR56 form 
numerous Pi-Pi stacked interactions. The relevance of these 
interactions in providing significant binding energy is attrib-
uted to the overlap of π-orbitals between aromatic rings. This 
type of interaction is essential for preserving the structural 
integrity of the ligand-protein complex and enhancing binding 
specificity. The complex was further stabilized by hydrophobic 
interactions ensured by Pi-alkyl interactions observed on 
ALA121. Through the establishment of hydrophobic interac-
tion, non-polar regions of the ligand play a crucial role in 
enhancing overall binding affinity and stability of the complex. 
In summary, these interactions suggest that benzosampangine 
effectively binds to critical residues of the PD-L1 active site 
and potentially may inhibit the interaction between PD-L1 
and PD-1. The interaction profile emphasizes benzosampang-
ine potential as a candidate for further experimental validation 
and promising therapeutic development in cancer diseases.

We also explored the dynamic behavior of the complex 
interactions through MD simulations between the target 
receptor PD-L1 and benzosampangine over 100 ns, a sufficient 
time for the dynamic behavior of Cα atoms within the com-
plex. This duration allows the assessment of the conforma-
tional stability of the compound-PD-L1 complex and its 

changes under physiological conditions. Various parameters 
were analyzed to validate the stability of the complex studied, 
including root mean square deviation (RMSD), root mean 
square fluctuation (RMSF), protein secondary structure, and 
protein-ligand contact analysis. The RMSD graph allows the 
assessment of the compound-PD-L1 complex stability 
throughout the 100 ns simulation. A complex with a low 
RMSD value is considered stable, whereas a higher RMSD 
suggests potential instability. Typically, RMSD values within 
the range of 1Å to 3Å are acceptable, but significantly larger 
changes suggest that the protein undergoes substantial confor-
mational changes during the simulation. The RMSD values 
should stabilize around a fixed value. If the protein’s RMSD 
continues to either increase or decrease on average toward the 
end of the simulation, it suggests that the system has not 
reached equilibrium, and the simulation duration may be insuf-
ficient for a thorough analysis. In our study, the RMSD graph 
for the benzosampangine-PD-L1 complex is presented in 
Figure 4. The average RMSD of the protein alone was 4.08Å, 
which decreased to 1.52Å after binding with benzosampang-
ine. This decrease indicates that the binding of benzosampang-
ine increased the stability of the PD-L1 protein. Increased 
protein stability upon ligand binding is often correlated with 
effective inhibition because a stable complex formation implies 
that the ligand is well accommodated within the binding site, 
resulting in minimal conformational changes. This stability can 
support the ligand’s ability to effectively block or inhibit the 
function of the protein, in our case, PD-L1. A stable PD-L1-
benzosampangine complex supports that benzosampangine 
may maintain its inhibitory interactions over time, reducing 
the likelihood of PD-L1 interacting with its natural binding 
partners, such as PD-1. The observed stability, despite initial 
fluctuations due to system equilibration during the first nano-
seconds, remained consistent throughout the simulation. A 

Compounds Affinity (Kcal/mol) PubChem CID Binding poses

Lupinifolin –9 10 250 777

Finasteride –9 57363

Table 1.  (Continued)
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fluctuation at 84 ns did not exceed 3Å, indicating that the sys-
tem was well-balanced throughout the simulation duration. 
This consistent stability reinforces the potential of benzosam-
pangine as a promising inhibitor of PD-L1, suggesting its 
potential for further experimental validation and therapeutic 
development.

The RMSF measurement characterizes the local changes in 
protein chains during the simulation revealing the rigidity and 
flexibility of the protein’s amino acids. Peaks indicate the resi-
dues of the protein that fluctuate during the simulation. 
Typically, secondary structure elements (alpha helices and beta 
strands) are rigid and fluctuate less than (N- and C-terminal) 
regions, which are flexible. The RMSF graph of the system 
(Figure 5) demonstrates that the residues interacting with ben-
zosampangine, highlighted by green bars, exhibit fluctuations 

decrease compared with other regions. This variation suggests 
that the binding of benzosampangine stabilizes these residues, 
resulting in increased rigidity and decreased mobility. 
Specifically, residues such as MET115, TYR56, ALA121, 
SER117, TYR123, ASP122, ILE116, ILE54, and GLN66, 
which interact directly with benzosampangine, are involved in 
this stabilization process. In contrast, other regions did not 
interact with benzosampangine, particularly those around resi-
dues 25-35 and 45-55, and showed higher fluctuations. These 
areas are more flexible, likely due to the lack of stabilizing 
interactions with the ligand. This flexibility is characteristic of 
regions not implied in direct ligand binding, allowing them to 
move more freely during the simulation. These observations 
underline the critical role of the identified residues in ligand 
binding and protein stability. The interactions between 

Table 2.  Predicted drug likeness of PD-L1 potential inhibitors.

Compounds Lipinski’s rule of five

Molecular 
weight (<500 Da)

No. rotatable 
bonds (<15)

No. H-Bond 
donors (5)

No. H-bond 
acceptors (<10)

LogP (<5) Violations

Kaempferol 
3-(6″-galloylgalactoside)

600,5 7 8 15 0,3 3

Z-guggulsterone 312,45 0 0 2 4,03 0

Veratramine 409,6 2 3 3 4,3 1

Amentoflavone 538,46 3 6 10 3,62 2

Hypericin 504,44 0 6 8 4,26 2

Taraxerol 426,72 0 1 1 7,22 1

Tomatidine 415,65 0 2 3 5,9 1

Benzo(4,5)sanpangine 282,3 0 0 3 3,37 0

Benzo[c]phenanthridine 229,28 0 0 1 4 0

Isoginkgetin 566,51 5 4 10 4,39 1

Limonin 470,51 1 0 8 2,55 0

Pseudohypericin 540,44 1 7 9 3,5 2

Berbamine 609,78 3 1 8 5,15 1

Beta-carotène 536,78 10 0 0 11,11 2

Enoxolone 470,68 1 2 4 5,17 1

Officinatrione 454,68 1 0 3 5,91 1

Sophoradin 460,6 9 3 4 6,8 1

Taraxasterol 426,72 0 1 1 7,14 1

Chelerythrine 348,37 2 0 4 3,02 0

Hesperidin 610,56 7 8 15 −0,72 3

Peiminine 429,64 0 2 4 3,52 0

Lupinifolin 406,47 3 2 5 4,38 0

Finasteride 372,54 3 2 2 3,29 0
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benzosampangine and these key residues contribute to the 
overall stability of the PD-L1 protein-ligand complex, enhanc-
ing the inhibitory potential of benzosampangine.

The variations in the secondary structure elements (% SSE) 
of PD-L1, including alpha helices and beta strands, were 
assessed over simulation time. The plot at the top summarizes 
the SSE composition for each trajectory frame over the course 
of the simulation and the plot at the bottom tracks each residue 
and its SSE assignment over time, with variations represented 
in orange and blue corresponding to alpha helices and beta 
sheets, respectively (Figure 6). The percentage of beta strands is 
notably higher compared with the percentage of alpha helices. 
However, the overall secondary structure elements of the 
PD-L1 protein remained stable at approximately 44% through-
out the simulation. This consistency suggests that no signifi-
cant structural changes occurred and the integrity of the 
PD-L1 structure was maintained during its interaction with 
benzosampangine.

The interaction types between benzosampangine and the 
protein were monitored throughout the simulation to assess 
their contribution to the stability of the complex. These inter-
actions include hydrophobic, hydrogen bonds, water bridges, 
and ionic interactions and are illustrated in Figure 7. The 
results indicate that hydrophobic interactions, hydrogen bonds, 
and water bridges were the most frequently observed ligand-
protein interactions. Benzosampangine engaged with all resi-
dues in the active site of PD-L1. Particularly, the hydrophobic 

Table 3.  Organ toxicity and toxicological endpoints predicted activities.

Compounds Toxicity

Hepatoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity LD50 (mg/kg)

Z-guggulsterone Inactive Active Active Inactive Inactive 2300

Veratramine Inactive Inactive Active Inactive Inactive 315

Taraxerol Inactive Inactive Active Inactive Inactive 70000

Tomatidine Inactive Inactive Active Inactive Inactive 500

Benzosampangine Inactive Inactive Inactive Inactive Inactive 2000

Benzo[c]
phenanthridine

Inactive Inactive Inactive Active Inactive 331

Isoginkgetin Inactive Inactive Active Inactive Inactive 4000

Limonin Inactive Inactive Active Inactive Inactive 244

Berbamine Inactive Inactive Active Active Inactive 1700

Enoxolone Inactive Active Active Inactive Inactive 560

Officinatrione Inactive Inactive Active Inactive Inactive 5000

Sophoradin Inactive Inactive Active Inactive Inactive 1000

Taraxasterol Inactive Inactive Active Inactive Inactive 5000

Chelerythrine Inactive Active Active Active Active 778

Peiminine Inactive Inactive Active Inactive Inactive 280

Lupinifolin Inactive Inactive Active Inactive Inactive 2000

Finasteride Inactive Active Active Inactive Inactive 418

Figure 3.  2D interaction of benzosampangine with the active site of 

PD-L1.
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interaction with TYR56, the strongest interaction observed, 
remained stable for approximately 50% of the simulation time. 
These findings highlight the stability of the benzosampang-
ine-PD-L1 complex.

All results from the MD indicate the stability of benzosam-
pangine when complexed with the PD-L1 protein. This 
observed stability suggests that benzosampangine may have 
the potential to inhibit the interaction between PD-L1 and 
PD-1 under physiological conditions.

Molecular Mechanics-Generalized Born Surface Area 
(MM-GBSA) analysis allows us to identify the binding effi-
ciency of the ligand with the receptor, by calculating the bind-
ing free energy of the protein-ligand complex at the molecular 
level. This approach is highly beneficial for the validation of 
docking and MD simulation results. The binding free energy 

(ΔGbind) of benzosampangine to PD-L1 is equal to −39.39 
kcal/mol (Table 4). ΔGbind is influenced by nonbonded inter-
actions such as ΔGbindCoulomb, ΔGbindCovalent, ΔGbind 
Hbond, ΔGbindLipo, ΔGbindSolvGB, and ΔGbindvdW. The 
contribution of each interaction is detailed in Table 4. The 
ΔGbindCoulomb, ΔGbindLipo, and ΔGbindvdW energies 
contributed significantly to reach the average binding energy, 
compared with the ΔGbindCovalent and ΔGbindSolvGB 
energies which showed an unfavorable energetic contribution 
to the final binding energies average. Thus, the binding energy 
observed in docking studies is well-supported by the 
MM-GBSA calculations derived from the MD simulation 
trajectories.

Benzosampangine presents a compelling profile in terms of 
its absorption, distribution, metabolism, excretion, and toxicity 

Figure 5.  Root mean square fluctuation (RMSF) analysis of PD-L1 in 

complex with benzosampangine. The vertical green lines represent the 

amino acid residue of RPFC making contact with ligand.

Figure 4.  Root mean square deviation (RMSD) of the protein PD-L1 alone (blue) and in complex with and benzosampangine (red) as a function of 

simulation time.

Figure 6.  The stability of PD-L1’s secondary structure over 100 ns of MD 

simulation in complex with benzosampangine.
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(ADMET) properties, positioning it as a promising candidate 
for in the development of effective cancer immunotherapy 
agents. Considering the advancement of PD-L1 inhibitors,69 
pyrvinium, an FDA-approved anthelmintic drug,70 has dem-
onstrated in vitro efficacy against the PD-L1 receptor,71 indi-
cating potential for repurposing in cancer therapy. BMS-202, 
currently progressing through pre-clinical trials,72 shows early-
stage promise, whereas CA-170’s involvement in clinical 
research targeting NSCLC highlights its clinical relevance in 
oncology.73,74 These compounds, namely pyrvinium, BMS-
202, and CA-170, serve as experimentally validated controls in 
our study. Nevertheless, the comprehensive evaluation of ben-
zosampangine’s ADMET characteristics suggests several 
potential advantages over the experimentally validated control 
molecules, including pyrvinium, BMS-202, and CA-170. 
These findings warrant further investigation into its suitability 
for development as a therapeutic targeting the PD-L1 pathway 
(Table 5). One promising feature of Benzosampangine is its 

predicted favorable absorption profile, characterized by high 
intestinal absorption (HIA),75 which surpasses that of pyrvin-
ium and CA-170. This attribute is indicative of its potential for 
efficient systemic delivery and distribution within the body and 
is critical for achieving therapeutic efficacy. In addition, 
Benzosampangine is predicted to demonstrate an extensive 
volume of distribution, exceeding that of BMS-202, signifying 
its propensity to reach target tissues and maintain therapeutic 
concentrations, essential for triggering a robust antitumor 
response.76 Its balanced logS value of −4.21 and logP value of 
3.05 also surpass those of pyrvinium and BMS-202, further 
enhancing its pharmacokinetic profile and potential for opti-
mal absorption and distribution across biological membranes.77 
Moreover, benzosampangine is predicted to demonstrate mod-
erate blood-brain barrier (BBB) penetration, similar to that of 
pyrvinium and CA-170, and higher than of BMS-202 value, 
which may help mitigate the risk of central nervous system 
exposure and associated neurotoxicity.78 In terms of predictive 
metabolic interactions, benzosampangine exhibits moderate 
activity as both a substrate and inhibitor of cytochrome P450 
(CYP) enzymes, particularly CYP2D6 and CYP3A4, compa-
rable to or better than the other molecules, potentially confer-
ring advantages in terms of reduced susceptibility to metabolic 
degradation and drug-drug interaction modulation.79 
Furthermore, benzosampangine shows a low risk of hERG 
blocker toxicity distinguishes it from pyrvinium and BMS-
202, indicating a lower potential for cardiac arrhythmia, a criti-
cal safety consideration in drug development.80 The absence of 
PAINS alerts (pan-assay interference compounds) in benzosa-
mpangine’s structural features is a significant computational 
advantage over pyrvinium, which exhibits 2 PAINS alerts. This 
absence may suggest a lower likelihood of off-target effects or 
undesirable interactions, enhancing the safety profile of 

Figure 7.  The protein-ligand interactions: (a) hydrogen bonds—green, hydrophobic—white purple, ionic—pink, water bridges—blue).

Table 4.  Binding energy calculation of benzosampangine with PD-L1 
and non-bonded interaction energies from MM-GBSA trajectories.

Energies (kcal/mol) Benzosampangine–PD–L1

ΔGbind –39.39931414

ΔGbindCoulomb –19.86215968

ΔGbindCovalent 1.762700362

ΔGbindHbond –0.001425516

ΔGbindLipo –23.83190531

ΔGbindSolvGB 33.50724005

ΔGbindvdW –27.70691006
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Benzosampangine.81 Moreover, benzosampangine’s docking 
score of −9.4 kcal/mol, indicate a strong molecular affinity for 
the PD-L1 receptor, surpassing those of the control com-
pounds. The high recorded affinity supports the promising for 
potent and specific inhibitory action against the PD-L1 path-
way, a pivotal mechanism implicated in tumor immune 
evasion.

Although BMS-202 and CA-170 are both currently in 
developmental phases, benzosampangine is standing out as a 
promising candidate for further investigations as a PD-L1 
inhibitor given to its higher ADMET profile and exceptional 
docking score. Lower docking scores of −8.6 kcal/mol for 
BMS-202 and −6.5 kcal/mol for CA-170 suggest weaker 
molecular affinity for the PD-L1 receptor, supporting the 
hypothesis that benzosampangine could exhibit stronger 
molecular interactions and therapeutic potential (Table 6).

When comparing interactions of benzosampangine to con-
trol molecules (CA-170, BMS-202, and pyrvinium), it appears 
that benzosampangine may have the potential to mimic the 
roles of these control compounds and potentially surpass them 
in terms of binding stability and specificity. Figure 8 shows that 
all 4 molecules bind within the same pocket of the PD-L1 pro-
tein, suggesting that benzosampangine could exhibit similar 
inhibitory effects on the PD-L1/PD-1 interaction. CA-170 
primarily relies on hydrogen bonds with SER117, ASN63, and 
GLN66, in addition to Van der Waals interactions and alkyl/
Pi-alkyl interactions with residues such as VAL68 and ILE54 

(Figure 8B), whereas BMS-202 demonstrates a more diverse 
interaction profile, including hydrogen bonds and Pi-anion 
interaction with GLU58, Pi-Pi stacked and alkyl interactions 
with TYR56, Pi-sigma interaction with ILE54, as well as 
extensive Van der Waals interactions (Figure 8C). Despite the 
absence of hydrogen bonds, pyrvinium engages Pi-alkyl and 
alkyl interactions with residues such as TYR56, MET115, and 
ILE54, along with Van der Waals interactions and a carbon-
hydrogen bond with ASP122 (Figure 8D). The unique combi-
nation of interactions observed in benzosampangine (Figure 
8A), particularly the presence of triple Pi-sulfur interactions 
with MET115 and triple Pi-Pi stacked interactions with 
TYR56, suggests a potentially higher interaction profile. It is 
important to interpret the results of our investigation within 
this predictive framework, given that it was conducted using 
computational predictions. The robust interaction profile  
of benzosampangine indicates that it may exhibit strong 

Table 6.  Docking score against PD-L1.

Molecule Docking score (kcal/mol)

Benzosampangine –9.4

Pyrvinium –8.9

BMS-202 –8.6

CA-170 –6.5

Table 5.  ADMET properties of PD-L1 inhibitors.

ADMET 
properties

Benzosampangine CA-170 Pyrvinium BMS-202 Ideal range/notes

Molecular Weight 
(MW)

282.08 360.32 382.23 419.22 <500 Da is favorable

TPSA 42.85 226.92 46.53 72.48 <140Å² is favorable

logS –6.886 –1.101 –5.12 –3.387 Higher values indicate better solubility

logP 4.309 –2.85 5.03 3.727 −0.4 to 5.6 is favorable

QED 0.403 0.238 0.436 0.488 Closer to 1 indicates higher drug-
likeness

HIA 0.007 0.016 0.686 0.004 Lowe values indicate higher HIA

VD 1.014 0.396 0.432 1.873 Dependent on drug’s target and 
therapeutic window

Lipinski Rule Accepted Rejected Accepted Accepted No more than 1 violation

BBB Penetration Moderate Low High Moderate High penetration desired for CNS drugs

CYP 2D6 Inhibitor Low Very Low Moderate High Non-inhibitor preferred

CYP 3A4 Inhibitor Moderate Very Low Moderate High Non-inhibitor preferred

hERG Blockers Low Very Low Low Moderate Non-blocker preferred to avoid cardiac 
toxicity

Carcinogenicity Low Risk Low Risk Low Risk Low Risk Non-carcinogenic preferred
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Figure 8.  Binding pose and atomic-level interactions of control molecules CA-170 (B), BMS-202 (C), and pyrvinium (D) and benzosampangine (A).

inhibitory effects on the PD-L1/PD-1 pathway, potentially 
comparable to or probably exceeding those of CA-170, BMS-
202, and pyrvinium.

When evaluating the system stability under physiological 
conditions, we compared the behavior of the benzosampang-
ine-PD-L1 complex with that of the control molecule CA-170 
in complex with PD-L1 over 100 ns of MD simulations. The 
CA-170-PD-L1 complex exhibits variations throughout the 
simulation time of 100 ns (Figure 9). Following an initial fluc-
tuation due to equilibrium search, the RMSD of the complex 

remains relatively stable around 12Å until 28 ns indicating that 
CA-170 initially maintains stability within the binding pocket 
of the protein. Then, several significant peaks in the RMSD of 
the CA-170-PD-L1 complex were observed up to approxi-
mately 72 ns, indicating that the ligand traveled a considerable 
distance from its initial position, thus revealing a period of 
instability of the ligand, probably due to its partial or complete 
detachment from its binding site on the protein. However, 
from around 73 ns onward, the RMSD decreases and remains 
stable without fluctuations toward the end of the simulation, 
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indicating that CA-170 regains its initial conformation and 
forms stable interactions with the protein. In contrast, benzo-
sampangine does not exhibit such pronounced fluctuations and 
remains more stable in the protein binding pocket throughout 
the simulation. These results support the candidacy of benzo-
sampangine as a promising ligand for therapeutic development 
targeting PD-L1. The RMSF plot of the CA-170-PD-L1 
complex shows low RMSF values in the contact areas, indicat-
ing remarkable protein stability while bound to CA-170 
(Figure 10). Similarly, the RMSF values for benzosampangine-
PD-L1 complex are also low in these contact areas, showing 
that benzosampangine provides protein stability comparable to 
that of CA-170.

Discussion
We compared our observations with previous studies on 
PD-L1 inhibitors using computational approaches. Many pre-
vious studies have employed molecular docking to study the 

interaction of PD-L1 with different inhibitors, and their 
reported results are consistent with ours regarding key residues 
involved in interactions that may induce inhibition.63,82,83 Our 
findings showed that benzosampangine interacts with the 
same binding site residues of PD-L1, namely MET115, 
TYR56, ALA121, SER117, TYR123, ASP122, ILE116, 
ILE54, and GLN66, confirming the relevance of our predic-
tions. In addition, our study revealed hydrophobic interactions 
and stable hydrogen bonds between benzosampangine and 
these critical residues, which align with observations from pre-
vious studies.63,82,84 This alignment with previous works 
strengthens the credibility of our docking methodology and 
the validity of the identified interactions between benzosam-
pangine and PD-L1. Furthermore, in the study by Sobral et 
al85 identifying new PD-L1 inhibitors, it has been shown that 
effective inhibitors had binding energies of −9.213 and −8.023 
kcal/mol, and specific interactions were recorded with PD-L1 
domain. Our simulations yielded a similar trend, with benzosa-
mpangine exhibiting a binding free energy of −9.4 kcal/mol, 
suggesting its potential as a PD-L1 inhibitor. Furthermore, we 
compared our molecular dynamic simulation results with those 
of Kamal et al,84 who analyzed the stability of PD-L1-
inhibitors complexes using MD simulations. In their work, 
more RMSD fluctuations occurred, supporting the fact that 
the benzosampangine-PD-L1 complex maintains structural 
stability. Our MD simulations, conducted over a period of 100 
ns, showed stable RMSD values around 1.52Å, indicating a 
stable conformation of the complex throughout the simulation. 
These results align with the Kamal research team’s observa-
tions, where stable PD-L1 complexes with various inhibitors 
exhibited RMSD values below 2Å. In addition, the RMSD 
stability in our study is in agreement with Kumar et al,66 who 
also found that stable PD-L1-inhibitor complexes showed 
RMSD fluctuations within a similar range (below 2.5Å). This 
outcome agreement reinforces the validity of our results, sug-
gesting that benzosampangine forms a stable complex with 
PD-L1. We also analyzed the RMSF to identify residues with 
significant mobility in the complex. Residues such as Tyr56, 
Met115, and Ala121 in the PD-L1 pocket exhibited low RMSF 
values, indicating structural stability in the binding region, in 
line with Liang et al86 who reported similar RMSF values for 
effective PD-L1 inhibitors. The low fluctuation of these critical 
residues supports the hypothesis that benzosampangine main-
tains a stable interaction with PD-L1. However, it is important 
to note that our study is purely computational, and based only 
on in silico data. While these results are promising, they remain 
hypothetical until validated through experimental studies. 
Overall, our findings confirm that benzosampangine forms a 
stable complex with PD-L1 by interacting with critical resi-
dues in the binding pocket, which are consistent with reference 
studies. Benzosampangine is a lead compound among 511 
natural compounds identified through molecular docking  
and MD simulations, showing strong potential as a PD-L1 

Figure 9.  Root mean square deviation (RMSD) of the protein PD-L1 

alone (blue) and in complex with and CA-170 (red) as a function of 

simulation time.

Figure 10.  Root mean square fluctuation (RMSF) analysis of PD-L1 in 

complex with CA-170.
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inhibitor. Nevertheless, further steps are required, such as in 
vitro validation of its inhibitory effects, followed by possible 
structural optimization to enhance its binding potential. In 
addition, preclinical and clinical studies will be essential to 
confirm its efficacy and safety.

Conclusions
Through the anticipated findings of benzosampangine, this 
study targets the PD-L1 pathway, offering a promising in can-
cer immunotherapy. According to comprehensive computa-
tional methods, benzosampangine has emerged as a compound 
exhibiting great potential, demonstrating a significant pre-
dicted binding affinity toward PD-L1, supported by favorable 
pharmacokinetic and ADMET properties. Its adherence to 
Ro5 suggests its potential as a drug candidate supported by its 
suitability for oral administration. Compared with control 
molecules such as CA-170 and BMS-202, benzosampangine 
showed favorable predicted molecular interactions and a supe-
rior ADMET profile, reinforcing its potential as a leading 
PD-L1 inhibitor. However, the transition from computational 
predictions to clinical application requires thorough experi-
mental validation, including in vitro and in vivo studies, to con-
firm benzosampangine efficacy and mechanism of action in 
tumor immunity. Enhancing the pharmacological profile by 
improving its solubility, stability, and bioavailability, alongside 
developing effective delivery systems, will be essential for future 
therapeutic development. This approach could potentially ele-
vate benzosampangine from a promising to a viable therapeu-
tic candidate, emphasizing the critical role of computational 
methods in drug discovery. The study illustrates the potential 
of computational tools in identifying novel inhibitors, support-
ing the development of more efficient and cost-effective thera-
peutic solutions.
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