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Simple Summary: The PI3K/AKT pathway is involved in cell survival and proliferation. Molecular
aberrations and/or hyperactivation of the PI3K-PTEN-AKT axis are frequent in distinct cancer types
such as endometrial carcinoma, the most common type of cancer of the female genital tract, and
chronic lymphocytic leukemia (CLL), a mature B-cell neoplasm depending on B-cell receptor (BCR)
activity, which induces chronical activation of this pathway. The mitochondrial nuclease ENDOG
was found to influence PI3K/AKT activity in somatic cells. Our aim was to assess the value of
ENDOG gene silencing to block cancer cell proliferation and to evaluate the relevance of ENDOG
as prognostic marker. In vivo, in vitro and in silico experiments show that Endog/ENDOG silencing
blunts proliferation of tumor cells dependent on high p-AKT/low PTEN activity and that ENDOG
has prognostic value in specific cancer types.

Abstract: EndoG influences mitochondrial DNA replication and is involved in somatic cell prolif-
eration. Here, we investigated the effect of ENDOG/Endog expression on proliferation in different
tumor models. Noteworthy, ENDOG deficiency reduced proliferation of endometrial tumor cells
expressing low PTEN/high p-AKT levels, and Endog deletion blunted the growth of PTEN-deficient
3D endometrial cultures. Furthermore, ENDOG silencing reduced proliferation of follicular thyroid
carcinoma and glioblastoma cell lines with high p-AKT expression. High ENDOG expression was
associated with a short time to treatment in a cohort of patients with chronic lymphocytic leukemia
(CLL), a B-cell lymphoid neoplasm with activation of PI3K/AKT. This clinical impact was observed
in the less aggressive CLL subtype with mutated IGHV in which high ENDOG and low PTEN levels
were associated with worse outcome. In summary, our results show that reducing ENDOG expression
hinders growth of some tumors characterized by low PTEN activity and high p-AKT expression and
that ENDOG has prognostic value for some cancer types.

Keywords: ENDOG; PTEN; AKT; endometrial carcinoma; glioblastoma; chronic lymphocytic leukemia

1. Introduction

Cancer is the second leading cause of death globally, accounting for more than 9
million deaths each year, and its burden continues to growth (WHO https://www.who.
int/health-topics/cancer#tab=tab_1, accessed on 18 May 2021). The genetic heterogeneity
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and extreme diversity of the molecular bases sustaining the development of specific cancer
types [1,2] require the identification of novel molecular contributors that support growth
in some cancer types in order to improve their treatment [3].

The mitochondrial endonuclease ENDOG, which is involved in mitochondrial DNA
(mtDNA) replication [4,5] and caspase-independent cell death [6,7], is required for normal
somatic cell proliferation [8]. Lack of ENDOG increases mitochondrial ROS production
and slows down cell proliferation in an ROS-dependent manner associated with reduction
in the AKT/PKB-GSK-3-Cyclin D axis [8]. This finding adds further evidence on the
important role of mitochondrial biology and mitochondria-derived molecules in the control
of cytoplasmic transduction signaling that regulates many biological processes [9,10],
including cell proliferation [11]. Moreover, AKT activation depends on the activity of
PI3K, and it is antagonized by the tumor suppressor Phosphatase and Tensin Homologue
(PTEN). In the context of cancer, it is well known that PI3K-PKB/AKT hyperactivation and
alterations in PTEN [12] play a decisive role in the development and progression of many
cancer types [13,14]. PTEN is one of the most frequently altered tumor suppressor genes in
human cancer [15] by different mechanisms including mutation with loss of heterozygosity
(LOH), promoter methylation or other processes that lead to its decreased expression [16].
Moreover, molecular aberrations in the PI3K-PTEN-AKT axis are very frequent (85–90%)
in solid tumors, such endometrial carcinoma, the most common tumor type of the female
genital tract [17]. In hematological cancer, this axis is fundamental in the pathogenesis of
chronic lymphocytic leukemia (CLL), the most common leukemia in adults. This mature
B-cell neoplasm fully depends on the B-cell receptor (BCR) activity for their proliferation
and survival [18]. One of the key downstream elements of BCR is PI3K, which is chronically
activated by the BCR stimulation even in the absence of genomic aberrations affecting the
BCR signaling pathway [19,20].

In this context, we decided to investigate the potential role of ENDOG in tumor cell
proliferation using different in vitro and in vivo cellular models and its potential clinical
impact in CLL, which has an activated PI3K-PKB/AKT pathway in relation with their
PTEN status.

2. Materials and Methods
2.1. Ethics Statement for Human Data

CLL expression data were obtained from previously published RNAseq data of pa-
tients from the ICGC-CLL Genome Project [21]. This cohort consisted of 266 CLL samples
at diagnosis. All patients provided informed consent in accordance with requirements
from local Institutional Review Board (Clinical Investigation Ethic Committee-CEIC, Hos-
pital Clínic de Barcelona, Barcelona, Spain) (Project ICGC Genoma Leucèmia Crònica
HBC;2009/5069) and following ICGC guidelines and Ethics and Policy Committee [22].

2.2. Animal Experimentation and Mouse Strains

The investigation with experimental animals was approved by the Experimental
Animal Ethic Committee (CEEA) of the University of Lleida (codes CEEA06-01/10,07-
01/10, 08–01/09 and 09–01/09), complying with the ARRIVE Guidelines and conforming
to the Guide for the Care and Use of Laboratory Animals, 8th Edition, published in
2011 by the US National Institutes of Health. Mice were housed in Tecniplast GM500
cages (391 × 199 × 160 mm) never exceeding 5 adults/cage. All animals were housed at
the Experimental Animal Housing Facility—University of Lleida, lights on from 7 a.m.
to 7 p.m., temperature 18–22 ◦C and 30–70% humidity. Enriched environment included
autoclaved cellulose material. Animals were fed 2914 diet (Irradiated Teklad Global 14%
Protein Rodent Maintenance Diet, Harlan) and sterilized tap water, both ad libitum. The
wellbeing of animals was monitored daily by visual inspection, and for SPF-housed mice,
pathogen analysis was monitored from sentinel animals in periods of 8 weeks following
the standards determined by the Federation of European Laboratory Animal Science
Association (FELASA). Mice were sacrificed following the guidelines of our CEEA.
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The Endog mouse colony is derived from founders given by Dr. Michael Lieber,
University of Southern California, LA, CA, USA [23], and has a C57BL/6J background.
Floxed homozygous Pten (C;129S4-Ptentm1Hwu/J; referred to here as Ptenfl/fl) and Cre-ERT
(B6. Cg-Tg (CAG-Cre/Esr1* 5Amc/J; referred to here as CAG-Cre) mice were obtained
from the Jackson Laboratory (Bar Harbor, ME). Endog+/+/Endog−/− CreERT+/− Ptenfl/fl

mice were bred in a mixed background (C57BL6; 129S4) by crossing Endog−/−, Ptenfl/fl and
Cre-ERT+/− mice. At 3 weeks after birth, animals were weaned and genotyped.

Immunodeficient SCID mice (age 12 weeks; weight 20–25 g) were subcutaneously
injected with scrambled-transduced or Endog-specific shRNA-transduced IK cells (2 × 106)
suspended in 100 µL of PBS. Tumors were allowed to grow for 35 days. Tumors were
measured every 2–4 days with calipers. Tumor size was calculated using the formula:
tumor volume (mm3) = (D × d2)/2, where D = largest diameter and d = smallest diameter.

2.3. Cell Lines, Epithelial 3D Cultures and ENDOG/Endog Expression Silencing

The Ishikawa 3-H-12 (IK), HEC-1A and MFE-296 endometrial cancer cell lines were
purchased from the American Type Culture Collection. Cal 62 and FTC 133 thyroid cancer
cells were a gift from Dr. Santisteban (Instituto de Investigaciones Biomédicas Alberto
Sols, Madrid, Spain). All cell lines were grown in Dulbecco’s modified Eagle medium
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (Invitro-
gen, Waltham, MA, USA), 1 mmol/L HEPES (Sigma-Aldrich), 1 mmol/L sodium pyruvate
(Sigma-Aldrich, 2 mmol/L L-glutamine (Sigma-Aldrich) and 1% of penicillin/streptomycin
(Sigma-Aldrichat 37 ◦C with saturating humidity and 5% CO2. U87-MG and U251-MG
glioblastoma cells were obtained from CLS Cell Lines Service (Eppelheim, Germany).
Glioblastoma cells were maintained in culture as indicated by the supplier at 37 ◦C and
5% CO2 atmosphere and were subcultured by trypsinization twice a week. These cell lines
were previously characterized in our lab [24,25]. CaCO2 and HT-29 colorectal adenocarci-
noma cells were provided by the Cell Culture Service from the University of Lleida. All cell
lines were mycoplasma free (MycoAlertTM Mycoplasma Detection Kit, Cambrex, NJ, USA).
All experiments were conducted with low-passage cells from recently resuscitated frozen
stocks. Endometrium epithelial 3D cultures were established as described previously [26].

To reduce Endog expression in mouse cultured cells, we used a lentiviral vector
system based in the plasmid pLVTHM (Dr. Trono’s laboratory, Switzerland) containing
small hairpin RNA interference sequences targeting the mouse Endog mRNA sequence
5′-GGAACAACCTGGAGAAATA-3′, which was prepared as previously described [7].
For shRNA-mediated silencing of the human ENDOG gene, we used a commercially
available pLKO.1 PURO plasmid (SHCLNG-NM_007931, Sigma-Aldrich). A lentiviral
vector containing a scrambled sequence from the mouse sequence was used as control.

2.4. Cell Counting, Bromodeoxyuridine Incorporation and Cell Cycle Analysis

Equal numbers of cells were seeded from low-passage plates (lower than 20). Lentivi-
ral transduced cells were incubated for 3 days, and after trypsinization, cells were seeded
at equal densities. In every experiment, cells from 2 plates were counted a few hours after
seeding to confirm equal initial cell numbers. Cultures were left to grow during 48–72 h.
At the end of the period, plates were rinsed with PBS and trypsinized. After mild centrifu-
gation, pellets were resuspended in PBS and counted in a Neubauer cell chamber under a
phase contrast microscope. The exact number of independent experiments performed in
duplicate is specified in the figure legends.

For drug treatment experiments, after 48h of lentiviral transduction, IK cells were
trypsinized, and equal numbers of cells were seeded and left to attach for 24 h. The next
day, drugs were added to culture plates: 10 µmol/L SAHA (Suberoylanilide hydroxamic
acid/Vorinostat; Sigma-Aldrich; SML0061), 100 µmol/L Etoposide (Sigma-Aldrich; E1383)
or vehicle DMSO (no drug, ND), and incubated for 24 h. Finally, cells were counted by
Trypan blue exclusion as previously explained. The experiment was repeated three times.
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The bromodeoxyuridine protocol was performed as described previously [26]. Briefly,
3D cultures were incubated with 3 ng/mL 5-bromo-2-deoxyuridine (BrdU) (Sigma-Aldrich;
B5002) for 15 h and then fixed with 4% paraformaldehyde. After DNA denaturing with
2 mol/L HCl for 30 min and neutralization with 0.1 mol/L Na2B4O7 (pH 8.5) for 2 min,
cells were blocked in PBS solution containing 5% horse serum, 5% fetal bovine serum,
0.2% glycine and 0.1% Triton X-100 for 1 h. Subsequently, cells were subjected to indirect
immunofluorescence with a mouse anti-BrdU monoclonal antibody (diluted 1:100, DAKO,
Carpenteria, CA, USA) and Alexa Fluor-conjugated anti-mouse secondary antibody. Nuclei
were counterstained with 5 µg/mL Hoechst 33258, and cells were visualized under a
confocal microscope. BrdU-positive nuclei were scored and divided by the total number
of cells (visualized by Hoechst staining). The results are expressed as a percentage of
BrdU-positive cells.

For cell cycle analysis, IK and U251 cells were seeded in 60 mm Petri dishes at
1.25–2.5 × 106 cells/dish and incubated for 48 h. Afterward, cells were trypsinized and
washed in ice-cold PBS, fixed in 70% ethanol and stored at –20 ◦C until analysis. Fixed cells
were suspended in 500 µL propidium iodide (PI)/RNase staining buffer (Becton Dickinson,
Franklin Lakes, NJ, USA), incubated for 30 min at 37 ◦C and analyzed in a BD FACSCanto
II cytometer (Becton Dickinson) as in previous works [8,25]. Data analysis was performed
using ModFit LT software (Verity software house, Topsham, ME, USA).

2.5. ROS Detection

ROS production was determined by using the fluorescent probe MitoSOX™ Red, a
cationic derivative of DHE, which is rapidly and selectively targeted to the mitochon-
dria where, as stated by the manufacturer, it is oxidized mainly by superoxide anions
(O2
−) (Thermo Fisher Scientific, Waltham, MA, USA; M36008). We have used previously

MitoSOX™ Red to detect superoxide anions generated by mitochondria using flow cy-
tometry [5,8]. Briefly, cells were washed twice in PBS, trypsinized and counted using a
Neubauer cell chamber. Equal amounts of cells from each population were incubated in
PBS containing 2.5 µmol/L MitoSOX™ Red for 10 min. Fluorescence of the cell population
is proportional to the levels of intracellular ROS generated and was measured with a BD
FACSCanto II cytometer (Becton Dickinson, Mountain View, CA, USA) using 488 nm laser
excitation and detection with BP 585/42 filter.

2.6. Analysis of Protein Abundance

Protein extraction, SDS-PAGE in standard polyacrylamide gels and Western Blot were
performed and analyzed as described elsewhere [7]. Antibodies were against human
and rodent ENDOG (ab76122, Abcam, Cambridge, UK), PTEN, pS473-AKT (4060, Cell
Signaling, Boston, MA, USA), AKT (sc-1618, Santa Cruz Biotechnology, Santa Cruz, CA,
USA), pS21/9-GSK (9331, Cell Signaling), GSK3B (ab18893, Abcam), pY15-CDK1 (ab18,
Abcam), CDK1 (ab32384, Abcam), Cyclin D (SC-20044, Santa Cruz Biotechnology), Cyclin
B (ab181593, Abcam), Complex IV (Cox4; A21348, Thermo Fisher), Dihydrolipoamide DH
(DLD; 133551, Abcam), CATENINB (610153, BD Biosciences, Franklin Lakes, NJ, USA),
E-cadherin (610181, BD Biosciences) and Vimentin (ab45939, Abcam).

2.7. In Silico Datasets Exploration

Cancer Regulome explorer (http://www.cancerregulome.org/ (accessed on 26 Jan-
uary 2021) from The Cancer Genome Atlas Program, NIH) was used to investigate the
potential association of ENDOG expression to any relevant characteristic such as histologic
grade, gene expression and mutations in the available endometrial tumor dataset (ID:
UCEC), whose latest available version is from June 2013. The results on the association be-
tween ENDOG expression and somatic mutations in uterine cancer are, in part, based upon
data generated by the TCGA Research Network: https://www.cancer.gov/tcga (accessed
on 26 January 2021) [27]. The distribution of ENDOG levels among normal endometrial

http://www.cancerregulome.org/
https://www.cancer.gov/tcga
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tissues and different subtypes of endometrial tumors was obtained from UALCAN web
resource (http://ualcan.path.uab.edu/) (accessed on 26 January 2021) [28].

2.8. Statistical Analysis

Statistical analysis of experimental data was performed using GraphPad Prism soft-
ware (GraphPad Software, San Diego, CA, USA). Nonparametric tests were applied as
follows: Mann–Whitney U test was used when comparing two independent data groups,
and Kruskal–Wallis test was used when comparing more than two independent data
groups, followed by the Dunn’s post hoc test for multiple comparisons and Dunnett’s test
to compare against control. Analyses of cytometry data in Figure 1c and Figure 4c and
data in Figure 1e,f,h were performed using a 2-WAY ANOVA test followed by Tukey’s post
hoc test for multiple comparisons. Analysis of ENDOG expression data across histological
subtypes in Figure 2e was performed through the UALCAN portal. The exact number of
independent measurements and replicates are specified in each figure legend. All statistical
tests were two-sided at a significance level of <0.05.

Figure 1. ENDOG silencing reduces proliferation in the Ishikawa endometrial carcinoma cell line in
association with increased ROS production and reduced AKT-GSK-3 activation, hindering tumor growth.

http://ualcan.path.uab.edu/
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(a) IK cells were transduced with scrambled (Scr) or ENDOG-specific shRNA lentivirus or left to
stand (Not transduced, NT). Equal numbers of cells were seeded in 2 plates/treatment and counted
after 72 h. Data are expressed as the number of cell cycles completed in 72 h. Cells in replicate plates
were counted at time zero to confirm equal initial cell numbers. All values from 4 independent
experiments are plotted plus median ± interquartile range. Kruskal–Wallis test followed by Dunn’s
test were performed. ***, p < 0.001 vs. Scr. (b) Percentage of dead cells (Trypan blue positive)
counted in the experiments shown in (a). Medians ± interquartile range of n = 4 experiments are
shown. Kruskal–Wallis test followed by Dunn’s test were performed. (c) Cells cultured in the
same conditions as in (a) were detached at the end of the experiment, washed, fixed and stained
with propidium iodide. The percentage of cells in each cell cycle phase was determined by flow
cytometry. Data depicted on stacked bar graphs are mean ± SD. Statistical analysis was performed
by 2-way ANOVA followed by Tukey’s test; n = 4 independent experiments in duplicates. *, p < 0.05;
**, p < 0.001; ***, p < 0.001 vs. Scr. (d) Expression analysis of relevant genes was performed in total
protein extracts of not transduced (NT), Scrambled-transduced (Scr) and ENDOG shRNA-transduced
(shRNA) IK cell cultures. Mitochondria: COXIV subunit 4; DLD: Dihydrolipoamide dehydrogenase;
Signaling: phosphorylated and total AKT and its substrate GSK3; Cell cycle regulators: CYCD: Cyclin
D1; CDK1: Cyclin-dependent kinase 1; CYCB: Cyclin B. Epithelial–mesenchymal transition (EMT)
markers: CATENINB, E-cadherin (molecular weight marks are added in kDa), Vimentin. Loading
controls: GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; NB: Naphthol blue staining of the
membrane. Representative images of 3 independent experiments are shown. (e) ROS were detected
using MitoSOX™ fluorescence quantified by flow cytometry in preparations of IK cells cultured
under the same treatments as in (a) in the presence or absence of 0.2 mmol/L N-Acetyl-Cysteine
(NAC; n = 4). All values from 4 independent experiments are plotted plus mean ± SD. 2-Way
ANOVA followed by Tukey’s test; *, p < 0.05; ****, p < 0.0001. (f) Cell proliferation of cultures as
in (d) was measured; n = 4 in duplicates. All values from 4 independent experiments are plotted
plus mean ± SD. 2-Way ANOVA followed by Tukey’s test ****, p < 0.0001. (g) Eight 12-week-old
SCID female mice were subcutaneously injected with 106 cells/condition (scrambled, Scr; ENDOG
shRNA) in their hind limbs (1 condition per limb). Tumor growth was measured with a digital
vernier caliper. Animals were sacrificed before tumors reached a volume of 2.5 cm3. Tumor size:
d2xD/2 (d and D: minor and major diameters). n = 5 mice. Data represent mean ± SD. Student t-test
was performed to compare Scr and ENDOG shRNA tumors each day. (h) IK cells were transduced
with scrambled (Scr) or ENDOG-specific shRNA lentiviruses and after 48 h, and equal numbers of
cells were seeded. The next day, DMSO (no drug, ND), 10 µmol/L SAHA or 100 µmol/L Etoposide
were added to cultures. Cell counting was performed 24 h after drug addition. Data are expressed as
fold vs. Scr ND. Statistical analysis was performed by 2-way ANOVA followed by Tukey’s test; n = 3
independent experiments in duplicate. *, p < 0.05; ****, p < 0.0001.

Overall survival and disease-free survival analyses on UCEC samples from the TCGA
dataset from 2013 [27] were performed using R (version 3.6.3, R Foundation, Vienna,
Austria). Optimal cut-off points for ENDOG expression groups were obtained using
Maxstat algorithm, which optimized the log-rank statistics. Time to first treatment (TTT)
of the CLL patients was calculated from sampling date to the time of first treatment.
Optimal cut-off points for ENDOG and PTEN expression groups were obtained using
the Maxstat algorithm. Cumulative curves of TTT and Gray’s test for the differences
between the expression groups were performed using R (version 3.6.3). Dot plots for
representation of ENDOG expression among the considered CLL subtypes in Figure S1b
and the corresponding unpaired Student t-tests to evaluate the differences in ENDOG
mean expression were performed using GraphPad Prism software (GraphPad Software,
San Diego, CA, USA).
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Figure 2. Study of ENDOG expression and its association with PTEN expression and mutations in
cell lines and samples of endometrial cancer. (a) Expression analysis of relevant genes was performed
in total protein extracts of IK, HEC-1A and MFE-296 endometrial adenocarcinoma cell lines. COXIV
subunit 4; DLD: Dihydrolipoyl dehydrogenase. For E-cadherin, molecular weight marks are added
in kDa, and the arrow on the right indicates the band of full-length protein. (b) Correlation of
ENDOG expression with the histologic grade of endometrial cancer (carcinoma vs. adenocarcinoma)
samples from cBioPortal datasets (https://www.cbioportal.org/). Sample size is indicated on the
graph. Individual samples were plotted plus median ± interquartile range. (c) Whole genome search
for association of ENDOG expression with somatic mutations on the Cancer Regulome Explorer
in the UCEC dataset finds only a significant association with PTEN mutations (circular layout).
(d) Tumor samples bearing mutations in PTEN have a higher level of ENDOG expression. Sample
size is indicated on the graph. Individual samples were plotted plus median ± interquartile range.
Mann–Whitney test: p < 0.0001. (e) Boxplots of ENDOG expression levels among normal endometrial
tissues and the different histological subtypes of endometrial cancer (UCEC; TCGA project from
UALCAN portal). ENDOG expression is significantly higher in the endometrioid than in the serous
subtypes (p < 0.00001) or even normal endometrial tissues (p < 0.00001). ****, p < 0.0001.

Ranked lists of coding genes according to the degree of Pearson’s correlation to
ENDOG expression were obtained for the different tumor subtypes in CLL. Only those
statistically significant correlations (adjusted p-value < 0.05) after correction for multiple
comparisons were considered. GSEA analyses were performed on those ranked lists to

https://www.cbioportal.org/
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define the positively and negatively enriched molecular pathways (Hallmark and C2
curated gene signatures from MSigDB/GSEA website).

3. Results

3.1. ENDOG Gene Silencing Causes a Reduction in the Proliferation of Ishikawa Endometrial
Adenocarcinoma Cell Line In Vitro and In Vivo in a Xenotransplant Mouse Model

In previous studies we had observed that ENDOG deficiency in somatic normal
human and murine cells leads to reduced Akt phosphorylation (p-Akt) and reduced
proliferation [8]. Therefore, we decided to assess the effects of silencing ENDOG expression
on the proliferation of cancer cell lines and to determine its relationship with the levels of
p-AKT expression. We silenced ENDOG expression in Ishikawa 3-H-12 (IK) cells, a tumor
cell model of endometrial carcinoma, which is PTEN-deficient and has high p-Ser473-AKT
expression [24,29]. We observed a significant decrease in tumor growth of ENDOG-deficient
IK cells (Figure 1a). Cell death was always lower than 5% in the Trypan blue exclusion
assays (Figure 1b) and flow cytometry experiments (Figure S1a), regardless of the treatment.
IK cells deficient for ENDOG expression accumulated in the S phase (Figure 1c). Likewise,
reduced ENDOG expression induced a marked decrease in the phosphorylation of AKT and
its downstream target GSK-3, as well as downregulation of β-catenin, cyclin D and cyclin
B (Figure 1d; Figure S1b), and it increased ROS production (Figure 1e). ROS scavenging
with N-acetyl-L-cysteine (NAC) reduced ROS concentration in ENDOG-deficient IK cells
(Figure 1e), but contrary to what we observed in somatic cells [8], it did not prevent the
effects on proliferation (Figure 1f). Interestingly, when ENDOG-deficient IK cells were
subcutaneously injected in the hind limbs of immune-deficient Prkdcscid mice, tumor growth
was significantly reduced compared to control IK cells (Figure 1g). Finally, we assessed if
ENDOG deficiency could affect the sensitivity to chemotherapeutic drugs such as SAHA
(an HDAC inhibitor) and Etoposide (a DNA damaging agent). Both SAHA and Etoposide
promoted cell death to a similar extent (approximately 70% decrease in cell survival) in
Scr-transduced IK cells and cells expressing low levels of ENDOG (Figure 1h).

3.2. ENDOG Expression in Endometrial Cancer and Its Relationship to PTEN Status

Then, we analyzed the expression of ENDOG and several members of the PI3K/AKT
pathway, both in several endometrial carcinoma cell lines and primary tumor databases, to
investigate a possible association among them. ENDOG expression was directly correlated
with AKT phosphorylation and inversely correlated with PTEN expression in a set of three
endometrial adenocarcinoma cell lines. ENDOG expression was more abundant in IK
cells, which have characteristics of endometrial carcinoma type I according to Bokhman’s
pathogenetic descriptors [17]. On the contrary, HEC-1A and MFE-296 cells had low ENDOG
expression (Figure 2a; Figure S1c). HEC-1A and MFE-296 cells have high PTEN expression,
which bears mutations in MFE-296 cells [29], and low AKT phosphorylation associated
with low levels of β-catenin, E-cadherin and high vimentin expression; these are hallmarks
of epithelium-to-mesenchyme transition (EMT) (Figure 2a), concordant with the more
aggressive behavior of endometrial carcinoma type II, suggesting that low ENDOG is
associated with a more aggressive phenotype.

To further understand the relationship between ENDOG and PTEN alterations we per-
formed an in silico search showing that ENDOG expression was lower in more aggressive
uterine malignancies (Figure 2b; https://www.cbioportal.org/, accessed on 1 June 2021),
and that ENDOG expression correlated exclusively with PTEN gene somatic mutations in
endometrial cancer (TCGA Dataset: UCEC 28 June 2013 http://explorer.cancerregulome.
org/, accessed on 1 June 2021) [27] (Figure 2c,d). Noticeably, PTEN mutations have pre-
viously been associated with the less aggressive histological subtype (endometrioid) of
endometrial cancer [30]. Accordingly, ENDOG expression was found to be associated with
a more favorable prognosis in endometrial cancer in TCGA data only for overall survival
(p = 0.0062) (Figure S2a), but not for disease-free survival (Figure S2b). Similarly to PTEN
mutations, high ENDOG expression levels were also found associated with endometrioid

https://www.cbioportal.org/
http://explorer.cancerregulome.org/
http://explorer.cancerregulome.org/
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types, as 84.5% of patients with high expression had an endometrioid tumor (p < 0.00001;
Fisher exact test), although no significant differences in overall survival could be found
regarding ENDOG expression levels in any endometrial cancer subtype (Figure S3). These
results supported that the clinical impact of ENDOG expression in endometrial cancer
is a product of its association with the less aggressive subtypes. Taking into account the
existing correlation between ENDOG expression and PTEN mutations, these results are also
suggestive of a possible cooperation between both genes in the oncogenic transformation
on some subsets of endometrial neoplasms. In accordance with this hypothesis, ENDOG
expression showed significantly higher expression levels in endometrioid than in normal
endometrial tissues, as well as compared to the more aggressive serous subtype (Figure 2e).

3.3. ENDOG Deficiency Reduces Proliferation of Polarized Endometrial Epithelial 3D Cell
Cultures from Pten−/− Mice

Loss of function-inducing genetic and epigenetic alterations in the tumor suppressor
gene PTEN are common in many cancer types [13]. Because ENDOG silencing reduced
proliferation of IK cells, a PTEN-deficient tumor cell line, we decided to further explore this
event. We had previously developed a mouse model (CAG-Cre-ERT+/−Ptenfl/fl)—in which
tamoxifen (TAM) injection triggers Pten deletion mostly in epithelial cells, consistently in-
ducing endometrial adenocarcinoma [31]—and a three-dimensional (3D) polarized endome-
trial epithelial cell culture model [26]. We induced lentiviral-driven shRNA-dependent
Endog-specific silencing in 3D endometrial epithelial cell cultures from Pten transgenic
mice in the presence or absence of the drug. TAM addition induced Pten deletion and
enhanced gland growth in scrambled-transduced 3D cultures, but Endog-specific gene
silencing strongly blocked TAM-induced gland growth (Figure 3a). Then, we assessed
growth of 3D cultures obtained from Endog+/+/Endog−/−CAG-Cre-ERT+/−Ptenfl/fl female
mice treated or not with TAM. In cultures expressing ENDOG, Pten deletion induced
gland overgrowth, while lack of ENDOG blunted this effect (Figure 3b), accompanied by
reduced abundance of p-Akt and cyclin D expression (Figure 3c; Figure S4), as well as
reduced nuclear BrdU incorporation (Figure 3d). Together, these results show that ENDOG
is required for endometrial epithelial cell overgrowth induced by Pten deficiency in vitro.

3.4. ENDOG Silencing Hinders Proliferation of Human Tumor Cell Lines with High
Phosphorylation Levels of AKT and Low PTEN Expression

We next extended the analysis of ENDOG in cell proliferation to other relevant tumor
types. First, we measured expressions of ENDOG, p-AKT, AKT and PTEN in FTC-133
follicular thyroid carcinoma cells, CAL-62 thyroid anaplastic carcinoma, HT-29 colorectal
adenocarcinoma cells and U87 and U251 glioblastoma multiforme (GBM)-derived cancer
cell lines. FTC-133, U87 and U251 cells showed the lowest levels of PTEN concomitant
with the highest levels of p-AKT abundance (Figure 4a). Lentiviral-driven ENDOG-specific
gene silencing reduced the proliferation of FTC-133 follicular thyroid carcinoma cells, but it
had no effect on CAL-62 thyroid anaplastic carcinoma or HT-29 colorectal adenocarcinoma
(Figure 4b). For the two GBM cell lines studied, ENDOG gene silencing caused a reduction
in the proliferation of the U251 glioblastoma cell line, which showed cell cycle arrest in the S
phase (Figure 4b,c). Therefore, in the cell lines tested, the effects of ENDOG silencing on cell
proliferation occurred in tumor cells with the highest p-AKT and low PTEN, except for the
U87 GBM cell line, pointing to the existence of additional factors determining the impact
of ENDOG on proliferation. Altogether, these results further support the role of ENDOG
in cell proliferation of tumors bearing low PTEN activity and high p-AKT abundance.
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Figure 3. ENDOG deficiency prevents tumor growth induced by PTEN deletion in polarized en-
dometrial epithelial 3D cell cultures. (a) Representative phase contrast microscopy images of Pten-
expressing Ptenfl/fl or Pten-deficient Ptenfl/fl + tamoxifen (TAM) endometrial epithelial 3D cultures
transduced with scrambled (Scr) or Endog shRNA lentiviral particles. Scale bar: 200 µm. Dot plot
graph shows all individual measurements of the glandular perimeter obtained in an experiment per-
formed in triplicate plates. Bars show median ± interquartile range. Kruskal–Wallis test followed by
Dunn’s test was performed. ****, p < 0.0001. (b) Representative phase contrast microscopy images of
endometrial epithelial 3D cultures obtained from Ptenfl/fl/Endog+/+ or Ptenfl/fl/Endog−/− ± tamoxifen
(TAM). Images are obtained at the same magnification as in (a). Dot plot graph shows all individual
measurements of the glandular perimeter obtained in three independent experiments performed in
duplicate plates. Bars show median ± interquartile range. Kruskal–Wallis test followed by Dunn’s
test was performed. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01. (c) Expression analysis of relevant
genes was performed in total protein extracts of the cultures described in (b). NB: Naphthol blue
staining of the membrane. (d) Representative fluorescence microscopy images of BrdU incorporation
in endometrial epithelial 3D cultures obtained from Ptenfl/fl/Endog+/+ or Ptenfl/fl/Endog−/− ± tamox-
ifen (TAM). Pink: BrdU, blue: Hoechst nuclear staining. Dot plot graph shows the percentage of
BrdU-positive cells obtained in three independent experiments performed in duplicate plates. Bars
show median ± interquartile range. Kruskal–Wallis test followed by Dunn’s test was performed.
****, p < 0.0001.
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Figure 4. The efficiency of ENDOG expression silencing for reducing proliferation associates with the highest p-AKT
and low PTEN expression in the thyroid, colorectal and glioblastoma tumor cell lines assessed. (a) Expression analysis
of relevant proteins was performed in total extracts of CAL-62 thyroid anaplastic carcinoma, FTC-133 follicular thyroid
carcinoma, CACO2 colorectal adenocarcinoma, HT29 colorectal adenocarcinoma and U87 and U251 glioblastoma cells.
Representative blots of four independent sets of plates are shown. NB: Naphthol blue staining of the membrane. Graphs
show densitometric analysis of Western blot images (relative individual values, median ± interquartile range). *, p < 0.05;
** p < 0.01 (b) The cancer cell lines in (a) were transduced with scrambled (Scr) or ENDOG-specific shRNA lentivirus or left
to stand (not transduced, NT). Equal numbers of cells were seeded in 2 plates/treatment and counted after 72 h. Data are
expressed as the number of cell cycles completed in 72 h. Cells in replicate plates were counted at time zero to confirm equal
initial cell number. All values from 2 to 4 independent experiments performed in duplicate are plotted. Kruskal–Wallis
test followed by Dunn’s test were performed. *, p < 0.05 vs. Scr. (c) U251 glioma cells cultured under the same conditions
as in (b) were detached at the end of the experiment, washed, fixed and stained with propidium iodide. The percentage
of cells in each cell cycle phase was determined by flow cytometry. Data depicted on stacked bar graphs are mean ± SD.
Statistical analysis was performed by 2-way ANOVA followed by Tukey’s test; n = 4 independent experiments in duplicate.
**, p < 0.01 vs. Scr.
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3.5. ENDOG Expression Is a Marker of Aggressiveness in a Subtype of Chronic Lymphocytic
Leukemia (CLL) Patients, and Its Prognostic Value Is Dependent on Low PTEN Levels in
These Patients

CLL is a frequent mature B-cell lymphoid neoplasm, where PI3K kinase is constitu-
tively activated through BCR signaling [18], and may be an interesting tumor model to
explore the possible clinical impact of ENDOG expression, either alone or in relation to
PTEN status. We first analyzed ENDOG expression in our previously published cohort
of CLL patients that has been well characterized by RNAseq and genomic studies in the
frame of the International Cancer Genome Consortium (ICGC) project [22]. On this data set
we defined an optimal cutoff for the clinical impact of ENDOG expression levels as detailed
in the methods section. High ENDOG expression levels were significantly associated with
short time from sampling to the need of treatment (time to first treatment, TTT), with a
median of 1.97 years versus 13.61 years for patients with high and low ENDOG expression,
respectively; p = 0.0006 (Figure S5a). Two molecular CLL subtypes are distinguished
based on the mutational status of the immunoglobulin heavy variable chain (IGHV), with
cases carrying unmutated IGHV (U-CLL) having more aggressive behavior that CLL with
mutated IGHV (M-CLL) [32,33]. Contrary to endometrial carcinoma, ENDOG median
expression was slightly lower in the indolent CLL subtype (M-CLL) compared to the
aggressive one (U-CLL) (p = 0.014) (Figure S5b). ENDOG expression levels were associated
with the evolution of M-CLL with a median TTT of 7.23 years versus 13.61 years for patients
with high and low ENDOG expression, respectively (p = 0.0033) (Figure 5a) (Table S1a).
No differences were seen in TTT of U-CLL patients in relation to low or high ENDOG
expression (Figure 5a).

We also analyzed the prognostic impact of PTEN in CLL. First, genomic data from
the ICGC CLL project confirmed that PTEN mutations are rare in CLL (8/551), and their
functional effect is questionable since only one mutation was found in coding regions,
and it was a missense change (Table S1b). Next, we considered the impact of PTEN
expression in the whole cohort and the two CLL molecular subtypes. PTEN median
expression was higher in U-CLL than in M-CLL cases (p < 0.0001) (Figure S5b). CLL patients
with high PTEN expression had significantly shorter TTT than those with low expression
of PTEN (median 0.74 years vs. 4.3 years for (p < 0.0001), Figure S5c). However, no
significant differences in TTT were observed between cases with high and low PTEN levels
when analyzed separately in U-CLL and M-CLL (Figure S6a and Table S1a). Regarding
the interaction of ENDOG with PTEN in CLL subgroups, high ENDOG expression was
associated with a significantly shorter TTT only in M-CLL with concomitant low PTEN
expression levels (p = 0.0163) (Figure 5b and Figure S6b). Thus, these results identify a
subset of patients (ENDOG high/PTEN low) with inferior outcome inside the favorable
prognosis in the M-CLL subtype.

3.6. ENDOG Expression Is Correlated with Genes in Pathways Related to Aggressiveness of CLL
Including Cell Proliferation

To further understand the role of ENDOG in CLL pathogenesis, we performed Gene set
enrichment analysis (GSEA) on genes ranked by their correlation with ENDOG expression
in U-CLL and M-CLL. Interestingly, this analysis revealed that signatures previously
related to CLL adverse prognosis [34] were significantly enriched in M-CLL but not in
U-CLL (Figure S7a). Regarding pathways related to cell proliferation, several were found
enriched and involved genes either with positive or negative correlation to ENDOG in
both CLL subtypes (Figure S7b and Table S2a–d). Nevertheless, some particular cell-cycle
related pathways were found exclusively enriched in M-CLL (Figure S7b and Table S2e).
Among the pathways positively correlated with ENDOG expression, MYC oncogene targets
together with genes related to cell proliferation were observed. In this regard, the top
ENDOG-correlated gene was TBL3, which downregulation has been related to a slower cell
cycle [35] (Table S2f). Similarly, the top negatively ENDOG-correlated gene was TCERG1,
known to be required for the growth arrest activity of C/EBPα [36] (Table S2f).
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Figure 5. Time to first treatment (TTT) cumulative curves according to ENDOG expression in
subgroups of CLL patients and their dependency on PTEN expression levels. (a) CLL patients with
high (H) ENDOG expression levels showed a significantly shorter TTT compared to those with low
(L) ENDOG expression levels, but only in the M-CLL subgroups between the categories defined by
IGHV mutational status. (b) ENDOG expression association with a significantly shorter TTT in the
M-CLL subgroup was only detected in cases with concomitant low PTEN expression levels compared
to the other combinations of ENDOG and PTEN expression categories (O).

4. Discussion

The results presented here show that reducing ENDOG expression in human tumor
cell lines with low PTEN expression and high p-AKT abundance restrains cell proliferation.
We also report that ENDOG deficiency counteracts the stimulation of cell proliferation
induced by Pten gene deletion in mouse endometrial epithelial cells. Finally, in silico data
suggest that ENDOG expression associates with PTEN status in endometrial cancer and that
its prognostic value in some CLL subtypes is also dependent on PTEN expression levels.

Hyperactivation of the PI3K/AKT signaling pathway is a frequent hallmark of human
cancer [14], and development of related targeting drugs has shown to have great potential
for cancer treatment [37]. However, due to the essential role of this signaling pathway for
correct somatic cell function and to the resistance of some cancer types to treatment with
available drugs inhibiting AKT activation, the identification and characterization of novel
regulatory networks impinging on AKT activity can help to design and determine more
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efficient treatments. AKT activity depends on different regulators, including PI3K through
the production of the PIP3 mediator from PIP2 in the plasma membrane. On the other hand,
PI3K-dependent activation of AKT is also antagonized by PTEN, which dephosphorylates
PIP3 to PIP2. Of note, AKT phosphorylation targets are involved in cell survival, growth,
proliferation and other cellular processes relevant in cancer. Concordantly, molecular
aberrations in the PI3K-PTEN-AKT axis are very frequent in many cancer types [12–14,17].
In this context, we recently showed the relationship of the mitochondrial nuclease ENDOG
with cell proliferation, involving downregulation of the AKT/PKB-GSK-3-Cyclin D axis [8].
This finding suggested a potential wide impact of ENDOG expression in cancer, by which
ENDOG could represent a new clinical biomarker and therapeutic target, and fostered our
interest in assessing the impact of ENDOG expression in tumor cell proliferation.

Indeed, we show that ENDOG/Endog gene silencing reduces tumor cell proliferation
in association with decreased p-AKT abundance and downregulation of the downstream
signaling pathway. In addition, Endog silencing or genetic deletion can block the tumor
promoting effects of Pten gene deletion in endometrial epithelial cells, paralleling the effects
previously observed in somatic cells. However, some important differences have been
observed in the processes altered by ENDOG deficiency in tumor cells compared to those
observed previously [8]. While somatic cells tend to accumulate in the G1 phase, here we
report that IK and U251 cells accumulate in the S phase after ENDOG gene silencing. Of
note, IK cells have lost the expression of the tumor suppressors PTEN and retinoblastoma
RB1 [29,38] and lack of RB1 facilitates E2F-dependent progression from G1 to S phase of
the cell cycle. In fact, alterations in this pathway are found in most human cancers [39].
In addition, U251, but not U87, has a mutated p53 gene [40], which is another relevant
component of the G1/S checkpoint. The absence of a functional G1/S checkpoint could
explain the differences observed in cell cycle in the analyzed tumor cells compared to
somatic cells that accumulate in G1 after ENDOG expression silencing.

Although ENDOG is involved in caspase-independent cell death in several somatic cell
types [6,7,41] and is also involved in the sensitivity of some cancer cell lines to chemothera-
peutic agents [42,43], our results discarded that changes in cell death contributed to the
differences in cell number due to ENDOG silencing in the models used in this article.

Previous reports showed that ENDOG contributes to the sensitivity to chemothera-
peutic drug addition in breast [42] and prostate [43] cancer cell lines, measured as lactate
dehydrogenase release to the culture medium. Our results show that ENDOG gene si-
lencing did not block Ishikawa cell death induced by SAHA and Etoposide. The lowest
cell number at the end of the treatment was attained by the combination of ENDOG gene
silencing and drug treatment in our experimental models.

In addition, although the effects on proliferation due to the reduction in ENDOG/Endog
gene expression in somatic cells was ROS-dependent [8], this was not observed in IK en-
dometrial carcinoma cells in which pharmacological ROS neutralization does not restore
proliferation. In fact, ROS have been shown previously to induce proliferation in tumor
cells [44,45]. These differences suggest that ENDOG controls diverse downstream events
that impact proliferation in a cell type-dependent manner. The identification of the mito-
chondrial events regulated by ENDOG that impact AKT phosphorylation in tumor cells
deserves further investigation.

Our results show the correlation between the effect of ENDOG silencing on prolifer-
ation and the abundance of PTEN and p-AKT. In particular, in endometrial cancer cells,
ENDOG silencing hampers proliferation of IK cells, which lack PTEN and have high levels
of p-AKT. HEC-1A and MFE-296, which have more aggressive characteristics than IK cells
and low ENDOG expression, have high expression of PTEN and low p-AKT abundance,
despite harboring several mutations in the PTEN gene [29]. The results obtained from the
analysis of ENDOG expression in the endometrial cancer databases showed a direct asso-
ciation of ENDOG expression and PTEN gene mutations and less aggressive histological
subtypes. Although ENDOG expression was also found inversely associated with overall
survival, this impact was not found to be independent of the observed association with the
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more indolent endometrial cancer subtype. However, information on the AKT activation
status in the samples included in endometrial cancer datasets would be necessary to fully
evaluate the ENDOG potential as a prognostic factor.

ENDOG gene silencing/suppression blunted AKT phosphorylation and the induction
of cell proliferation in epithelial endometrial 3D cultures induced by PTEN gene suppres-
sion. These results demonstrated the involvement of the PI3K/AKT pathway in the effects
of ENDOG in tumor cell proliferation in the assessed model. Analysis of the contribu-
tion of ENDOG expression to cell proliferation in diverse tumor cell lines with different
status of the PTEN/p-AKT pathway further demonstrated that ENDOG silencing targets
p-AKT-dependent signaling to reduce cell proliferation. Regarding the thyroid cancer cell
models, the FTC-133 cell line, which has a hemizygous deletion of the PTEN gene and
high p-AKT abundance [46], is sensitive to ENDOG silencing, whereas the CAL-62 cell
line, which expresses high PTEN levels, is not. Intestinal epithelial tumor cell lines CaCO2
and HT29 have been shown to express PTEN and to require upregulation of PTEN and
downregulation of PI3K activity for full intestinal cell differentiation [47,48]. However,
our results show that, in these cells, PTEN expression does not inversely correlate to p-
AKT abundance, as would be expected, suggesting the presence of molecular alterations
and/or alternative signaling controlling AKT phosphorylation in these intestinal cancer
cell lines. Nevertheless, ENDOG deficiency had some effect on HT29 cell proliferation,
which has higher p-AKT abundance than CaCO2, supporting the notion that ENDOG
effects on cell proliferation mainly course through the control of AKT activation. Finally,
we considered the study of ENDOG silencing in U87 and U251 glioblastoma cell lines
characterized, among other traits, by the absence of PTEN expression [40,49] and in which
PTEN overexpression has been shown to sensitize to cell death inducers [50]. The differ-
ences between both cell lines regarding the effect on proliferation of ENDOG gene silencing
could be due to the different levels of p-AKT combined with other genetic alterations. Of
note, previous reports showed similar sensitivity of MFE-296, IK, CAL-62 and FTC-133 cell
lines to the multikinase inhibitors Sorafemib and Regorafenib [24]. On the contrary, our
results demonstrate that ENDOG gene silencing only influences proliferation in the tumor
cell lines with the highest p-AKT abundance, which correlates with low or absent PTEN
expression. This fact suggests that multikinase treatment most probably hampers other
signaling pathways impacting in cell survival, in addition to the PI3K-AKT axis.

In this context we decided to explore the clinical impact of ENDOG in CLL as a model
of B-cell neoplasm in which the PI3K-AKT axis is constitutively activated and required
for cell survival and proliferation [18]. We analyzed the ENDOG expression in a series of
266 CLL patients from the ICGC project [21] and observed that its high expression levels
were related to a more aggressive behavior with shorter TTT. A further dissection of the
ENDOG expression impact on TTT in the two molecular subtypes of CLL could identify
that ENDOG prognostic value was apparent only in the less aggressive M-CLL subtype.
Interestingly, in the present study we also have found a relationship of ENDOG expression
with less aggressive uterine malignancies in which the AKT pathway is hyperactivated. As
we had observed that ENDOG expression correlated with mutations of the PTEN gene in
endometrial cancer, we considered the relationship of ENDOG expression and PTEN status
in CLL. PTEN has been previously found to be altered in cancer by different mechanisms
including mutation with loss of heterozygosity (LOH), promoter methylation or other
processes that lead to its decreased expression [16]. Although loss-of-heterozygosity of
PTEN locus has been described in a proportion of CLL, PTEN mutations do not seem to be
a relevant driver in CLL. Accordingly, the ICGC project only detected few cases with PTEN
mutations, but their functional significance is questionable since they occur in introns and
3′-UTR. Low PTEN levels have been associated with shorter TTT in CLL, and other adverse
prognostic factors [51]. In our CLL patients, low PTEN levels were related to a significantly
shorter TTT only in patients with M-CLL subset with high ENDOG expression. Therefore,
we conclude that high ENDOG levels have clinical impact in a CLL subgroup generally
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associated to a more indolent course but that confer a more aggressive behavior in those
patients with concomitant low PTEN expression.

Finally, the pathway enrichment analysis on the transcriptomic data from the same
CLL cohort studied for ENDOG clinical impact showed a significant enrichment in sig-
natures previously related to poor prognosis [34], and those were found only in M-CLL,
concordantly with the observed clinical impact of ENDOG in these CLL patients. Moreover,
significant enrichments on several proliferation-related pathways, specifically in M-CLL,
were also found, involving both positively and negatively ENDOG correlated genes.

5. Conclusions

In summary, the results presented in this work demonstrate that ENDOG gene si-
lencing can be useful to reduce cell proliferation in some tumors characterized by low
PTEN activity and high p-AKT abundance. Moreover, ENDOG expression associates with
PTEN/p-AKT status in endometrial cancer and also has prognostic value in a tumor cell
model with AKT hyperactivation, such CLL, but this depends on PTEN expression levels.
Taking into account the high prevalence of alterations in the PI3K/AKT signaling pathway
and the PTEN tumor suppressor in many types of tumors, our results pinpoint a new
relevant factor to potentially improve prognosis and therapeutic approaches across some
human neoplasms.
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