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Abstract: Entropy should directly reflect the extent of disorder in proteins. By clustering structurally
related proteins and studying the multiple-sequence-alignment of the sequences of these clusters,
we were able to link between sequence, structure, and disorder information. We introduced several
parameters as measures of fluctuations at a given MSA site and used these as representative of
the sequence and structure entropy at that site. In general, we found a tendency for negative
correlations between disorder and structure, and significant positive correlations between disorder
and the fluctuations in the system. We also found evidence for residue-type conservation for those
residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be
allowed. In addition, we found positive correlation for disorder and accessible surface area, validating
that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations
in the dihedral angles at the original mutated residue and disorder are positively correlated while
dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our
results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts
of the protein with which the disordered site interacts. This is another indication that disordered
residues are involved in protein function.
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1. Introduction

Protein disorder, where whole proteins or protein segments are either unstable or meta-stable,
has proven to be a critical property to understand function in biological systems [1–33]. Such disordered
proteins and regions have been demonstrated to become more abundant as organism complexity
increases [23,29,34–37]. This increase in disorder with organism complexity likely results from the key
roles played by disorder in the signaling and regulatory processes underlying cellular differentiation,
cell cycle control, gene regulation, and protein–protein interactions, especially enabling the existence
of hubs [10,13,38–44]. The origin of these effects arises because disordered proteins enable more diverse
function, yet are still able to maintain a high degree of specialization in their specific interactions.

Understanding entropic effects in protein systems is usually difficult, and understanding
molecular stability is arguably one of the most important problems in molecular biology, particularly
of interest for proteins. This problem is clearly important for understanding the relationship between
protein function, structure, and sequence. The full knowledge of protein stabilities requires the reliable
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evaluation of energies and entropies. This would also aid in the evaluation of structural models
of the large number of genes with unknown protein structures. Even a partial understanding
of the relationship between entropic sequence effects and structure has already yielded significant
success [45–47], and will most likely lead to further success in the future.

Entropy and disorder are intimately related. The aim here was to explore this relationship
for proteins. In this work, we analyzed datasets of related proteins with known sequences
and structures. We split each cluster of related proteins into two sets, one having a greater sequence
similarity than the other. We do this as a way to further explore the relationship to sequence variability.
We analyzed the variations in sequence and structure among these sets and quantify their entropies.

Entropy is a global variable. It is the logarithm of the number of phase space states accessible
to a system. In very large systems, such that they appear continuous, the number of states is estimated
from the phase space volume. Since velocity coordinates in a protein system are related to thermal
degrees of freedom and we assumed a constant temperature, the momentum distribution of different
conformational states will be similar and, to a good approximation, the difference in the entropy of
two states will depend only on the difference between their configuration space volumes.

A previous study of entropy in protein systems by Franzosa and Xia [48] investigated the constraints
that structure imposes upon protein evolution. They found that solvent exposure is the most significant
structural determinant of residue evolution and also identified a weak effect from the packing density.
The relationship between solvent exposure and entropy they found was “strong, positive, and linear”.
We investigated these relationships.

2. Materials and Methods

To obtain a dataset of both sequence and structure of related proteins, we clustered PDB [49–51]
structures with resolution better than 3 Angstrom, at 25% or greater sequence identity (SID).
This was done by first clustering the PDB at 99% SID, to remove redundancies, and then clustering
at 25% SID. We used BLASTClust [52] with default parameters to do the clustering. We selected
the largest clusters and divided each cluster into two separate sets having SID values in the range of
30–50% SID for one set (A types) and 60–80% for the second set (B types). These collections represent
more diverse A sets and less diverse B sets, respectively.

The most abundant cluster of related proteins we found is that of antibodies. We use the notation
of L1 to refer to this set. The PDB ID for the structural seed of this set is 5U68E, where the fifth character
gives the chain ID. The second most abundant cluster is for kinases. We use the notation of L2 to refer
to this set. The PDB ID for the structural seed of this set is 3TTIA. Per review request, we included
the third largest cluster as an additional test for some of our results as described in the text. The PDB
seed for this cluster is 5F1OB and it is labeled L3. Cartoon representations of the seed structures for L1,
L2, and L3, are given in Figure 1. In total, we have 6 sets of proteins: L1, L2, and L3, each split into
two sets as described above. The number of proteins in each set and the corresponding descriptors are
given in Table 1.
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Figure 1. Cartoons of the structures for the seeds for the sets L1, L2, and L3. (A) Seed for the L1
sets L1A and L1B, an antibody fragment, PDBID: 5U68E. (B) Seed for the L2 sets L2A and L2B,
JNK3 mitogen-activated protein kinase 10, PDBID: 3TTIA. (C) Seed for the L3 sets L3A and L3B,
nanobody MU551, PDBID: 5F1OB. The color scheme is according to the secondary structure types,
with beta strands yellow, helix red and coil green. Note that we keep a dark background to aid in
viewing loops and especially loops with missing residues.

For each of these sets, we collected their sequences and executed a multiple sequence alignment
(MSA) using CLUSTALW [53,54] with default parameters. The length of the alignment obtained for
each set is also given in Table 1. We observed that, the more varied is the set, the longer is the length
of the alignment, as expected. In addition, we found that the more distant are the proteins (lower
SID), the longer is the alignment. That is also to be expected since aligning more distant proteins
would require inserting more gaps to accommodate the larger sequence variations. We refer to a given
column in the MSA as an MSA site. To avoid cases of sparseness in the data, we only used MSA sites
having a count of at least 20 amino acids . The number of MSA sites obeying this condition is also
given in Table 1. Finally, we give the means, medians, and standard deviations, for the TM-scores [55]
between the seed structure and all the rest of the structures in the corresponding set. The Template
Modeling score (TM-score) is a parameter to measure protein structure similarity. It is calculated from
the distances between the residues of two aligned proteins:

TM− score = max[
1
Lt

La

∑
i=1

1

1 + ( di
d0
)2
], (1)

where the maximum is taken over all possible alignments. Lt is the length of the target protein,
La is the length of the protein that is aligned to it, di is the distance between the residues at alignment
location i, and d0 is a scaling distance, optimized to d0 = 1.24 3

√
Lt − 15− 1.8. With such calibration,

the TM-score does not depend on the protein length, and varies between 0 and 1, with 1 indicating
a perfect match. A TM-score below 0.2 indicates structurally unrelated proteins, while a TM-score
greater than 0.5 indicates the two proteins belong to the same fold.

We observed that the largest set L1 is distributed around relatively distinct structures with some
similarity, having a TM-score of just below 0.5. All three sets have TM-scores with means ranging
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between 0.37 and 0.67. We also observed an appropriate increase in mean and median TM-score for
the more similar structures (the B sets - SID 60–80%). We note that the set L2B with SID 60–80% is
composed of two overlapping structure clusters. This is exhibited in the range of TM-score and also
somewhat skews the results for this set.

Table 1. Properties of the protein sets used.

Set: L1 L2 L3

SID to seed: 30–50% 60–80% 30–50% 60–80% 30–50% 60–80%

Number of proteins 1759 586 398 261 378 393
Length of MSA 666 565 930 498 535 228
>20 MSA sites 494 397 569 157 355 182
TMS mean 0.45 0.49 0.51 0.37 0.53 0.67
TMS median 0.43 0.49 0.24 0.36 0.23 0.87
TMS STDEV 0.06 0.06 0.26 0.05 0.32 0.30

Number of residues in seed protein 294 464 163
Seed PDBID 5U68E 3TTIA 5F1OB
Function title Antibody fragment JNK3 mitogen-

activated kinase
Nanobody MU551

Properties of the most abundant clusters of related proteins in the PDB.

To evaluate the amount of disorder at a given MSA site, we introduce the parameter δ that counts
the excess number of disordered residues:

δ =
Ndis − Nord

Nres
. (2)

Here, Ndis is the number of residues at an MSA site classified as disordered, i.e., their coordinates
appear in the missing coordinates section of the corresponding PDB file (remark 465), and Nord
is the number of residues classified as ordered, i.e., with coordinates in the corresponding PDB file.
Nres is the total number of residues per MSA site, i.e., the total number of sequences that have a residue
at this site in the MSA. Note that in a few instances there is a discrepancy between the residue type as it
appears in the Uniprot [56] sequence information and that in the PDB file. We discarded these cases and
did not classify them as either ordered or disordered, however, they appear in Nres. Hence, in general
Nres ≥ Ndis + Nord, and −1 ≤ δ ≤ 1. At a given MSA site, δ = 1 indicates all residues at that site are
classified as disordered, while δ = −1 indicates that all residues at that site are classified as ordered.
Using this approach, for any specific mutation site, we established linked measures of both disorder
and structural order. Note that, for a given MSA site, with a number of proteins having a residue at
that location, those residues with missing coordinates in the PDB file are labeled disordered. For those
residues with coordinates in the PDB, we calculated the structural features. Hence, for a given MSA
site, we have both structural and disorder information and we investigated the relationship between
them. To ensure that we have some sampling points per MSA site we restricted our attention only
to those MSA sites that have at least 20 proteins contributing a residue to the alignment. Note that,
since the protein sequences were obtained from Uniprot, residues without PDB coordinates can still
contribute to the alignment.

To characterize the structure and fluctuations at a given MSA site, we proceeded as follows.
We started by finding the closest long-range contact (CLRC), that is, the closest residue in space which
has a sequence separation of more than 5 residues from the MSA site. The distances between the
Cβ (Cα for GLY) atoms was used to measure the distance between residues. For all MSA sites, we
calculated the average of these distances, dav, and their standard deviations, dsd. We quantified the
rotational relationship by calculating the cosines of the angles between the N-Cα, Cα-C, and Cα-Cβ

(0.0 for GLY) bonds for the residue pair identified by a given MSA site and its CLRC site. The cosine of
the angle was obtained by taking the dot product of the bond vectors and normalizing by their lengths.
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The average values of these were identified as c1av, c2av, c3av, respectively, and the standard deviations
of the cosines of these angles are denoted as c1sd, c2sd, and c3sd, respectively.

We also calculated the Shannon entropy for the original MSA site with respect to residue type
fluctuations, i.e., from those aligned sequences at a given MSA site we created a probability distribution
for residue type and then used ∑ p ln(p) to calculate the sequence entropy. We performed a similar
procedure on the probability distribution for residue types of the CLRC. The Shannon entropy
parameter for the original MSA site is denoted s1, and that for the CLRC s2. In Figure 2, we
give example plots of δ (Figure 2A), the two entropies s1 and s2 (Figure 2B), dav (Figure 2C), and dsd
(Figure 2D), for all MSA sites having at least 20 residues contributing to the alignment for the set L1A.
The relationships even between this limited set seem complex. In what follows, we try to further
characterize the features of a given MSA site, and as a first approach determine the correlations
between these different features.

In addition, we calculated the average and standard-deviations for the accessible surface area,
relative accessible surface area (RSA), and the φ and ψ dihedral angles for both the MSA site
and the CLRC site. For the MSA site, we identify these parameters as a1av, a1sd, ra1av, ra1sd, φ1av, φ1sd,
ψ1av, and ψ1sd, respectively. For the CLRC, we identify these as a2av, a2sd, ra2av, ra2sd, φ2av, φ2sd, ψ2av,
and ψ2sd, respectively. We also calculated the propensity of secondary structure types at the MSA and
CLRC sites. In general, we use the index 1 for the MSA site and the index 2 for the CLRC site. The letters
h, c, and e refer to the helix, coil, and, sheet secondary structure types, respectively. We use the same
secondary structure assignment scheme as in SPINE-X [57–59]. From these propensities, we calculate
a probability distribution for secondary structure states and from that we calculate the Shannon
entropy for secondary structure. We use the notation sss1 for this entropy for the MSA site and sss2 for
this entropy at the CLRC.

Figure 2. Example plots of: δ (A); the two entropies s1 and s2 (B); dav (C); and dsd (D), for all MSA sites
having at least 20 residues contributing to the alignment for the set L1A.
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3. Results and Discussion

To estimate the relationships between the various parameters and the disorder propensity
of an alignment site, δ, we calculated Pearson correlation coefficients (correlations) between them.
In Tables 2–7, we give the correlations between the various sequence and structure parameters we
calculated. Correlations to entropic parameters are given in Table 2. We found that there is a consistent
negative correlation between s2 and δ. The only exception is a marginal positive correlation for L3B.
Since L3B is a smaller set, this result may be due to not enough statistics. The positive correlation
between s2 and δ seems to indicate a significant average residue conservation for residues proximate
to disordered sites. This can be an indication of their importance for function, and this will be further
explored in future work. The correlation values between δ and the entropy of the disordered site are
weaker. This indicates that the residue type substitution rate is not significantly different between
ordered and disordered residues in this case. This behavior of the correlation could come about because
disordered sites form structure with protein or nucleic acid partners, with the resulting structure
imparting increased conservation for the amino acids involved in the formation of the complex.
Some disordered regions have high conservation throughout [60], possibly because they form multiple
partnerships such that nearly all of their residues are important for at least one critical structure.

In Table 3, we give the correlations between the different entropic parameters. Overall, there
is a positive correlation between them. In addition, as expected, correlations within the more similar
set L2B appear larger than those of the less similar sets L2A. For set L1, the situation is less clear and
may be an indication that set L1 carries more noise.

Table 2. Correlations between the disorder propensity δ and entropic parameters.

Parameter L1 L2 L3

30–50% 60–80% 30–50% 60–80% 30–50% 60–80%

s1 −0.074 0.092 0.030 0.240 0.020 0.250
s2 −0.402 −0.316 −0.346 −0.286 −0.145 0.042

sss1 −0.213 −0.138 0.050 −0.077 −0.205 0.080
sss2 −0.141 −0.216 −0.039 −0.101 −0.128 0.022

s1 and s2 are entropies with respect to fluctuations in residue type for the MSA and CLRC sites, respectively,
and sss1 and sss2 are entropies with respect to fluctuations in secondary structure assignment for the MSA
and CLRC sites, respectively.

Table 3. Correlations between the entropic parameters.

Parameter L1 L2

30–50% 60–80% 30–50% 60–80%

s1, s2 0.467 0.319 0.526 0.681
s1, sss1 0.267 0.179 0.280 0.403
s1, sss2 0.207 0.206 0.280 0.544
s2, sss1 0.442 0.424 0.284 0.483
s2, sss2 0.562 0.601 0.458 0.745

sss1, sss2 0.375 0.370 0.374 0.549

Correlation between the different entropic parameters calculated for the different sets of aligned proteins.

Correlations between δ and spatial parameters are given in Table 4. We found significant positive
correlations between δ and dsd. This is to be expected from the definition of disorder. It is interesting
to note that the correlations to the fluctuations of the rotational degrees of freedom (c1sd, c2sd, c3sd)
are all negative. This is a puzzle since it seems to associate larger rotational fluctuations with less
disorder. It may be an indication that disorder fluctuations are more abundant in the radial directions
than in the rotational ones.
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Table 4. Correlations between the disorder propensity δ and spatial parameters.

Parameter L1 L2

30–50% 60–80% 30–50% 60–80%

dav 0.082 −0.097 0.354 0.296
dsd 0.191 0.114 0.425 0.248
c1av 0.259 0.181 0.026 0.147
c1sd −0.131 −0.163 −0.013 −0.182
c2av 0.247 0.142 0.052 0.236
c2sd −0.137 −0.148 −0.042 −0.143
c3av −0.050 −0.097 0.061 −0.237
c3sd −0.243 −0.159 −0.002 −0.161

Correlations between spatial characteristics and the disorder propensity at a given MSA site.

To further test the correlation between δ and dav and dsd, we performed a similar analysis
on the third most abundant cluster of related sequences of structures deposited in the PDB. The general
properties for this cluster are labeled under L3 in Table 1. The seed PDB structure for this protein
chain is 5F1OB; a representative cartoon of it is given in Figure 1. For the more diverse subgroup of L3
(30–50% SID), we found correlations of 0.219 and 0.195 for dav and dsd, respectively. For the less diverse
subgroup of L3 (60–80% SID), we found correlations of 0.361 and 0.225 for dav and dsd, respectively.
These trends are in line with the results for clusters L1 and L2. To estimate the statistical significance
of the observed positive correlations between δ and dav and dsd, we performed the following analysis
for the set L1A. We started by selecting a random subset of 200 points and calculated the correlation
for this subset. We then repeated this process 15 times and use a majority vote to determine the sign
of the correlation. Hence, we can consider such a round a flip of a coin, with two possible outcomes.
We conducted 10 such rounds and obtained a positive correlation for all of them. In analogy with
coins, this would correspond to a p-value of 2−10, indicating confident rejection of the null hypothesis
that the correlations are random.

Correlations between δ and accessible surface area parameters are given in Table 5. They are mostly
significantly positive, and similarly for the RSA. This is in agreement with the general observation that
disordered residues occur in exposed regions of proteins. The negative correlations with fluctuations
in accessible surface area may be due to the same observation, as disordered residues would tend
to remain exposed, and hence have reduced fluctuations. We could not identify any consistent
trend from the correlations with the dihedral angles values (Table 6). However, we did find one
for the fluctuations in the dihedral angles. Fluctuations of the dihedral angles are positively correlated
with disorder propensity for the original residues, and negatively correlated for the CLRC residues.
This is in agreement with the results for the Shannon entropy at these sites, indicating allowed
variability at the disordered site, and increased rigidity in the parts of the protein where this disordered
site interacts. This may be another indication that disordered residues are involved in protein function.

Table 5. Correlations between the disorder propensity δ and ASA parameters.

Parameter L1 L2

30–50% 60–80% 30–50% 60–80%

a1av 0.167 0.093 0.388 0.450
a1sd −0.077 −0.051 0.340 0.120
a2av 0.129 −0.040 0.317 0.253
a2sd −0.153 −0.235 0.215 −0.078

ra1av 0.180 0.090 0.409 0.409
ra1sd −0.040 −0.042 0.393 0.133
ra2av 0.163 0.006 0.320 0.214
ra2sd −0.163 −0.206 0.214 −0.186

Correlations between ASA characteristics and the disorder propensity at a given MSA site.
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Table 6. Correlations between the disorder propensity δ and dihedral angle parameters.

Parameter L1 L2

30–50% 60–80% 30–50% 60–80%

φ1av 0.269 0.216 0.410 0.326
φ1sd 0.106 0.029 0.480 −0.026
ψ1av −0.006 −0.041 0.213 0.054
ψ1sd 0.035 0.028 0.262 0.235
φ2av 0.184 0.272 −0.003 0.269
φ2sd −0.204 −0.173 −0.015 −0.314
ψ2av −0.264 −0.243 −0.079 −0.292
ψ2sd −0.156 −0.125 −0.082 −0.192

Correlations between dihedral angles characteristics and the disorder propensity at a given MSA site.

Correlations between δ and probabilities of secondary structure types are given in Table 7.
As expected, we found a significant negative correlation. We found the strongest negative correlation
with the propensity of β-sheets. This is also expected. We also found a negative correlation between
the entropy of secondary structure and δ for both the original site and its CLRC. This indicates that
as disorder is increased at a given MSA site, it becomes more probable for the secondary structure
to be of a particular type. This results is consistent with our previous observations for the CLRC.
It is difficult to evaluate their significance for the original site since, we have a mixture of disorder
and order information.

Table 7. Correlations between the disorder propensity δ and secondary structure probabilities.

Parameter L1 L2

30–50% 60–80% 30–50% 60–80%

ss1h −0.093 −0.067 −0.378 −0.120
ss1c −0.333 −0.183 −0.303 −0.354
ss1e −0.339 −0.189 −0.207 −0.393
ss2h −0.104 −0.084 −0.385 −0.150
ss2c −0.316 −0.144 −0.400 −0.319
ss2e −0.424 −0.264 −0.294 −0.575

Correlations between secondary structure probabilities and the disorder propensity at a given MSA site.

In Figure 3, we plot the entropy of secondary structure at a given MSA site (sss1) versus the value
of δ at that site. In Figure 4, we plot the same at the CLRC site (sss2 versus δ). In both cases, we see
a scatter of points on the x-axis. This indicates a strong effect that is due to conserved sites with zero
entropy. If we remove these sites from the calculations of the entropy, we get a reversal in the sign
of the correlation, going from −0.213 and −0.141 to 0.139 and 0.247 for Figures 3 and 4, respectively.

We also calculated the correlations between secondary structure type probabilities of the original site
and the CLRC. Our aim here was to study the relationship between the structure at the MSA and CLRC
sites. Specifically, if there is a difference in that relationship between sites that tend to be more or less
disordered. In Table 8, we give these values. We also calculated these correlation values separately
for MSA sites with δ ≥ 0 (more disordered) and with δ < 0 (more ordered). There is a clear positive
correlation for secondary structure types regardless of the state of disorder. One should note that for
set L1 there is very little helix conformation, as observed in Figure 1A. This is the reason for the low
correlation for this case in Table 8 as there are not enough data.
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Figure 3. The entropy of secondary structure at a given MSA site versus the value of δ at that site.

Figure 4. The entropy of secondary structure at the CLRC to the MSA site versus the value of δ at that site.

Table 8. Correlations between secondary structure type probabilities.

Type L1 L2

30–50% 60–80% 30–50% 60–80%

Helix 0.198 0.179 0.509 0.289
Coil 0.611 0.480 0.414 0.442
Sheet 0.741 0.716 0.643 0.620
Helix (δ ≥ 0) −0.033 −0.007 0.551 0.175
Coil (δ ≥ 0) 0.566 0.332 0.893 0.993
Sheet (δ ≥ 0) 0.768 0.585 0.721 0.658
Helix (δ < 0) 0.277 0.307 0.450 0.278
Coil (δ < 0) 0.588 0.559 0.341 0.354
Sheet (δ < 0) 0.707 0.770 0.632 0.523

Correlations between the secondary structure probabilities of the original MSA site and its CLRC.

Finally, part of our aim in the research was to find differences in behavior between two sets
of proteins, one with more related proteins, and the other a more diverse set of proteins. Unfortunately,
we do not feel confident in drawing conclusions from the data regarding that question. However,
future studies may find the data presented here useful.
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4. Conclusions

We investigated the relationship between entropy and disorder using native protein structures
found in the PDB. By finding clusters of related proteins and studying the MSA of the sequences of
these clusters, we were able to establish a link between sequence, structure, and disorder information.
We introduced several parameters as measures of fluctuations at a given MSA site and used these
as plausible representative of the sequence and structure entropy at that site. We then defined a
disorder propensity of an MSA site, δ, and calculated the Pearson correlations between it and our
fluctuation parameters. Overall, we found a tendency for negative correlations between disorder and
structure. We also found evidence for residue-type conservation for those residues in close proximity
to potentially disordered sites. Mutations at the disordered site itself appear to be allowed.

We found significant positive correlations between δ and the fluctuations in the system. This
is to be expected from the definition of disorder. It is interesting to note that the correlations to the
fluctuations of the rotational degrees of freedom (c1sd, c2sd, and c3sd) are all negative. This may be
an indication that disorder fluctuations are more abundant in the radial direction than in rotational
directions but this result will be investigated in future studies.

As expected, we found positive correlations for disorder and accessible surface area, indicating
that disordered residues occur in exposed regions of proteins. We found a negative correlations
for disorder with fluctuations in accessible surface area. This seems to indicate that disordered
residues would tend to remain exposed, and hence with reduced RSA fluctuations. We also found
that fluctuations in the dihedral angles at the original mutated residue and disorder are positively
correlated while dihedral angle fluctuations in the CLRC residue are negatively correlated with disorder.
This agrees with the results for the Shannon entropy at these sites, indicating permissible variability
in the disordered site, but greater rigidity in the parts of the protein with which the disordered
site interacts. This is another indication that disordered residues are involved in protein function.
We also found indications that, as disorder is increased at a given MSA site, it becomes more probable
for the secondary structure to be of a particular type.
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